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A Hypothesis testing framework

In this section, we provide the details regarding the hypothesis tests that we used for testing the
following two null hypotheses:

H
i,j|S
0 : β

(1)
i,j|S = β

(2)
i,j|S and H

j|S
0 : σ

(1)
j|S = σ

(2)
j|S .

As in [6], we used hypothesis tests based on the F-test for testing for invariance between regression
coefficients and residual variances. For testing Hi,j|S

0 : β
(1)
i,j|S = β

(2)
i,j|S we used the test statistic

T̂:= (β̂
(1)
i,j|S − β̂

(2)
i,j|S)2 ·

[(
(σ̂

(1)
j|M)2(n1Σ̂

(1)
M,M)−1+(σ̂

(2)
j|M)2(n2Σ̂

(2)
M,M)−1

)−1]
iM iM

where β̂(k)
i,j|S is the empirical estimate of β(k)

i,j|S obtained by ordinary least squares, (σ̂
(k)
j|M )2 is an

unbiased estimator of the regression residual variance (σ
(k)
j|M )2, Σ̂

(k)
M,M is the sample covariance

matrix of the random vector X(k)
M with M = {i} ∪ S, and iM denotes the index in M corresponding

to the element i. In [11][Section 3.6], the author shows that under the null hypothesis the asymptotic
distribution of T̂ can be approximated by the F-distribution F (1, n1 + n2 − 2|S| − 2). The basic
explanation is that, for M := S ∪ {i}, let β(k)

M be the best linear predictor when regressing X(k)
j onto

X
(k)
M , i.e., our estimator is X(k)

j = (β
(k)
M )TX

(k)
M + ε̃

(k)
j . Let β be the vector

β :=

[
β

(1)
M

β
(2)
M

]
,

and let C ∈ R2|M | have CiM = 1 and C|M |+iM = −1 and all other entries as zero. Then the
null hypothesis Hi,j|S

0 can be written as: CTβ = 0. It follows from Proposition 3.5 of [11], on
the asymptotic distribution of the Wald statistic, that T̂ converges in distribution to χ2(1), i.e., a
χ2-distribution with 1 degree of freedom.

However, the F-distribution F (1, n1 + n2 − 2|S| − 2) is a better approximation for the distribution
of T̂ , as outlined in Section 3.6 of [11]. A brief justification is in order. First, we know that the
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convergence is the same: for an F-distribution F (1, d), as d → ∞, we have F (1, d)
d→ χ2(1).

Additionally, F (1, d) and T̂ both have a fatter tail than χ2(1). Together, these facts suggest the
choice of a F-distribution F (1, d) with d→∞ as n1, n2 →∞. For the second parameter d, we used
d = n1 +n2− 2|S|− 2, the total degrees of freedom of the unbiased estimators of the two regression
residual variances, i.e., (σ̂

(1)
j|M )2 and (σ̂

(2)
j|M )2.

Similarly, for testing Hj|S
0 , we used the test statistic

F̂ := (σ̂
(1)
j|S)2/(σ̂

(2)
j|S)2.

Under the null hypothesis, F̂ is a ratio of two χ2-distributed random variables and hence F̂ follows
an F-distribution, namely F (n1 − |S| − 1, n2 − |S| − 1).

B Comparison to related work on invariant causal structure learning

The complimentary problem to learning the difference of two DAG models is the problem of inferring
the causal structure that is invariant across different environments. Algorithms for this problem
have been developed in recent literature [6, 16, 20]. Since the hypothesis testing framework in [6]
is similar to our approach, we here provide an example to explain the differences between the two
approaches and in particular to show that a new approach is needed in order to obtain a consistent
method for learning the difference DAG.

Recall that when we have access to data from a pair of DAGs, the algorithms in [6] make use of the
following two sets that are estimated from the data. The first is the regression invariance set:

R :=
{

(j, S) : β
(1)
S (j) = β

(2)
S (j)

}
,

where β(k)
S (j) corresponds to the best linear predictor when regressing X(k)

j onto X(k)
S . The second

is I , the set of variables whose internal noise variances have been changed across the two DAGs:

I :=
{
j : ∀S ⊆ [p] \ {j},E(X

(1)
j − (β

(1)
S (j))TX

(1)
S )2 6= E(X

(2)
j − (β

(2)
S (j))TX

(2)
S )2

}
.

