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Abstract

We present a novel approach for LDA (Latent Dirichlet Allocation) topic reconstruc-
tion. The main technical idea is to show that the distribution over the documents
generated by LDA can be transformed into a distribution for a much simpler genera-
tive model in which documents are generated from the same set of topics but have a
much simpler structure: documents are single topic and topics are chosen uniformly
at random. Furthermore, this reduction is approximation preserving, in the sense
that approximate distributions — the only ones we can hope to compute in practice
— are mapped into approximate distribution in the simplified world. This opens
up the possibility of efficiently reconstructing LDA topics in a roundabout way.
Compute an approximate document distribution from the given corpus, transform it
into an approximate distribution for the single-topic world, and run a reconstruction
algorithm in the uniform, single-topic world — a much simpler task than direct
LDA reconstruction. We show the viability of the approach by giving very simple
algorithms for a generalization of two notable cases that have been studied in the
literature, p-separability and matrix-like topics.

1 Introduction

Latent Dirichlet Allocation (henceforth LDA) is a well-known paradigm for topic reconstruction (Blei
et al. , 2003). The general goal of topic reconstruction is, given a corpus of documents, to reconstruct
the topics. LDA is a generative model according to which documents are generated from a given set
of unknown topics, where each topic is modelled as a probability distribution over the words. One of
the main motivations behind LDA is to allow documents to be able to talk about about multiple topics,
a goal achieved by the following mechanism. To generate a document containing ` words we first
select a probability distribution, the so-called admixture, over the topics. The admixture is randomly
drawn from a Dirichlet distribution, hence the name. Then, the words of the document are selected
one after the other in sequence by first selecting a topic at random according to the admixture, and
then by randomly selecting a word according to the selected topic (which, as remarked, is just a
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probability distribution over the words). In this way all topics contribute to generate a document– to
a degree specified for each document by a random admixture. To generate another document, another
admixture is selected at random, and the same process is repeated. And so on, so forth.

In this paper we are interested in the problem of LDA topic identifiability which, roughly speaking,
can be stated as follows: given a corpus of documents generated by the mechanism just described,
reconstruct as efficiently and accurately as possible the K unknown topics (in the paper K will
always denote the number of topics). LDA is actually more general than a mechanism for generating
corpora of text documents, but it helps the intuition to consider it as a generative framework for text
documents and we will stick to this scenario.

This paradigm has attracted a lot of interest, e.g., (Hong & Davison, 2010; Weng et al. , 2010; Zhao
et al. , 2011; Yan et al. , 2013; Sridhar, 2015; Alvarez-Melis & Saveski, 2016; Li et al. , 2016;
Hajjem & Latiri, 2017). Several algorithms for LDA topic reconstruction have been proposed (see,
for instance, (Arora et al. , 2012, 2013; Anandkumar et al. , 2013; Bansal et al. , 2014)). In this
paper we continue this line of research by presenting a novel approach, the main thrust of which
is, loosely speaking, that of reducing the problem of topic identifiability in the LDA framework to
the problem of topic identifiability under a much more constrained and simpler generative model.
The simplified generative mechanism we have in mind is the following. The admixture, instead of
being randomly selected anew for each document from a Dirichlet distribution, will stay put: when
generating a document, a topic is selected uniformly at random with probability 1/K. The second
feature of the simplified framework is that documents are single topic, i.e. once a topic is selected, all
the words in the document are chosen according to the distribution specified by that topic. We shall
refer to this mechanism as single topic allocation, denoted as STA. In a nutshell, the contribution of
this paper is to show that if we have an efficient and accurate algorithm for STA topic identifiability
— a task seemingly much less daunting than its LDA counterpart — we can use it for efficient and
accurate reconstruction of topics under the LDA paradigm. More precisely, we can do this in the
case of uniform LDA, i.e. when the admixtures come from a symmetric Dirichlet distribution with a
given parameter α, which is a very important and commonly adopted special case (Blei et al. , 2003).
Historically, STA-type models have been considered before the advent of LDA (see, e.g., (Nigam
et al. , 2000)), whose main motivation, as mentioned, was precisely that of allowing documents
to be mixtures of topics. In a way, our result vindicates STA in the sense that it shows that LDA
reconstruction is not more general than STA reconstruction.

