(Probably) Concave Graph Matching Supplementary material

Haggai Maron Weizmann Institute of Science Rehovot, Israel haggai.maron@weizmann.ac.il Yaron Lipman Weizmann Institute of Science Rehovot, Israel yaron.lipman@weizmann.ac.il

1 Frank-Wolfe with concave search

An orthogonal basis to $lin(\mathcal{F})$ is computed similarly to Lemma 1 in the paper:

Lemma 1 (orthonormal basis for one-sided permutations). If the columns of $F \in \mathbb{R}^{n_0 \times (n_0-1)}$ form an orthonormal basis for $\mathbf{1}^{\perp}$ in \mathbb{R}^{n_0} then the columns of $F \otimes I_n$ are an orthonormal basis for $\ln(\mathcal{F})$.

The energy $E_2(X)$ in this case does not model the matching problem well since it gives rise to trivial solutions. Instead, we chose to optimize a similar energy (Solomon et al., 2016): $E(X) = \sum_{ijkl} X_{ij} X_{kl} (A_{ik} - B_{jl})^2$. This energy can also be written in matrix form: $[X]^T M[X]$ where $M = -2B \otimes A + 11^T \otimes A^2 + B^2 \otimes 11^T$ (where C^2 implies entry-wise operation) and after restricting it to $\lim(\mathcal{F})$ its Hessian is of the form $-2FBF \otimes A + FB^2F \otimes 11^T$. Assuming A, B are Euclidean distance matrices, the right summand is negative semidefinite, but the left summand is not. This is because that A is not conjugated by F: it has a large positive eigenvalue as a result of the Perron-Frobenius Theorem.

The linear program solved in each iteration of the algorithm takes a surprisingly simple form: it amounts to solving $\min_{X \in \text{hull}(\mathcal{F})} \text{tr}(\nabla E(X_0)^T X)$ which can be solved simply by assigning the value 1 to the index of the minimal value in each row of $\nabla E(X_0)$. This procedure always outputs solutions in \mathcal{F} .

The convex energies we subtract from the objective during the concave search should be constant on \mathcal{F} so a reduction in the subtracted energy is the same as in the original energy E(X). We use the quadratic form defined by $\lambda * \Lambda$ where Λ is a $nn_0 \times nn_0$ diagonal matrix defined by $D_{ijij} = \max_j \{\sum_{kl} |M_{ijkl}|\}$. D is a positive definite matrix and for $\lambda = 1$, W - D is guaranteed to be negative semidefinite. The values of λ need not be discretized since there are only n different critical values - the ones that change the minimum calculation mentioned in the previous paragraph.

References

Solomon, J., Peyré, G., Kim, V. G., and Sra, S. (2016). Entropic metric alignment for correspondence problems. ACM Transactions on Graphics (TOG), 35(4):72.