The output of the algorithms in [6] is fully determined by the invariant elements given in R and I . In
particular, Algorithm 1 in [6] estimates the invariant causal structure by considering all elements in R
and I , while Algorithm 2 in [6] is a more efficient constraint-based algorithm that considers only a
subset of the elements in R.
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Figure B.1: (a) - (b): Example of two DAG pairs where the corresponding D-DAGs are different
but the application of algorithms 1 and 2 from [6] would result in the same sets R and I . The red
edges correspond to the edges that have different edge weights across the two DAGs, the black
edges correspond to the edges that have the same edge weights across the two DAGs. The red nodes
correspond to the nodes that have different internal noise variances across the two DAGs and the
black nodes correspond to the nodes that have unchanged internal noise variances. (c): D-DAGs
output by the DCI algorithm when data is generated from (a) and (b), respectively.
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Example B.1. Figure B.1 shows two cases where the underlying D-DAGs are different but in both
cases [6] would produce the same sets R and I that are used to assign edge orientations. In (a)
we consider two fully connected linear SEMs (B(1), ε(1)) and (B(2), ε(2)) where the edge weights
of all edges change across the two DAGs. The variances of the internal noise terms for nodes 1
and 3 change while the variance of the internal noise term of node 2 stays the same. In (b) we
instead consider two fully connected linear SEMs (B(1), ε(1)) and (B(2), ε(2)) where B(1)

12 6= B
(2)
12

and B(1)
23 6= B

(2)
23 . Moreover, the variances of the internal noise terms of nodes 1 and 3 change across

k = {1, 2} while the variance of node 2 stays the same. It can be easily shown that in both cases
R = ∅ and I = {1, 3}. Since both (a) and (b) correspond to exactly the same R and I , by simply
using the output from [6], we cannot distinguish whether the data is generated from the pair of DAGs
given in (a) or the pair of DAGs given in (b). In fact, since for these examples R is empty, [6] will not
uncover any edge orientations consistent with the underlying DAGs G(1) or G(2). On the other hand,
our algorithm is able to distinguish these two cases as well as discover the edge orientations of the
underlying D-DAGs, as shown in Figure B.1 (c).

C Theoretical analysis

C.1 Preliminaries: Schur complement

In this section, we describe how to use Schur complements to express β(k)
i,j|S and (σ

(k)
j|S)2 as rational

functions in the variables (B
(k)
ij )(i,j)∈A(k) and (σ

(k)
j )j∈[p]. This will be used for the proofs of

Theorems 4.3 and 4.4 in the following sections.

For a subset of nodes M ⊆ [p], let XM denote the random vector spanned by the random variables
Xi for all i ∈ M . Let ¬M denote the complement of M with respect to the full set of nodes, i.e.,
¬M := [p] \M . The inverse covariance matrix of the random vector XM , i.e., (ΣM,M )−1, can be
obtained from Θ by taking the Schur complement:

ΘM := (ΣM,M )−1

= ΘM,M −ΘM,¬M (Θ¬M,¬M )−1Θ¬M,M .

Note that here ΘM does not represent the submatrix of Θ with set of row and column indices in M ,
i.e., ΘM,M , but rather the Schur complement. For any two indices i, j ∈ M , let iM , jM ∈ [|M |]
denote the row/column indices of matrix ΘM associated to i and j, then the (iM , jM )-th entry of
matrix ΘM can be written as:

(ΘM )iM jM = Θij −Θi,¬M (Θ¬M,¬M )−1Θ¬M,j .

In [4, 10, 19] the authors also give a combinatorial characterization of the Schur complement.
Following their characterization, the value of (ΘM )iM jM is determined by the parameters of the
d-connecting paths from node i to j given M \ {i, j}. In this case, the entry (Θ

(k)
M )iM jM would be

invariant for k = {1, 2} if the parameters along the d-connecting paths are all the same. Finally, by
applying the result of [17], β(k)

i,j|S and (σ
(k)
j|S)2 can be written as:

β
(k)
i,j|S = − (Θ

(k)
M )iM jM

(Θ
(k)
M )jM jM

where M = S ∪ {i, j},

(σ
(k)
j|S)2 =

(
(Θ

(k)
M )jM jM

)−1

where M = S ∪ {j}.
(S.1)

Combining Eq. (S.1) with the formula for the Schur complement, one can easily see that β(k)
i,j|S and

(σ
(k)
j|S)2 can be expressed as rational functions in the variables (B

(k)
ij )(i,j)∈A(k) and (σ

(k)
j )j∈[p].

C.2 Proof of Theorem 4.3

In this Section we provide the consistency proofs of Theorem 4.3 when Algorithm 2 is initialized in
the difference-UG. The proof of Theorem 4.3 when Algorithm 2 is initialized in the complete graph
follows easily from the proofs in this section. To complete the proof, one also needs the following
assumption:
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Assumption C.1 (Difference-precision-matrix-faithfulness assumption). For any choices of i, j ∈ [p],
it holds that

1. If B(1)
ij 6= B

(2)
ij , then Θ

(1)
ij 6= Θ

(2)
ij , and for any ` with directed path i → j ← ` in either

G(1) or G(2), ` ∈ SΘ.

