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Abstract

We study the classic k-means/median clustering, which are fundamental problems
in unsupervised learning, in the setting where data are partitioned across multiple
sites, and where we are allowed to discard a small portion of the data by labeling
them as outliers. We propose a simple approach based on constructing small
summary for the original dataset. The proposed method is time and communication
efficient, has good approximation guarantees, and can identify the global outliers
effectively. To the best of our knowledge, this is the first practical algorithm with
theoretical guarantees for distributed clustering with outliers. Our experiments
on both real and synthetic data have demonstrated the clear superiority of our
algorithm against all the baseline algorithms in almost all metrics.

1 Introduction

The rise of big data has brought the design of distributed learning algorithm to the forefront. For
example, in many practical settings the large quantities of data are collected and stored at different
locations, while we want to learn properties of the union of the data. For many machine learning
tasks, in order to speed up the computation we need to partition the data into a number of machines
for a joint computation. In a different dimension, since real-world data often contain background
noise or extreme values, it is desirable for us to perform the computation on the “clean data” by
discarding a small portion of the data from the input. Sometimes these outliers are interesting by
themselves; for example, in the study of statistical data of a population, outliers may represent those
people who deserve special attention. In this paper we study clustering with outliers, a fundamental
problem in unsupervised learning, in the distributed model where data are partitioned across multiple
sites, who need to communicate to arrive at a consensus on the cluster centers and labeling of outliers.

For many clustering applications it is common to model data objects as points in Rd, and the similarity
between two objects is represented as the Euclidean distance of the two corresponding points. In
this paper we assume for simplicity that each point can be sent by one unit of communication.
Note that when d is large, we can apply standard dimension reduction tools (for example, the
Johnson-Lindenstrauss lemma) before running our algorithms.

We focus on the two well-studied objective functions (k, t)-means and (k, t)-median, defined in
Definition 1. It is worthwhile to mention that our algorithms also work for other metrics as long as
the distance oracles are given.
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Definition 1 ((k, t)-means/median) Let X be a set of points, and k, t be two parameters. For the
(k, t)-median problem we aim for computing a set of centers C ⊆ Rd of size at most k and a set of
outliers O ⊆ X of size at most t so that the objective function

∑
p∈X\O d(p, C) is minimized. For

the (k, t)-means we simply replace the objective function with
∑
p∈X\O d

2(p, C).

Computation Model. We study the clustering problems in the coordinator model, a well-adopted
model for distributed learning Balcan et al. (2013); Chen et al. (2016); Guha et al. (2017); Diakoniko-
las et al. (2017). In this model we have s sites and a central coordinator; each site can communicate
with the coordinator. The input data points are partitioned among the s sites, who, together with the
coordinator, want to jointly compute some function on the global data. The data partition can be
either adversarial or random. The former can model the case where the data points are independently
collected at different locations, while the latter is common in the scenario where the system uses a
dispatcher to randomly partition the incoming data stream into multiple workers/sites for a parallel
processing (and then aggregates the information at a central server/coordinator).

In this paper we focus on the one-round communication model (also called the simultaneous commu-
nication model), where each site sends a sketch of its local dataset to the coordinator, and then the
coordinator merges these sketches and extracts the answer. This model is arguably the most practical
one since multi-round communication will cost a large system overhead.

Our goals for computing (k, t)-means/median in the coordinator model are the following: (1) to
minimize the clustering objective functions; (2) to accurately identify the set of global outliers; and
(3) to minimize the computation time and the communication cost of the system. We will elaborate
on how to quantify the quality of outlier detection in Section 5.

Our Contributions. A natural way of performing distributed clustering in the simultaneous commu-
nication model is to use the two-level clustering framework (see e.g., Guha et al. (2003, 2017)). In
this framework each site performs the first level clustering on its local dataset X , getting a subset
X ′ ⊆ X with each point being assigned a weight; we call X ′ the summary of X . The site then sends
X ′ to the coordinator, and the coordinator performs the second level clustering on the union of the
s summaries. We note that the second level clustering is required to output at most k centers and t
outliers, while the summary returned by the first level clustering can possibly have more than (k + t)
weighted points. The size of the summary will contribute to the communication cost as well as the
running time of the second level clustering.

The main contribution of this paper is to propose a simple and practical summary construction at sites
with the following properties.

1. It is extremely fast: runs in time O(max{k, log n} · n), where n is the size of the dataset.
2. The summary has small size: O(k log n+ t) for adversarial data partition and O(k log n+
t/s) for random data partition.

3. When coupled with a second level (centralized) clustering algorithm that γ-approximates
(k, t)-means/median, we obtain an O(γ)-approximation algorithm for distributed (k, t)-
means/median.1

4. It can be used to effectively identify the global outliers.

We emphasize that both the first and the second properties are essential to make the distributed
clustering algorithm scalable on large datasets. Our extensive set of experiments have demonstrated
the clear superiority of our algorithm against all the baseline algorithms in almost all metrics.

To the best of our knowledge, this is the first practical algorithm with theoretical guarantees for
distributed clustering with outliers.

Related Work. Clustering is a fundamental problem in computer science and has been studied for
more than fifty years. A comprehensive review of the work on k-means/median is beyond the scope
of this paper, and we will focus on the literature for centralized/distributed k-means/median clustering
with outliers and distributed k-means/median clustering.

1We say an algorithm γ-approximates a problem if it outputs a solution that is at most γ times the optimal
solution.
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In the centralized setting, several O(1)-approximation or (O(1), O(1))-approximation2 algorithms
have been proposed Charikar et al. (2001); Chen (2009). These algorithms make use of linear
programming and need time at least Ω(n3), which is prohibitive on large datasets. Feldman and
Schulman (2012) studied (k, t)-median via coresets, but the running times of their algorithm includes
a term O(n(k + t)k+t)) which is not practical.