The main technical tool to achieve this is a reduction between the two paradigms, STA and uniform
LDA. Given a set T of K topics and a Dirichlet parameter α, let D = D` be the distribution that they
induce via LDA over the documents of a given length `. Similarly, let S = S` denote the distribution
induced by STA over the documents of the same length ` when the same set of topics T is used. In a
companion paper (Chierichetti et al. , 2018), we show that there is a reduction such that S can be
computed from D and α, and viceversa. In that paper this fact is used to derive impossibility results
about LDA topic reconstruction whose gist is the following: unless the length of the documents is
greater than or equal to the number of topics, identifying them is impossible. Here, we show how to
exploit this reduction in the opposite direction: if we have an efficient algorithm for identifying the
topics under STA then, thanks to the reduction, we can also use it to identify them under LDA.

Note that the above reduction deals with the exact probability distributions D` and S` over the
documents, something which is helpful when impossibility results are concerned, but that becomes
an issue if we are seeking reconstruction algorithms that have to be deployed in practice, and which
have a limited number of documents to analyze. A first contribution of this paper is to show a robust
version of the above reduction. Fix a set of topics T , and suppose to have an approximation D̃` of the
true distribution D` induced by LDA when T is the set of topics. In practice, D̃` can be obtained
from a large enough corpus of documents in a rather straightforward manner. Suppose also, as it is
customarily assumed in practice, to know the value of the Dirichlet parameter α. The robust version
of the reduction, on input D̃` and α, produces a distribution S̃` which is a good approximation of S`,
the true distribution induced by STA when T is the set of topics.

This result suggests an intriguing possibility, namely that LDA topics could be identified in a rather
roundabout way by means of the following pipeline. Starting from a document corpus generated by
LDA from a set of hidden topics T that we wish to reconstruct, compute D̃, an approximation of the
true document distribution D. Apply the robust version of the reduction to D̃ and α (the Dirichlet
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parameter which, as remarked, is assumed to be known in practice) to obtain S̃, an approximation
of the true distribution S induced by STA from the same set of topics T . Suppose now to have an
efficient algorithm that, given S̃, outputs T ′, a good approximation of the set T of the unknown
topics we are looking for. With such an algorithm we can solve LDA identifiability via single-topic
distributions!

An algorithm capable of producing such a good approximation T ′ from S̃ is called robust in this
paper. As hinted at by the above discussion, the second contribution of this paper is to show that the
pipeline just described can be made to work. We provide a robust algorithm with provable guarantees
with which we can solve in one stroke a natural generalization of two notable cases that have been
studied in the literature. The first concerns so-called separable topics (Arora et al. , 2012, 2013). A
set of topics is p-separable if, for each topic T there is a word w such that T assigns probability at
least p to w and every other topic assigns it probability zero. These special words are called anchor
words. Thus, separability occurs when each topic is essentially identified uniquely by its anchor
word. This set up has received considerable attention and several algorithms for LDA reconstruction
have been proposed. One of the virtues of the p-separability assumption is that it makes it possible to
derive algorithms with provable guarantees. For instance, the main result of Arora et al. (2012) states
that there is an algorithm such that if a set of LDA topics are p-separable then they are identifiable
within additive error δ in the `∞-norm, provided that the corpus contains

Θ

(
K6

δ2p6γ2`
· logm

)
(1)

many documents, or more. In the expression, m is the size of the vocabulary, ` is the length of the
documents and γ is the condition number of the topic-topic covariance matrix. As remarked by the
same authors however, this algorithm is computationally impractical. A follow-up paper shows how
to mitigate the problem by implementing the main steps in a different way (Arora et al. , 2013). The
resulting algorithm is much more efficient but, unfortunately, heuristic in nature, thus losing one of
the nice features of its computationally more expensive predecessor.

