
A Weighted automata and transducers operations

This section provides further details on the concepts of weighted automata and transducers that were
introduced in Section 3.

Recall that we have defined a weighted finite-state transducer T over a semiring (S,⊕,⊗, 0, 1) as an
8-tuple (Σ,∆, Q, I, F,E, λ, ρ), where Σ is a finite input alphabet, ∆ is a finite output alphabet, Q is
a finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, E is a finite
multiset of transitions, which are elements of Q× (Σ ∪ {ε})× (∆ ∪ {ε})× S×Q, λ : I → S is an
initial weight function, and ρ : F → S is a final weight function. Moreover, we defined a weighted
finite automaton to be a weighted finite-state transducer where the input and output labels are the
same.

A tuple (S,⊕,⊗, 0, 1) is a semiring if (S,⊕, 0) is a commutative monoid with identity element 0,
(S,⊗, 1) is a monoid with identity element 1, ⊗ distributes over ⊕, and 0 is an annihilator for ⊗. In
other words, a semiring is a ring that may lack negation.

The construction of weighted transducers and automata used in Sections 4 and 5 required the following
operations: inverse (T−1), projection (Π(T)), composition (T1 ◦ T2), and determinization (Det(A)).
We provide precise definitions of these operations below.

The inverse of a WFST T is denoted by T−1 and defined as the transducer obtained by swapping the
input and output labels of every transition of T, that is, T−1(x, y) = T(y, x) for all (x, y).

The projection of a WFST T is the weighted automaton denoted by Π(T) obtained from T by omitting
the input label of each transition and keeping only the output label.

The composition of two WFSTs T1 with output alphabet ∆ and T2 with a matching input alphabet ∆
is a weighted transducer defined for all x, y by:

(T1 ◦ T2)(x, y) =
⊕
z∈∆∗

(
T1(x, z)⊗ T2(z, y)

)
, (6)

where the sum runs over all strings z labeling a path of T1 on the output side and a path of T2 on
the input side. The worst case complexity of computing (T1 ◦ T2) is quadratic, that is O(|T1||T2|),
assuming that the ⊗-operation can be computed in constant time. The composition operation
can also be used with WFAs by viewing a WFA as a WFST with equal input and output labels
at every transition. Thus, for two WFAs A1 and A2, (A1 ◦ A2) is a WFA defined for all x by
(A1 ◦A2)(x) = A1(x)⊗A2(x).

A weighted automaton is said to be deterministic iff it has a unique initial state and if no two
transitions leaving any state share the same input label. As for (unweighted) finite automata, there
exists a determinization algorithm for WFAs. The algorithm returns a deterministic WFA equivalent
to its input WFA (Mohri, 1997). Unlike the unweighted case, weighted determinization is not defined
for all input WFAs but it can be applied to any acyclic WFA, which is the case of interest for us. When
it can be applied to A, we will denote by Det(A) the deterministic WFA returned by determinization.

B Sequence-to-sequence model training with rational and tropical losses

In this section, we describe how our algorithms can be incorporated into standard procedures for
training modern neural network architectures for structured prediction tasks, particularly sequence-to-
sequence models (Sutskever et al., 2014). Sequence-to-sequence models for structured prediction,
such as RNNs and LSTMs, typically consist of an encoder network, which maps input data from X
to abstract representations and a decoder network, which models a conditional distribution over the
output space Y . The decoder returns a l|∆|-dimensional vector of scores or logits w(x) = (wy,s(x)).
We define ψ(x, ys, s) to be a vector of dimension l|∆| such that the coordinate corresponding
to (ys, s) is equal to one and zero otherwise. Then, setting Ψ(x, y) =

∑l
s=1ψ(x, ys, s) defines

Markovian features of order q = 0 as in Section 2. This allows us to use w and Ψ to compute F (w)
in (1) along wtih its gradient ∇wF (w) in both the forward and backward pass, using techniques
presented in Sections 4 and 5. In particular,∇F (w) can be propagated down to lower layers of the
neural network model using the chain rule.

13

Note that, in practice, the generation of scores from the decoder to construct these features for each
y ∈ Y is expensive, and the common solution (Ranzato et al., 2015; Prabhavalkar et al., 2017) is
to restrict the output vocabulary of ∆ to a subset ∆s of size k at each position s. This is often
accomplished via the beam search algorithm. In our framework, we run the beam search to construct
the features automata A, the topology of which is equal to the topology of the beam search tree.

C Pseudocode for Grad-Naïve

GRAD-NAÏVE(xi, yi,w)

1 Zw ←
∑

y∈Y e
L(y,yi)+w·Ψ(xi,y)

2 for (z, s) ∈ ∆q × [l] do
3 Qw(z, s)←

∑
y : ys−q+1:s=z e

L(y,yi)+w·Ψ(xi,y)

4 Qw(z, s)← Qw(z, s)/Zw

Figure 6: Computation of the key term of the gradient using the naïve direct method.

14