Chawla and Gionis (2013) proposed for (k, t)-means an algorithm called k-means--, which is an
iterative procedure and can be viewed as a generalization of Llyod’s algorithm Lloyd (1982). Like
Llyod’s algorithm, the centers that k-means-- outputs are not the original input points; we thus
cannot use it for the summary construction in the first level clustering at sites because some of
the points in the summary will be the outliers we report at the end. However, we have found that
k-means-- is a good choice for the second level clustering: it outputs exactly k centers and t outliers,
and its clustering quality looks decent on datasets that we have tested, though it does not have any
worst case theoretical guarantees.

Recently Gupta et al. (2017) proposed a local-search based (O(1), O(k log(n))-approximation
algorithm for (k, t)-means. The running time of their algorithm is Õ(k2n2),3 which is again not quite
scalable. The authors mentioned that one can use the k-means++ algorithm Arthur and Vassilvitskii
(2007) as a seeding step to boost the running time to Õ(k2(k + t)2 + nt). We note that first, this
running time is still worse than ours. And second, since in the first level clustering we only need a
summary – all that we need is a set of weighted points that can be fed into the second level clustering
at the coordinator, we can in fact directly use k-means++ with a budget of O(k log n + t) centers
for constructing a summary. We will use this approach as a baseline algorithm in our experimental
studies.

In the past few years there has been a growing interest in studying k-means/median clustering in the
distributed models Ene et al. (2011); Bahmani et al. (2012); Balcan et al. (2013); Liang et al. (2014);
Cohen et al. (2015); Chen et al. (2016). In the case of allowing outliers, Guha et al. Guha et al.
(2017) gave a first theoretical study for distributed (k, t)-means/median. However, their algorithms
need Θ(n2) running time at sites and are thus again not quite practical on large-scale datasets. In
a concurrent work, Li and Guo (2018) further reduced the value of the objective function, but the
proposed method does not output the outliers.

We note that the k-means‖ algorithm proposed by Bahmani et al. (2012) can be extended (again
by increasing the budget of centers from k to O(k log n+ t)) and used as a baseline algorithm for
comparison. The main issue with k-means‖ is that it needs O(log n) rounds of communication
which holds back its overall performance.

2 Preliminaries

We are going to use the notations listed in Table 1.

We will also make use of the following lemmas.

Lemma 1 (Chernoff Bound) Let X1, . . . , Xn be independent Bernoulli random variables such that
Pr[Xi = 1] = pi. Let X =

∑
i∈[n]Xi, and let µ = E[X]. It holds that Pr[X ≥ (1 + δ)µ] ≤

e−δ
2µ/3 and Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 for any δ ∈ (0, 1).

Lemma 2 (Mettu and Plaxton (2002)) Consider the classic balls and bins experiment where b balls
are thrown into m bins, for some b,m ∈ Z+. Also, let wi be a weight associated with the i-th bin,
for i ∈ [m]. Assuming, the probability of each ball falling into the i-th bin is wi∑m

j=1 wj
and b ≥ m,

the following holds:

For any ε ∈ R+, there exists a γ ∈ R+ such that

Pr[total weight of empty bins > ε
∑
i wi] ≤ e−γb.

Note that the dependence of γ on ε is independent of b or m.
2We say a solution is an (a, b)-approximation if the cost of the solution is a · C while excluding b · t points,

where C is the cost of the optimal solution excluding t points.
3Õ(·) hides some logarithmic factors.
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X input dataset n n = |X|, size of the dataset
k number of centers κ κ = max{k, log n}
t number of outliers O∗ outliers chosen by OPT
σ clustering mapping σ : X → X d(y,X) d(y,X) = minx∈X d(y, x)

φX(σ) φX(σ) =
∑
x∈X d(x, σ(x)) φ(X,Y ) φ(X,Y ) =

∑
y∈Y d(y,X)

B(S,X, ρ) = {x ∈ X|d(x, S) ≤ ρ} r # of iterations in Algo 1
Xi remaining points at the i-th

iteration of Algorithm 1 Wi Xi\O∗
Ci clustered points at the i-th

iteration of Algorithm 1 Di Ci\O∗
OPTmed

k,t (X) min
O⊆X,|C|≤k
|O|≤t

∑
p∈X\O

d(p, C) OPTmea
k,t (X) min

O⊆X,|C|≤k
|O|≤t

∑
p∈X\O

d2(p, C)

Table 1: List of Notations

Algorithm 1: Summary-Outliers(X, k, t)
Input :dataset X , number of centers k, number of outliers t
Output :a weighted dataset Q as a summary of X

1 i← 0, Xi ← X , Q← ∅
2 fix a β such that 0.25 ≤ β < 0.5
3 κ← max{log n, k}
4 let σ : X → X be a mapping to be constructed, and α be a constant to be determined in the

analysis.
5 while |Xi| > 8t do
6 construct a set Si of size ακ by random sampling (with replacement) from Xi

7 for each point in Xi, compute the distance to its nearest point in Si
8 let ρi be the smallest radius s.t. |B(Si, Xi, ρi)| ≥ β|Xi|. Let Ci ← B(Si, Xi, ρi)
9 for each x ∈ Ci, choose the point y ∈ Si that minimizes d(x, y) and assign σ(x)← y

10 Xi+1 ← Xi\Ci
11 i← i+ 1

12 r ← i
13 for each x ∈ Xr, assign σ(x)← x

14 for each x ∈ Xr ∪ (∪r−1i=0Si), assign weight wx ← |σ−1(x)| and add (x,wx) into Q
15 return Q

3 The Summary Construction

In this section we present our summary construction for (k, t)-median/means in the centralized model.
In Section 4 we will show how to use this summary construction for solving the problems in the
distributed model.