The second scenario we tackle is that of Griffiths & Steyvers (2004) in which Gibbs sampling is
proposed as a heuristic without any performance guarantees for LDA topic reconstruction. In that
paper, Gibbs sampling is applied to a dataset whose underlying set of topics is assumed to have the
following structure. The vocabulary consists of a n×n matrix — each entry is a word (the authors of
Griffiths & Steyvers (2004) consider 5× 5 matrices, i.e. 25 words in total). There are 2n topics, each
corresponding to a row or a column of the matrix. The topic corresponding to a given row has all
zero entries except for that row, whose entries are uniformly 1/n. Topics corresponding to columns
are defined analogously. Note that this set of topics is not p-separable, since every word has positive
probability in at least two topics (its row, and its column).

Both scenarios can be captured at once with the following natural definition. A set T of topics is
(p, t)-separable if, for every topic T ∈ T , there is a set of words ST of t words such that (i) the
product of the probabilities assigned by T to the words of ST is at least p, and moreover (ii) for every
other topic T ′ ∈ T − {T} there exists a word w ∈ ST such that T ′ assigns probability zero to w. It
can be checked that p-separability is (p, 1)-separability and that the matrix scenario is (p, 2)-separable
(with p = n−2 for n × n matrices, n ≥ 2). In practice, (p, t)-separability captures the notion that
every topic is uniquely identified by a set of t words. We shall refer to these sets as anchor sets. With
this terminology, p-separability is just (p, 1)-separability with singleton anchor sets.

In this paper we give an algorithm for LDA topic reconstruction (under (p, 1)-separability) that,
starting from a random LDA corpus over a vocabulary of m words consisting of

Θ

(
K2 ·max

(
1,K2α2

)
δ2 · p2

· logm

)
many documents of (at least) 2 words each, computes a set of topics T ′ which is an approximation of
the true set of topics T with error δ (in `∞-norm)4. Asymptotically, this compares favourably to the
bound of Equation (1) but it is also the case that the algorithm is very simple and efficient. The Dirich-
let parameter α is typically assumed to be O(1/K), in which case the term max

(
1,K2α2

)
resolves

to a constant, and the number of documents required for reconstruction becomes Θ
(

K2

δ2·p2 · logm
)

.

4More precisely, there exists a bijection φ : T → T ′ such that, for each T ∈ T , |T − φ(T )|∞ ≤ δ
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Note that the Dirichlet distribution is such that, as α goes to zero, the admixture becomes more and
more polarized, in the sense that the documents resemble more and more single-topic documents,
which intuitively facilitates topic reconstruction. When α moves in the other direction toward larger
and larger values, the admixture creates documents in which all topics are equally represented, which
makes reconstruction more expensive in the sense that the size of corpora must become bigger and
bigger. These considerations apply to all algorithms, but we note that our dependence on K and p is
much milder than those of the other algorithms we are discussing.

It is interesting to compare the overall structure of our algorithm to that in Arora et al. (2012). The
first step of the latter is to project points into a low-dimensional space, where computation is cheaper,
by preserving distances. In a very loose sense, this is equivalent to our reduction, which transforms
the distribution of documents of length 2 from LDA to STA. The second step is a very natural one:
try to identify the anchor words, using a simple combinatorial procedure (or, more generally, the
t-anchor sets, starting from documents of length t+ 1). The third step is again very natural: use the
anchors to build the topics. It is here that the full advantage of our approach becomes evident. Our
algorithm attempts the reconstruction in the single topic world — a much less daunting prospect than
reconstruction in the full-fledged LDA world. As a result, our third step is a very simple procedure —
in the LDA world one would have had to pay the price of heavy-duty linear algebra computations.

In order to deal with (p, t)-separable topics the algorithm only needs documents of length t + 1.
Therefore, in order to reconstruct p-separable topics (t = 1) it only needs bigrams, and in the matrix
case (t = 2) only trigrams! Clearly, this has a significant positive impact on efficiency.