3.1 The Algorithm

Our algorithm is presented in Algorithm 1. It works for both the k-means and k-median objective
functions. We note that Algorithm 1 is partly inspired by the algorithm for clustering without outliers
proposed in Mettu and Plaxton (2002). But since we have to handle outliers now, the design and
analysis of our algorithm require new ideas.

For a set S and a scalar value ρ, define B(S,X, ρ) = {x ∈ X | d(x, S) ≤ ρ}. Algorithm 1 works
in rounds indexed by i. Let X0 = X be the initial set of input points. The idea is to sample a set
of points Si of size αk for a constant α (assuming k ≥ log n) from Xi, and grow a ball of radius
ρi centered at each s ∈ Si. Let Ci be the set of points in the union of these balls. The radius ρi is
chosen such that at least a constant fraction of points of Xi are in Ci.

Define Xi+1 = Xi\Ci. In the i-th round, we add the αk points in Si to the set of centers, and assign
points in Ci to their nearest centers in Si. We then recurse on the rest of the points Xi+1, and stop
until the number of points left unclustered becomes at most 8t. Let r be the final value of i. Define

4



the weight of each point x in ∪r−1i=0Si to be the number of points in X that are assigned to x, and the
weight of each point in Xr to be 1. Our summary Q consists of points in Xr ∪ (∪r−1i=0Si) together
with their weights.

3.2 The Analysis

We now try to analyze the performance of Algorithm 1. The analysis will be conducted for the
(k, t)-median objective function, while the results also hold for (k, t)-means; we will discuss this
briefly at the end of this section.

We start by introducing the following concept. Note that the summary constructed by Algorithm 1 is
fully determined by the mapping function σ (σ is also constructed in Algorithm 1).

Definition 2 (Information Loss) For a summary Q constructed by Algorithm 1, we define the infor-
mation loss of Q as

loss(Q) = φX(σ).

That is, the sum of distances of moving each point x ∈ X to the corresponding center σ(x) (we can
view each outlier as a center itself).

We will prove the following theorem, which says that the information loss of the summary Q
constructed by Algorithm 1 is bounded by the optimal (k, t)-median clustering cost on X .

Theorem 1 Algorithm 1 outputs a summary Q such that with probability (1− 1/n2) we have that

loss(Q) = O
(
OPTmed

k,t (X)
)

. The running time of Algorithm 1 is bounded by O(max{log n, k} · n),

and the size of the outputted summary Q is bounded by O(k log n+ t).

As a consequence of Theorem 1, we obtain by triangle inequality arguments the following corollary
that directly characterizes the quality of the summary in the task of (k, t)-median.

Corollary 1 If we run a γ-approximation algorithm for (k, t)-median on Q, we can obtain a set
of centers C and a set of outliers O such that φ(X\O,C) = O(γ · OPTmed

k,t (X)) with probability
(1− 1/n2).

Proof: Let π : Q→ Q be the mapping returned by the γ-approximation algorithm for (k, t)-median
on Q; we thus have π(q) = q for all q ∈ O and π(X\O) = C. Let σ : X → X be the mapping
returned by Algorithm 1 (i.e. σ fully determines Q). We have that

φ(X\O,C) ≤
∑
x∈X

d(x, π(σ(x)))

≤
∑
x∈X

(d(x, σ(x)) + d(σ(x), π(σ(x))))

=
∑
x∈X

d(x, σ(x)) +
∑
x∈X

d(σ(x), π(σ(x)))

= loss(Q) +
∑
q∈Q

wq · d(q, π(q))

= loss(Q) + SOLmed
k,t (Q),

where SOLmed
k,t (Q) =

∑
q∈Q wq · d(q, π(q)) denotes the cost of the γ-approximation on Q. The

corollary follows from Theorem 1 and Lemma 9 (set s = 1). �

In the rest of this section we prove Theorem 1. We will start by bounding the information loss.

Definition 3 (O∗, Wi and Di) Define O∗ ⊆ X to be the set of outliers chosen by running the
optimal (k, t)-median algorithm on X; we thus have |O∗| = t. For i = 0, 1, . . . , r − 1, define
Wi = Xi\O∗ and Di = Ci\O∗, where Xi and Ci are defined in Algorithm 1.

We need the following utility lemma. It says that at each iteration in the while loop in Algorithm 1,
we always make sure that at least half of the remaining points are not in O∗.
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Lemma 3 For any 0 ≤ i < r, where r is the total number of rounds in Algorithm 1, we have
2|Wi| ≥ |Xi|.

Proof: According to the condition of the while loop in Algorithm 1 we have |Xi| > 8t for any
0 ≤ i < r. Since |O∗| = t, we have

2|Wi| = 2|Xi\O∗| ≥ |Xi|+ (|Xi| − 2|O∗|) ≥ |Xi|.

�

The rest of the proof for Theorem 1 proceeds as follows. We first show in Lemma 4 that loss(Q) =
φX(σ) can be upper bounded by O(

∑
0≤i<r ρi |Di|) (Lemma 4). We then show in Lemma 5

that OPTmed
k,t (X) can be lower bounded by Ω(

∑
0≤i<r ρi |Di|) with high probability (Lemma 5).

Theorem 1 then follows.

Lemma 4 (upper bound) It holds that

φX(σ) ≤ 2
∑

0≤i<r

ρi|Di|.

Here ρi is the radius we chosen in the i-th round of Algorithm 1.

Proof: First, note that by Line 8 and the condition of the while loop in Algorithm 1 we have

|Ci| ≥ β|Xi| ≥ 8βt
β≥0.25
≥ 2t. (1)

We thus have by the definition of Di that

|Di| = |Ci\O∗| ≥ |Ci| − |O∗|
|O∗|=t

= |Ci| − t
by (1)

≥ |Ci|/2. (2)

Observe that X\Xr = ∪0≤i<rCi and Ci ∩ Cj = ∅ for any i 6= j, we can bound φX\Xr (σ) by the
following.

φX\Xr (σ) =
∑

0≤i<r

φCi(σ)

≤
∑

0≤i<r

ρi|Ci|

by (2)

≤
∑

0≤i<r

2ρi|Di|.

The lemma follows since by our construction at Line 13 we have φXr (σ) = 0. �

We now turn to the lower bound of OPTmed
k,t (X).

Lemma 5 (lower bound) It holds that

OPTmed
k,t (X) = Ω

(∑
0≤i<r ρi|Di|

)
.

Before proving the lemma, we would like to introduce a few more notations.

Definition 4 (ρopti and h) Let h = 1+2β
2 ; we thus have 1 > h > 2β > 0 (recall in Algorithm 1 that

β < 0.5 is a fixed constant). For any 0 ≤ i < r, let ρopti > 0 be the minimum radius such that there
exists a set Y ⊆ X\O∗ of size k with

|B(Y,Wi, ρ
opt
i )| ≥ h|Wi|. (3)
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The purpose of introducing ρopti is to use it as a bridge to connect OPTmed
k,t (X) and ρi. We first have

the following.

Lemma 6 OPTmed
k,t (X) = Ω

(∑
0≤i<r ρ

opt
i |Di|

)
.

Fix an arbitrary set Y ⊆ X\O∗ of size k as centers. To prove Lemma 6 we will use a charging
argument to connect OPTmed

k,t (X) and
∑

0≤i<r ρ
opt
i |Di|. To this end we introduce the following

definitions and facts.

Definition 5 (Ei, Emi and Pm` ) For each 0 ≤ i < r, define Ei = {x ∈ Wi | d(x, Y ) ≥ ρ
opt
i }. For

any m ∈ Z+, define Emi = Ei\(∪j>0Ei+jm). Let Pm` = {0 ≤ i < r | i ≡ ` (mod m)}.

Clearly, if i 6= j and j ≡ i (mod m), then Emi and Emj are disjoint. This leads to the following fact.

Fact 1 For any i = 0, 1, . . . , r − 1, we have

φ(Y,∪i∈Pm` E
m
i ) =

∑
i∈Pm`

φ(Y,Emi )

≥
∑
i∈Pm`

ρopti |E
m
i |.

By the definitions of ρopti and Ei we directly have:

Fact 2 For any i = 0, 1, . . . , r − 1, |Ei| ≥ (1− h)|Wi|.

Let z = dlog1−β
1−h
6 e (a constant), we have

Fact 3 For any i = 0, 1, . . . , r − 1, |Ezi | ≥ |Ei| /2.

Proof: We first show that |Ei| , |Ei+z| , . . . is a geometrically decreasing sequence.

|Ei+z| ≤ |Xi+z|
≤ (1− β)z|Xi|

Lemma 3
≤ 2(1− β)z|Wi|

Fact 2
≤ 2(1− β)z

1− h
|Ei|

Def. of z
≤ |Ei|

3
.

As a result, we have that Ezi holds a least a constant fraction of points in Ei.

|Ezi | = |Ei\ ∪j>0 Ei+jz|

≥ |Ei| −
∑
j>0

|Ei|
3j

≥ |Ei|
2
.

�

Fact 4 For any i = 0, 1, . . . , r − 1, |Ezi | ≥ (1− h) |Di| /2.

Proof:

|Ezi |
Fact 3
≥ |Ei|/2

Fact 2
≥ (1− h)|Wi|/2

Di⊆Wi

≥ (1− h)|Di|/2.
�
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Proof:(of Lemma 6) Let
` = argmax0≤j<z

(∑
i∈Pzj

|Ezi |
)
.

Then φ(Y,X\O∗) is at least

φ(Y,∪i∈Pz` E
z
i )

Fact 1
≥

∑
i∈Pz`

ρopti |E
z
i |

def. of `
≥ 1

z

∑
0≤i<r

ρopti |E
z
i |

Fact 4
≥ Ω(1) ·

∑
0≤i<r

ρopti |Di|.

The lemma then follows from the fact that Y is chosen arbitrarily. �

Note that Lemma 6 is slightly different from Lemma 5 which is what we need, but we can link them
by proving the following lemma.

Lemma 7 With probability 1− 1/n2, we have ρopti ≥ ρi/2 for all 0 ≤ i < r.

Proof: Fix an i, and let Y ⊆ X\O∗ be a set of size k such that |B(Y,Wi, ρ
opt
i )| ≥ h|Wi|. Let

G = B(Y,Wi, ρ
opt
i ). We assign each point in G to its closest point in Y , breaking ties arbitrarily.

Let Px be the set of all points in G that are assigned to x; thus {Px | x ∈ Y } forms a partition of G.

Recall that Si in Algorithm 1 is constructed by a random sampling. Define

G′ = {y ∈ G | ∃x ∈ Y s.t. (y ∈ Px) ∧ (Si ∩ Px 6= ∅)}.
We have the following claim.

Claim 1 For any positive constant ε, there exists a sufficiently large constant α (Line 4 in Algorithm 1)
such that

|G′| ≥ (1− ε)|G| (4)
with probability 1− 1/n2.

Note that once we have (4), we have that for a sufficiently small constant ε,

|G′| ≥ (1− ε)|G|
Def. 4
≥ (1− ε)h|Wi|

h>2β

≥ 2β|Wi|
Lemma 3
≥ β|Xi|.