We also present a comparative experimental evaluations which shows that our approach compares
favorably to those of (Arora et al. , 2012, 2013; Griffiths & Steyvers, 2004; Anandkumar et al. ,
2014).

The paper is organized as follows. We start in § 2 with some quick preliminaries. In § 3 we give the
reduction from LDA to STA, followed by § 4 in which a robust algorithm for STA topic reconstruction
is presented with which we solve the (p, t)-separable case for t = 1, 2, which subsumes both p-
separability and matrix-like topics. § 5 presents our experiments. The proofs missing from the main
body of the paper can be found in the Supplementary Material archive.

2 Preliminaries

Throughout the paper, we will use V to denote the underlying vocabulary and assume without loss of
generality that m := |V| ≥ 2, since the case m = 1 is trivial (there can be only one topic).

We will only deal with LDA when the admixtures come from a symmetric Dirichlet distribution
whose parameter will be denoted by α. Since this is the only case we consider and there is no danger
of confusion, we will sometimes omit to specify that we are dealing with symmetric LDA.

We will use the following notation. Given a set of K topics T and a Dirichlet parameter α, DT` will
denote the distribution induced by LDA over the topics of length `. When there is no danger for
confusion subscripts and superscripts will be dropped. Similarly, ST` will refer to the distribution
induced by STA over the topics of length `. And, likewise, subscripts and superscripts will be dropped
when no danger for confusion may arise.

3 A Reduction from LDA to STA

In this section we give the approximation preserving reduction from LDA to STA. As usual, in the
background we have a set of unknown topics T that we wish to reconstruct. The reduction takes as
input the Dirichlet parameter α, an approximation D̃ of the document distribution D generated by
LDA with topics T , and gives as output an approximation S̃ of the document distribution S generated
by STA with the same set of topics T . The point of departure is a reduction between the two true
distributions D and S established by (Chierichetti et al. , 2018, Section 4).

Definition 1. Given a permutation π ∈ Sym([`]), let Cπ be the partition of [`] into the cycles of π:

Cπ = {S | S ⊆ [`] and the elements of S form a cycle in π} .
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Furthermore, for d ∈ V` and S = {i1, i2, . . . , i|S|} ⊆ [`] with i1 < i2 < . . . < i|S|, let d|S be the
document containing the words d(i1), . . . , d(i|S|) in this order (that is, let it be the document that is
obtained by removing from d the words whose positions in d are not in S).

For example, if π = (163)(25)(4) then Cπ = {{1, 3, 6}, {2, 5}, {4}}. And, if d = w1w2w3w4w5w6

and S = {1, 3, 6} then d|S = w1w3w6.
Theorem 2 (Reduction from LDA to STA (Chierichetti et al. , 2018)). Let T be any set of K topics
on a vocabulary V and consider any d ∈ V`. Then, for any α > 0,

ST` (d) =
Γ(K · α+ `)

Γ(K · α+ 1) · Γ(`)
·DT ,α` (d)− 1

K · α · Γ(`)
·

∑
π∈Sym([`])
|Cπ|≥2

∏
S∈Cπ

(
K · α · ST|S|(d|S)

)
. (2)

Equation (2) looks rather formidable, but the point is that it can be taken as a blackbox to transform
one probability distribution into the other. Note that the equation is recursive — it specifies how
to compute the STA distribution S` over documents of length `, from D` and the STA distributions
S1, . . . ,S`−1 over documents of length less than `. In the base case — documents of length one —
the two distributions D1 and S1 coincide and thus the induction can be kick-started.