Since G′ ⊆ B(Si,Wi, 2ρ
opt
i ) ⊆ B(Si, Xi, 2ρ

opt
i ), we have |B(Si, Xi, 2ρ

opt
i )| ≥ β|Xi|. By the

definition of ρi, we have that ρi ≤ 2ρopti . The success probability 1− 1/n in Lemma 7 is obtained
by applying a union bound over all O(log n) iterations.

Finally we prove Claim 1. By the definition of G and Lemma 3 we have

|G| ≥ h |Wi| ≥ h/2 · |Xi| . (5)

Denote Si = {s1, . . . , sακ}. Since Si is a random sample of Xi (of size ακ), by (5) we have that for
each point j ∈ [ακ], Pr[sj ∈ G] ≥ h/2. For each j ∈ [ακ], define a random variable Yj such that
Yj = 1 if sj ∈ G, and Yj = 0 otherwise. Let Y =

∑
i∈[ακ] Yj ; we thus have E[Y ] ≥ h/2 · ακ. By

applying Lemma 1 (Chernoff bound) on Yj’s, we have that for any positive constant γ and h, there
exists a sufficiently large constant α (say, α = 10h/γ2) such that

Pr[Y ≥ γκ] ≥ 1− e−( 2γ
h )

2·h2 ακ/2

≥ 1− 1/n3,

In other words, with probability at least 1− 1/n3, |Si ∩G| ≥ γκ. The claim follows by applying
Lemma 2 on each point in Si ∩G as a ball, and each set Px as a bin with weight |Px|. �
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Algorithm 2: Augmented-Summary-Outliers(X, k, t)
Input :dataset X , number of centers k, number of outliers t
Output :a weighted dataset Q as a summary of X

1 run Summary-Outliers(X, k, t) (Algorithm 1) and obtain Xr and S = ∪r−1i=0Si
2 construct a set S′ of size |Xr| − |S| by randomly sampling (with replacement) from X\(Xr ∪S)
3 for each x ∈ X\Xr, set π(x)← arg miny∈S∪S′ d(x, y)

4 for each x ∈ Xr ∪ (∪r−1i=0Si), assign weight wx ← |π−1(x)| and add (x,wx) into Q
5 return Q

Lemma 5 follows directly from Lemma 6 and Lemma 7.

The running time. We now analyze the running time of Algorithm 1. At the i-th iteration, the
sampling step at Line 6 can be done in O(|Xi|) time. The nearest-center assignments at Line 7 and 9
can be done in |Si| · |Xi| = O(κ |Xi|) time. Line 8 can be done by first sorting the distances in the
increasing order and then scanning the shorted list until we get enough points. In this way the running
time is bounded by |Xi| log |Xi| = O(κ |Xi|). Thus the total running time can be bounded by∑

i=0,1,...,r−1
O(κ |Xi|) = O(κn) = O(max{log n, k} · n),

where the first equation holds since the size of Xi decreases geometrically, and the second equation
is due to the definition of κ.

Finally, we comment that we can get a similar result for (k, t)-means by appropriately adjusting
various constant parameters in the proof.

Corollary 2 Let Xr and σ : X → X be computed by Algorithm 1. We have with probability
(1− 1/n2) that ∑

x∈X\Xr d
2(x, σ(x)) = O

(
OPTmea

k,t (X)
)
.

We note that in the proof for the median objective function we make use of the triangle inequality in
various places, while for the means objective function where the distances are squared, the triangle
inequality does not hold. However we can instead use the inequality 2(x2 + y2) ≥ (x+ y)2, which
will only make the constant parameters in the proofs slightly worse.

3.3 An Augmentation

In the case when t� k, which is typically the case in practice since the number of centers k does
not scale with the size of the dataset while the number of outliers t does, we add an augmentation
procedure to Algorithm 1 to achieve a better practical performance.

The procedure is presented in Algorithm 2.

The augmentation is as follows, after computing the set of outliers Xr and the set of centers
S = ∪r−1i=0Si in Algorithm 1, we sample randomly from X\(Xr ∪ S) an additional set of center
points S′ of size |Xr| − |S|. That is, we try to make the number of centers and the number of outliers
in the summary to be balanced. We then reassign each point in the set X\Xr to its nearest center in
S ∪ S′. Denote the new mapping by π. Finally, we include points in Xr and S, together with their
weights, into the summary Q.

It is clear that the augmentation procedure preserves the size of the summary asymptotically. And by
including more centers we have loss(Q) ≤ φX(π) ≤ φX(σ), where σ is the mapping returned by
Algorithm 1. The running time will increase to O(tn) due to the reassignment step, but our algorithm
is still much faster than all the baseline algorithms, as we shall see in Section 5.

4 Distributed Clustering with Outliers

In this section we discuss distributed (k, t)-median/means using the summary constructed in Algo-
rithm 1. We will first discuss the case where the data is randomly partitioned among the s sites, which
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Algorithm 3: Distributed-Median(A1, . . . , As, k, t)

Input :For each i ∈ [s], Site i gets input dataset Ai where (A1, . . . , As) is a random partition
of X

Output :a (k, t)-median clustering for X = ∪i∈[s]Ai
1 for each i ∈ [s], Site i constructs a summary Qi by running Summary-Outliers(Ai, k, 2t/s)

(Algorithm 1) and sends Qi to the coordinator
2 the coordinator then performs a second level clustering on Q = Q1 ∪Q2 ∪ . . . ∪Qs using an

off-the-shelf (k, t)-median algorithm, and returns the resulting clustering.

is the case in all of our experiments. The algorithm is presented in Algorithm 3. We will discuss the
adversarial partition case at the end. We again only show the results for (k, t)-median since the same
results will hold for (k, t)-means by slightly adjusting the constant parameters.