The next lemma tells us how to compute a good approximation D̃ of the true document distribution
D induced by LDA starting from a corpus.
Lemma 3 (LDA Probabilities Approximation). Fix ` ≥ 1, and ξ ∈ (0, 1). Let X1, . . . , Xn be n iid
samples fromDT ,α` . For i ∈ [`], and for a document d ∈ [m]i, let nd be the number of samples having
d as a prefix, nd = |{j|j ∈ [n] ∧ d is a prefix of Xj}|. For i ∈ [`], and for a document d ∈ [m]i, let
D̃i(d) = nd

n be the empirical fraction of the samples whose i-prefix is equal to d. Then,

(a) If n ≥
⌈

2
ξ2 · ` · lnm

⌉
, with probability at least 1−O(m−`), for every document d of length

i ≤ `, it holds that |DT ,αi (d)− D̃i(d)| ≤ ξ.

(b) For any q > 0, if n ≥
⌈

9
q·ξ2 · ` · lnm

⌉
, with probability at least 1 − O(m−`), for every

document d of length i ≤ ` such that DT ,αi (d) ≥ q, it holds that D̃i(d) = (1± ξ)DT ,αi (d).

The next theorem establishes our main result of this section, namely that Equation (2) is approximation
preserving.
Theorem 4 (Single-Topic Probabilities Approximation). Fix ξ ∈ (0, 1). Given an approximation
D̃i(d) ofDT ,αi (d), i ∈ {1, 2}, define S̃1 = D̃1, and S̃2(ww′) = (Kα+1) · D̃2(ww′)−Kα · S̃1(w) ·
S̃1(w′). Then,

(a) If for every document d of length i ≤ 2 it holds |DT ,αi (d) − D̃i(d)| ≤ ξ
4(Kα+1) , then

|STi (d)− S̃i(d)| ≤ ξ.

(b) If, for a given word w, it holds D̃1(w) =
(

1± ξ
4Kα+1

)
DT ,α1 (w) and D̃2(ww) =(

1± ξ
4Kα+1

)
DT ,α2 (ww), then S̃2(ww) = (1± ξ)ST2 (ww).

4 Robust Algorithms for STA Topic Identifiability

In this section we give an algorithm for identifying p-separable topics (or, equivalently, (p, 1)-
separable topics). As usual, we have a set T of topics in the background that we wish to identify.

The first step is to identify anchor words or their proxies. By proxy, or quasi-anchor word, we mean
that the word has “large” probability in one topic and very small probabilities in the remaining ones.

We begin with a technical lemma stating that if a vector has a coordinate that is very large with
respect to the others, then all of its `p-norms are close to one another. Loosely speaking, the lemma
says that if a word is an anchor word or a quasi-anchor word then, if we look at the vector consisting
of the probabilities assigned to this word by the topics, the `p-norms of the vector are close.
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Lemma 5. Let v ∈ Rn, and suppose that |v|∞ = (1− ε) · |v|1, for some ε ∈ [0, 1). Then, for each
p ≥ 1, (1− ε)p · |v|p1 ≤ |v|pp ≤ (1− ε)p−1 · |v|p1.

The next theorem tells us how to spot anchor words. The idea is that if a word w is an anchor
word then there is a signal telling us so. Consider the two documents w and ww. The signal is
the ratio ST

2 (ww)/K ST
1 (w)2. If w is an anchor word this ratio equals 1, and if w is “far” from being

an anchor word then the ratio is bounded below 1. In fact, the theorem tells us more. If we have
two good approximations S̃1(w) and S̃2(ww) of, respectively, ST1 (w) and ST2 (ww) then the ratio
ρw = S̃2(ww)/K S̃1(w)2 will have (approximately) the same properties. Since we are dealing with an
approximation of the true distribution S , this tells us that we will be able to spot anchors even in this
case.

Now, fix a word w of the dictionary let xw be the (unknown) vector of its probabilities in the K
topics, so that ST1 (w) = K−1 · |xw|1 and ST2 (ww) = K−1 · |xw|22.

Theorem 6. Let ξ ∈ (0, 1) and w ∈ V be any word. Suppose that S̃1(w) = (1 ± ξ)ST1 (w) and

S̃2(ww) = (1± ξ)ST2 (ww). Define ρw = S̃2(ww)

K (S̃1(w))2
.

Then, if εw is such that |xw|∞ = (1− εw) · |xw|1, it holds (1−εw)2(1−ξ)
(1+ξ)2 ≤ ρw ≤ (1−εw)(1+ξ)

(1−ξ)2 .

Consider the quantity ρw defined by the previous theorem and suppose that ρw ≥ 1−ξ/(1+ξ)2. The
next lemma says that if w is an anchor word, then ρw satisfies the inequality. And, viceversa, if ρw
satisfies it, then w must be either an anchor word or a quasi-anchor word, which can also be used for
topic reconstruction.

Lemma 7. Let ξ ∈ (0, 1). Suppose that S̃1(w) = (1± ξ)ST1 (w) and S̃2(ww) = (1± ξ)ST2 (ww).

Let ρw = S̃2(ww)

K (S̃1(w))2
, and εw be such that |xw|∞ = (1− εw) · |xw|1.

If εw = 0 then ρw ≥ 1−ξ
(1+ξ)2 . Moreover, if ρw ≥ 1−ξ

(1+ξ)2 then εw ≤ 6ξ.

The previous lemma gives us a simple test to identify anchor words or quasi-anchor words. We
know that each anchor word is uniquely associated with one topic — the one that assigns to it non
zero probability. We will see later that ξ can be chosen in a way that quasi-anchor words too can be
associated with one topic — the one assigning it a much larger probability than the other topics. The
next lemma tells us how to determine whether two different words insist on the same topic.

We say that a topic j is dominant for a word w, if (i) w has a unique largest probability in the topics,
and (ii) its largest probability is in topic j. We say that the words w,w′ are codominated, if there
exists a topic j such that j is dominant for both w and w′.

Theorem 8. For w ∈ {w1, w2}, suppose that D̃1(w) = (1 ± ξ)DT1 (w), and that |xw|∞ = (1 −
εw) · |xw|1. Suppose further that D̃2(w1w2) = (1± ξ)DT2 (w1w2).

Define τ(w1, w2) := D̃2(w1w2)

D̃1(w1)·D̃1(w2)
. If the words w1 and w2 are co-dominated, then

τ(w1, w2) ≥ (1− ξ)
(1 + ξ)2

· Kα+K(1− ε1)(1− ε2)

Kα+ 1
,

otherwise

τ(w1, w2) ≤ (1 + ξ)

(1− ξ)2
Kα+K(εw1

+ εw2
+ εw1

εw2
)

Kα+ 1
.

The next corollary gives a simple way to determine which quasi-anchor words belong to the same
topic.
Corollary 9. Let A, |A| > K, be a set of quasi-anchor words w with |xw|∞ = (1− εw) · |xw|1. Let
ξ < 1

6
1−4ε
α+1 , where ε = maxw∈A εw. Suppose that D̃1(w) = (1± ξ)DT1 (w) for w ∈ A, and let E be

the maximal subset of
(
A
2

)
such that D̃2(w1w2) = (1± ξ)DT2 (w1w2) for each {w1, w2} ∈ E.

If E contains all the co-dominated pairs of words, the correct partitioning of A according to the K
topics T can be obtained by iteratively assigning to the same group the pair of words {w1, w2} ∈ E
with largest τ(w1, w2) := D̃2(w1w2)

D̃1(w1)·D̃1(w2)
until reaching K groups.
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We then have the main theorem of this section which gives the full algorithm for topic reconstruction
in the p-separable (equivalent to the (p, 1)-separable) case.

Theorem 10 (Main Result). Suppose that T is a set of K = |T | topics, and let δ ≤ 1/48. There
exists an algorithm that, under the p-separability assumption, and under the LDA model DT ,α, with
probability 1− o(1) reconstructs each topic in T to within an `∞ additive error upper bounded by δ,

by accessing n = Θ

(
K2·max((Kα)2,1)

δ2p2 · lnm
)

iid samples from DT ,α2 . The algorithm runs in O(n).