We will make use of the following known results. The first lemma says that the sum of costs of local
optimal solutions that use the same number of outliers as the global optimal solution does is upper
bounded by the cost of the global optimal solution.

Lemma 8 (Guha et al. (2017)) For each i ∈ [s], let ti = |Ai ∩O∗| where O∗ is the set of outliers
produced by the optimal (k, t)-median algorithm on X = A1 ∪A2 ∪ . . . ∪As. We have∑

i∈[s] OPT
med
k,ti(Ai) ≤ O

(
OPTmed

k,t (X)
)
.

The second lemma is a folklore for two-level clustering.

Lemma 9 (Guha et al. (2003, 2017)) Let Q = Q1 ∪Q2 ∪ . . . ∪Qs be the union of the summaries
of the s local datasets, and let SOLmed

k,t (·) be the cost function of a γ-approximation algorithm for
(k, t)-median. We have

SOLmed
k,t (Q) ≤ O(γ) ·

(∑
i∈[s] loss(Qi) + OPTmed

k,t (X)
)
.

Now by Lemma 8, Lemma 9 and Theorem 1, we have that with probability 1− 1/n, SOLmed
k,t (Q) ≤

O(γ) · OPTmed
k,t (X). And by Chernoff bounds and a union bound we have ti ≤ 2t/s for all i with

probability 1− 1/n2.4

Theorem 2 Suppose Algorithm 3 uses a γ-approximation algorithm for (k, t)-median in the second
level clustering (Line 2). We have with probability (1− 1/n) that:

• it outputs a set of centers C ⊆ Rd and a set of outliers O ⊆ X such that φ(X\O,C) ≤
O(γ) · OPTmed

k,t (X);

• it uses one round of communication whose cost is bounded by O(sk log n+ t);

• the running time at the i-th site is bounded by O(max{log n, k} · |Ai|), and the running
time at the coordinator is that of the second level clustering.

We note that in Mettu and Plaxton (2002) it was shown that under some mild assumption, Ω(kn) time
is necessary for any O(1)-approximate randomized algorithm to compute k-median on n points with
nonnegligible success probability (e.g., 1/100). Thus the running time of our algorithm is optimal up
to a log n factor under the same assumption.

In the case that the dataset is adversarially partitioned, the total communication increases to
O(s(k log n + t)). This is because all of the t outliers may go to the same site and thus 2t/s
in Line 1 needs to be replaced by t.

Finally, we comment that the result above also holds for the summary constructed using the augu-
mented version (Sec. 3.3), except, as discussed in Section 3, that the local running time at the i-th
site will increase to O(t |Ai|).

4For the convenience of the analysis we have assumed t/s ≥ Ω(logn), which is justifiable in practice since
t typically scales with the size of the dataset while s is usually a fixed number.
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5 Experiments

5.1 Experimental Setup

5.1.1 Datasets and Algorithms

We make use of the following datasets.

• gauss-σ. This is a synthetic dataset, generated as follows: we first sample 100 centers from
[0, 1]5, i.e., each dimension is sampled uniformly at random from [0, 1]. For each center c,
we generate 10000 points by adding each dimension of c a random value sampled from the
normal distribution N (0, σ). This way, we obtain 100 · 10000 = 1M points in total. We
next construct the outliers as follows: we sample 5000 points from the 1M points, and for
each sampled point, we add a random shift sampled from [−2, 2]5.

• kddFull. This dataset is from 1999 kddcup competition and contains instances describing
connections of sequences of tcp packets. There are about 4.9M data points. 5 We only
consider the 34 numerical features of this dataset. We also normalize each feature so that it
has zero mean and unit standard deviation. There are 23 classes in this dataset, 98.3% points
of the dataset belong to 3 classes (normal 19.6%, neptune 21.6%, and smurf 56.8%). We
consider small clusters as outliers and there are 45747 outliers.

• kddSp. This data set contains about 10% points of kddFull (released by the original
provider). This dataset is also normalized and there are 8752 outliers.

• susy-∆. This data set has been produced using Monte Carlo simulations by Baldi et al.
(2014). Each instance has 18 numerical features and there are 5M instances in total.6. We
normalize each feature as we did in kddFull. We manually add outliers as follows: first we
randomly sample 5000 data points; for each data point, we shift each of its dimension by a
random value chosen from [−∆,∆].

• Spatial-∆. This dataset is about 3D road network with elevation information from North
Jutland, Denmark. It is designed for clustering and regression tasks. There are about 0.4M
data points with 4 features. We normalize each feature so that it has zero mean and unit
standard deviation. We add outliers as we did for susy-∆. 7

Finding appropriate k and t values for the task of clustering with outliers is a separate problem, and
is not part of the topic of this paper. In all our experiments, k and t are naturally suggested by the
datasets we use unless they are unknown.

We compare the performance of following algorithms, each of which is implemented using the MPI
framework and run in the coordinator model. The data are randomly partitioned among the sites.

• ball-grow. Algorithm 3 proposed in this paper, with the augmented version Algorithm 1 for
the summary construction. As mentioned we use k-means-- as the second level clustering
at Line 2. We fix α = 2 and β = 4.5 in the subroutine Algorithm 1.

• rand. Each site constructs a summary by randomly sampling points from its local dataset.
Each sampled point p is assigned a weight equal to the number of points in the local dataset
that are closer to p than other points in the summary. The coordinator then collects all
weighted samples from all sites and feeds to k-means-- for a second level clustering.
• k-means++. Each site constructs a summary of the local dataset using the k-means++

algorithm Arthur and Vassilvitskii (2007), and sends it to the coordinator. The coordinator
feeds the unions all summaries to k-means-- for a second level clustering.

• k-means‖. An MPI implementation of the k-means‖ algorithm proposed by Bahmani
et al. (2012) for distributed k-means clustering. To adapt their algorithm to solve the outlier
version, we increase the parameter k in the algorithm toO(k+t), and then feed the outputted
centers to k-means-- for a second level clustering.

5More information can be found in http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
6More information about this dataset can be found in https://archive.ics.uci.edu/ml/datasets/

SUSY
7More information can be found in https://archive.ics.uci.edu/ml/datasets/3D+Road+

Network+(North+Jutland,+Denmark).

11

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/SUSY
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+(North+Jutland,+Denmark)
https://archive.ics.uci.edu/ml/datasets/3D+Road+Network+(North+Jutland,+Denmark)


dataset algo summarySize `1-loss `2-loss preRec prec recall

gauss-0.1
ball-grow 2.40e+4 2.08e+5 4.80e+4 0.9890 0.9951 0.9431
k-means++ 2.40e+4 2.10e+5 5.50e+4 0.5740 0.9750 0.5735
k-means‖ 2.50e+4 2.10e+5 5.40e+4 0.6239 0.9916 0.6235
rand 2.04e+4 2.17e+5 6.84e+4 0.0249 0.2727 0.0249

gauss-0.4
ball-grow 2.40e+4 4.91e+5 2.72e+5 0.8201 0.7915 0.7657
k-means++ 2.40e+4 4.97e+5 2.82e+5 0.2161 0.6727 0.2091
k-means‖ 2.50e+4 4.96e+5 2.79e+5 0.2573 0.7996 0.2458
rand 2.40e+4 4.99e+5 2.90e+5 0.0234 0.2170 0.0212

Table 2: Clustering quality on gauss-σ dataset, k = 100, t = 5000

5.1.2 Measurements

Let C and O be the sets of centers and outliers respectively returned by a tested algorithm. To
evaluate the quality of the clustering results we use two metrics: (a) `1-loss (for (k, t)-median):∑
p∈X\O d(p, C); (b) `2-loss (for (k, t)-means):

∑
p∈X\O d

2(p, C).

To measure the performance of outlier detection we use three metrics. Let S be the set of points fed
into the second level clustering k-means-- in each algorithm, and let O∗ be the set of actual outliers
(i.e., the ground truth), we use the following metrics: (a) preRec: the proportion of actual outliers
that are included in the returned summary, defined as |S∩O

∗|
|O∗| ; (b) recall: the proportion of actual

outliers that are returned by k-means--, defined as |O∩O
∗|

|O∗| ; (c) prec: the proportion of points in O

that are actually outliers, defined as |O∩O
∗|

|O| .

5.1.3 Computation Environments

All algorithms are implemented in C++ with Boost.MPI support. We use Armadillo Sanderson (2010)
as the numerical linear library and -O3 flag is enabled when compile the code. All experiments are
conducted in a PowerEdge R730 server equipped with 2 x Intel Xeon E5-2667 v3 3.2GHz. This
server has 8-core/16-thread per CPU, 192GB Memeory and 1.6TB SSD.

5.2 Experimental Results

We now present our experimental results. All results take the average of 10 runs.

5.2.1 Quality

We first compare the qualities of the summaries returned by ball-grow, rand and k-means‖. Note
that the size of the summary returned by ball-grow is determined by the parameters k and t, and
we can not control the exact size. In k-means‖, the summary size is determined by the sample ratio,
and again we can not control the exact size. On the other hand, the summary sizes of rand and
k-means++ can be fully controlled. To be fair, we manually tune those parameters so that the sizes
of summaries returned by different algorithms are roughly the same (the difference is less than 10%).
In this set of experiments, each dataset is randomly partitioned into 20 sites.

Table 2 presents the experimental results on gauss datasets with different σ. We observe that
ball-grow consistently gives better `1-loss and `2-loss than k-means‖ and k-means++, and
rand performs the worst among all.

For outlier detection, rand fails completely. In both gauss-0.1 and gauss-0.4, ball-grow outper-
forms k-means++ and k-means‖ in almost all metrics. k-means‖ slightly outperforms k-means++.
We also observe that in all gauss datasets, ball-grow gives very high preRec, i.e., the outliers are
very likely to be included in the summary constructed by ball-grow.

Table 3 presents the experimental results on kddSp and kddFull datasets. In this set of experiments,
ball-grow again outperforms its competitors in all metrics. Note that k-means‖ does not scale to
kddFull.
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dataset algo summarySize `1-loss `2-loss preRec prec recall

kddSp
ball-grow 3.37e+4 8.00e+5 3.46e+6 0.6102 0.5586 0.5176
k-means++ 3.37e+4 8.38e+5 4.95e+6 0.3660 0.3676 0.1787
k-means‖ 3.30e+4 8.18e+5 4.19e+6 0.2921 0.3641 0.1552
rand 3.37e+4 8.85e+5 1.06e+7 0.0698 0.5076 0.0374

kddFull
ball-grow 1.83e+5 7.38e+6 3.54e+7 0.7754 0.5992 0.5803
k-means++ 1.83e+5 8.21e+6 4.65e+7 0.2188 0.2828 0.1439
k-means‖ does not stop after 8 hours
rand 1.83e+5 9.60e+6 1.11e+8 0.0378691 0.6115 0.0241

Table 3: Clustering quality. k = 3, t = 8752 for kddSp and t = 45747 for kddFull

dataset algo summarySize `1-loss `2-loss preRec prec recall

susy-5
ball-grow 2.40e+4 1.10e+7 2.76e+7 0.7508 0.6059 0.5933
k-means++ 2.40e+4 1.11e+7 2.79e+7 0.1053 0.5678 0.1047
k-means‖ 2.50e+4 1.11e+7 2.77e+7 0.1735 0.7877 0.1609
rand 2.40e+4 1.12e+7 2.84e+7 0.004 0.2080 0.004

susy-10
ball-grow 2.40e+4 1.11e+7 2.77e+7 0.9987 0.9558 0.9542
k-means++ 2.40e+4 1.11e+7 2.90e+7 0.3412 0.8602 0.3412
k-means‖ 2.49e+4 1.11e+7 2.84e+7 0.4832 0.9801 0.4823
rand 2.40e+4 1.12e+7 3.08e+7 0.0047 0.2481 0.0047