Algorithm 1 is a version of the method analyzed in Theorem 10. The most notable feature of our
algorithm is its simplicity.

Algorithm 1 The Algorithm for reconstructing (p, 1)-separable topics.
Require: K, p > 0, δ, corpus C of documents, α parameter of the symmetric LDA mixture,

1: Let W be the set of words w whose empirical fraction in C is at least p/2K.
2: For each w,w′ ∈ W , estimate the empirical fraction of the document ww′ in C — that is, obtain

approximations D̃1 and D̃2 of D1 and D2 .
3: Apply the reduction of Theorem 2 to estimate the uniform single-topic probabilities S̃1(w) and S̃2(ww′).
4: For each w ∈W , compute ρw := S̃2(ww)

K (S̃1(w))2
and add w to the set A of quasi-anchors if ρw ≥ 1−δ

(1+δ)2
.

5: Use Corollary 9 on A to obtain K pairwise non-codominated quasi-anchor words w1, w2, . . . , wK .
6: For each wi, return a topic whose probability on word w ∈ V is S̃2(wiw)/S̃1(wi).

4.1 The general (p, t)-separable case

The algorithm we have developed in the previous section can be generalized to work for (p, t)-
separable topics (this is what we need to deal with the topic structure of Griffiths & Steyvers (2004)).
The generalization is quite straightforward and is a natural extension of Algorithm 1 but, for lack of
space, we defer it to the full paper. We will however compare our generalized algorithm to Gibbs
sampling — the method used by Griffiths & Steyvers (2004) — in the next section.

5 Experimental Results

We compare our approach5 to three state-of-the-art algorithms: GIBBS sampling6, a popular heuristic
approach, the algorithm from (Arora et al. , 2013) for p-separable instances, referred to as RECOVER
from now on, and the implementation of Yau (2018) of the tensor-based algorithm (henceforth
TENSOR) introduced in (Anandkumar et al. , 2014). Each of these algorithms was executed on the
same computer: an Intel Xeon CPU E5-2650 v4, 2.20GHz, with 64GiB of DDR4 RAM. We used a
single core per algorithm.

The topics. For the experiments we generated a family of k topics in various ways, for k = 10, 25, 50.
The family NIPS TOPICS was generated by running Gibbs sampling on the NIPS dataset (Newman,
2008). Since these topics are not p-separable in general, a second family was generated by adding
anchor words artificially. A third family, SYNTHETIC, was generated by sampling from a uniform
Dirichlet distribution with parameter β = 1 and, to enforce p-separability, anchor words were added.
Finally, a fourth family of topics were GRID topics. These are the prototypical grid-like topics of sizes
7× 7 and 5× 5 (introduced by Griffiths & Steyvers (2004)); notice that these are (p, 2)-separable but
not (p, 1)-separable.

In each instance except grid topics, the number of words of the vocabulary was set to m = 400.

The corpora. From each one of the set of topics specified above, we generated a corpus of n
documents of length `, for n = 104, 105, 106 and ` = 2, 3, 10, 100. Because of space constraints, we
will only show results for n = 106.

5Our implementation can be downloaded from https://github.com/matteojug/lda-sta.
6We use the popular MALLET library McCallum (2002), http://mallet.cs.umass.edu/, with a 200

iteration burnin period and 1000 iterations.
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We are interested in two aspects of performance, the wall-clock running time and quality of the
reconstruction, measured as the `∞ norm between the true set of topics and the reconstruction. To
assess this, we computed the best possible matching between the two families of topics as follows.
Consider a bipartite graph with the true set of topics on one side of the bipartition and the reconstructed
topics on the other. Between every pair of topics on opposite sides, there is an edge of weight equal
to their `∞ distance. The quality of the reconstruction is given by the minimum cost perfect matching
in this graph. All algorithms were run on a single thread.
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Figure 1: The top-left plot shows the wall clock time (in seconds, on a log-scale) required by the
algorithms with NIPS TOPICS, with documents of length ` = 2 and 10 topics (TENSOR is not shown
since it requires ` > 2). The top-right plot shows (on a linear-scale) the `∞ error of the algorithms on
the same instance; observe that STA is faster than the other two algorithms by more than one order of
magnitude, while its error is almost as good as that of RECOVER. The bottom-left plot shows the
wall clock time (in seconds, on a log-scale) required by the algorithms with 10 SYNTHETIC topics,
with documents of length ` = 3. As before, STA is faster than the other algorithms by more than one
order of magnitude and its error is almost as good as the one of RECOVER.

Conceptually our algorithm implements the following pipeline, C (1)−→ L (2)−→ S (3)−→ T , where the
first step, starting from the corpus C, computes the approximation to the distribution induced over the
documents by LDA; the second step implements the reduction from the latter to the STA-induced
distribution, and, lastly, the third step is Algorithm 1. We implemented the steps of this pipeline with
several optimizations. In particular, we did not fully compute the approximate distributions L and S:
rather, we lazily computed their entries that were requested by Algorithm 1.

Algorithm 1 simply picks the first two words of a document and throws the rest away, seemingly a
rather wasteful thing to do. A natural alternative is to feed the algorithm we all pairs of words from
the document, hoping that the correlations so introduced can be safely ignored. This variant, which
we call STA in the following, was consistently more accurate than Algorithm 1 at the expense of a
small increase in the running time. Therefore this is the implementation that we discuss.

In the case of grid-like topics, STA is the version of Algorithm 1 for the (p, 2)-separable case.

Wall-clock time. The two plots on the left of Figure 1 compare the running times of the algorithms
with corpora of documents of length ` = 2, 3, with 10 topics. As expected, STA for documents of
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length 2 is much faster then the other algorithms (while GIBBS is especially cumbersome), and its
reconstruction quality is close to the best one. This figure exemplifies the general picture: a similar
outcome was observed for all values of n topic families.
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Figure 2: On the left: wall clock time (in seconds, on a log-scale) required by the algorithms with 10
SYNTHETIC topics, with documents of length ` = 100. On the right: the `∞ error (on a linear-scale)
of the algorithms on the same instance.

Precision of the reconstruction. Figure 1 exemplifies the general picture that emerges from our tests,
for short documents and 1-separable topics. RECOVER and STA have the smallest reconstruction
errors. As expected, GIBBS did not work well with very short documents. Therefore we tested
the algorithms with documents of length ` = 100. In Figure 2, we show that STA gives the best
reconstruction, and its the fastest one by at least one order of magnitude.
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Figure 3: On the left: wall clock time (in seconds, on a log-scale) required by the algorithms on
a 5 × 5 GRID with 10 topics, with documents of length ` = 10. On the right: the `∞ error (on
a linear-scale) of the algorithms on the same instance. Recall that, here, STA is the version of
Algorithm 1 for (p, 2)-separability. On this instance, RECOVER is the fastest algorithm; observe,
though, that RECOVER returns topics that are very far from the original ones, since this instance is
not p-separable.

Grid. In a final set of experiments, we considered the prototypical GRID instances of sizes 7× 7 and
5× 5 (introduced in Griffiths & Steyvers (2004)). In Figure 3, we see that STA and GIBBS provide
an `∞ error smaller by an order of magnitude than that of RECOVER (and 4 times smaller than that of
Tensor). Moreover, the running time of STA is at least one order of magnitude smaller than that of
GIBBS.

Assessment. A picture emerges from our experiments. STA offers a pretty good reconstruction, while
being extremely competitive in terms of running time. We see this as an encouraging proof of concept
that warrants further investigation of the approach introduced in this paper, that is, reducing LDA-
reconstruction to the much simpler problem of STA-reconstruction. A more careful implementation of
our algorithms could further increase the speed of our approach, while more ideas seem to be needed
to improve the quality of reconstruction. Our experiments show that this could be a worthwhile
endeavor.
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