Table 4: Clustering quality on susy dataset, k = 100, t = 5000

Table 4 presents the experimental results for susy-∆ dataset. We can observe that ball-grow
produces slightly better results than k-means‖, k-means++ and rand in `1-loss and `2-loss.
For outlier detection, ball-grow outperforms k-means++ and k-means‖ significantly in terms of
preRec and recall, while k-means‖ gives slightly better prec. Table 5 presents the results for
Spatial-15 dataset, and ball-grow again outperforms all other baseline algorithms in all metrics.

dataset algo summarySize `1-loss `2-loss preRec prec recall

Spatial-15
ball-grow 1.80e+3 5.21e+5 7.19e+5 0.9993 0.9993 0.9993
k-means++ 1.80e+3 5.30e+5 7.79e+5 0.7698 0.9954 0.7697
k-means‖ 1.80e+3 5.28e+5 7.38e+5 0.9198 0.9986 0.9198
rand 1.80e+3 5.35e+5 1.03e+6 0.0047 0.2105 0.0047

Table 5: Clustering quality on Spatial dataset, k = 5, t = 400

5.2.2 Communication Costs

We next compare the communication cost of different algorithms. Figure 1a presents the experimental
results. The communication cost is measured by the number of points exchanged between the
coordinator and all sites. In this set of experiments we only change the number of partitions (i.e., # of
sites s). The summaries returned by all algorithms have almost the same size.

We observe that the communication costs of ball-grow, k-means++ and rand are almost indepen-
dent of the number of sites. Indeed, ball-grow, k-means++ and rand all run in one round and their
communication cost is simply the size of the union of the s summaries. k-means‖ incurs significantly
more communication, and it grows almost linearly to the number of sites. This is because k-means‖
grows its summary in multiple rounds; in each round, the coordinator needs to collect messages from
all sites and broadcasts the union of those messages. When there are 20 sites, k-means‖ incurs 20
times more communication cost than its competitors.

5.2.3 Running Time

We finally compare the running time of different algorithms. All experiments in this part are conducted
on kddSp dataset since k-means‖ does not scale to kddFull; similar results can also be observed on
other datasets. The running time we show is only the time used to construct the input (i.e., the union
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(a) communication cost (b) running time (log10 scale) (c) running time, #sites = 20

Figure 1: experiments on kddSp dataset

of the s summaries) for the second level clustering, and we do not include the running time of the
second level clustering since it is always the same for all tested algorithms (i.e., the k-means--).

Figure 1b shows the running time when we change the number of sites while fix the size of the
summary produced by each site. We observe that k-means‖ uses significantly more time than
ball-grow, k-means++ and rand. This is predictable because k-means‖ runs in multiple rounds
and communicates more than its competitors. ball-grow uses significantly less time than others,
typically 1/25 of k-means‖, 1/7 of k-means++ and 1/2 of rand. The reason that ball-grow is
even faster than rand is that ball-grow only needs to compute weights for about half of the points
in the constructed summary. As can be predicted, when we increase the number of sites, the total
running time of each algorithm decreases.

We also investigate how the size of the summary will affect the running time. Note that for ball-grow
the summary size is controlled by the parameter t. We fix k = 3 and vary t, resulting different
summary sizes for ball-grow. For other algorithms, we tune the parameters so that they output
summaries of similar sizes as ball-grow outputs. Figure 1c shows that when the size of summary
increases, the running time increases almost linearly for all algorithms.

5.2.4 Stability of The Experimental Results

Our experiments involve some randomness and we have already averaged the experimental results
for multiple runs to reduce the variance. To show that the experimental results are reasonably stable,
we add Table 6 to present the standard deviations of the results. For each metric of a given algorithm,
we gather 5 data points, each of which is the averaged result of 10 runs. We then calculate the
mean/stddev of the 5 data points.

algo `1-loss `2-loss preRec prec recall
ball-grow 8.16E5± 1.1E4 3.46E6± 4.1E5 0.61± 0.002 0.55± 0.007 0.52± 0.004
k-means++ 8.83E5± 6.9E4 5.11E6± 2.8E5 0.37± 0.004 0.36± 0.004 0.18± 0.002
k-means‖ 8.41E5± 5.0E4 4.19E6± 1.4E5 0.29± 0.004 0.36± 0.005 0.16± 0.004
rand 9.20E5± 5.9E4 1.08E7± 2.0E5 0.07± 0.001 0.49± 0.009 0.04± 0.005

Table 6: Clustering quality on kddSp k = 3, t = 8752. Each entry is in the format of mean±stddev.

It can be seen from Table 6 that the results of our experiments are very stable in almost all metrics.
`1-loss is the only metric where our algorithm has some overlap with other baseline algorithms, but
it is still safe to conclude that our algorithm outperforms all the baselines in almost all metrics. The
similar stability is observed on other datasets.

5.2.5 Summary

We observe that ball-grow gives the best performance in almost all metrics for measuring summary
quality. k-means‖ slightly outperforms k-means++. rand fails completely in the task of outliers
detection. For communication, ball-grow, k-means++ and rand incur similar costs and are
independent of the number of sites. k-means‖ communicates significantly more than others. For
running time, ball-grow runs much faster than others, while k-means‖ cannot scale to large-scale
datasets.
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