2. If σ(1)
j 6= σ

(2)
j , then Θ

(1)
jj 6= Θ

(2)
jj , and ∀ i ∈ Pa(1)(j) ∪ Pa(2)(j), i ∈ SΘ.

Note that Assumption C.1 is not a necessary assumption for the consistency of Algorithm 2, since one
can simply take ∆Θ as the fully connected graph on p nodes and SΘ = [p] as input. The same holds
for the proof of Theorem 4.4. The strength of Assumption C.1 is further analyzed in Remark C.5.

To prove Theorem 4.3, we need to make use of the following two lemmas:

Lemma C.2. Given Θ(1) and Θ(2), if Θ
(1)
ij = Θ

(2)
ij , then (Θ

(1)
M )iM jM = (Θ

(2)
M )iM jM for M =

SΘ ∪ {i, j}.

Proof. By Schur complement, we have that (Θ
(k)
M )iM jM = Θ

(k)
ij −Θ

(k)
i,¬M (Θ

(k)
¬M,¬M )−1Θ

(k)
¬M,j . By

the definition of SΘ, Θ
(1)
M,¬M = Θ

(2)
M,¬M and Θ

(1)
¬M,¬M = Θ

(2)
¬M,¬M .

Lemma C.3. Given two linear SEMs (B(1), ε(1)) and (B(2), ε(2)) and denoting the precision preci-
sion matrix of the random vector X(k)

1:j by Θ∗(k), then under Assumption C.1 we have SΘ∗ ⊆ SΘ.

Proof. Since B(k) is strictly upper triangular, the marginal distribution of the random vector X(k)
1:j

follows a new SEM,

X
(k)
1:j = (B

(k)
1:j,1:j)

TX
(k)
1:j + ε

(k)
1:j ,

where B(k)
1:j,1:j is the submatrix of B(k) with the first j rows and j columns, and ε(k)

1:j is the random
vector with the first j random variables of ε(k). It can then be shown that the (i, `)-th entry of the new
precision matrix Θ∗ is given by:

Θ
∗(k)
i` = −(σ

(k)
` )−2B

(k)
i` +

∑

`<m≤j
(σ(k)

m )−2B
(k)
imB

(k)
`m .

It is then a short exercise to show that Θ
∗(1)
i` 6= Θ

∗(2)
i` only if at least one of the following two

statements hold:

1. B(1)
i` 6= B

(2)
i` or σ(1)

` 6= σ
(2)
` ;

2. There exists at least one of ` < m ≤ j with i → m ← ` in either G(1) or G(2) such that
B

(1)
im 6= B

(2)
im or B(1)

`m 6= B
(2)
`m or σ(1)

m 6= σ
(2)
m .

By applying Assumption C.1, we have that Θ
∗(1)
i` 6= Θ

∗(2)
i` ⇒ i, ` ∈ SΘ.

The diagonal entries of the precision matrix are given by:

Θ
∗(k)
ii = (σ

(k)
i )−2 +

∑

i<m≤j
(σ(k)

m )−2B
(k)
im .

Clearly, Θ
∗(1)
ii 6= Θ

∗(2)
ii only if at least one of the following statements hold:

1. σ(1)
i 6= σ

(2)
i ;

2. B(1)
im 6= B

(2)
im or σ(1)

m 6= σ
(2)
m for at least one of the descendents of i in either G(1) or G(2)

with i < m ≤ j.

By applying Assumption C.1 we have that Θ
∗(1)
ii 6= Θ

∗(2)
ii ⇒ i ∈ SΘ.
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Lemma C.4. Given two linear SEMs (B(1), ε(1)) and (B(2), ε(2)), then under Assumption 4.1,
B

(1)
ij = B

(2)
ij if and only if

∃S ⊆ SΘ \ {i, j} s.t. β
(1)
i,j|S = β

(2)
i,j|S or β(1)

j,i|S = β
(2)
j,i|S .

Proof. We show the “if” direction by proving the contrapositive, i.e. if B(1)
ij 6= B

(2)
ij , then

∀S ⊆ SΘ \ {i, j}, β(1)
i,j|S 6= β

(2)
i,j|S and β(1)

j,i|S 6= β
(2)
j,i|S . (S.2)

This follows directly from Assumption 4.1.

Now, we prove the “only if” direction, i.e., if B(1)
ij = B

(2)
ij , then

∃S ⊆ SΘ \ {i, j} s.t. β
(1)
i,j|S = β

(2)
i,j|S or β(1)

j,i|S = β
(2)
j,i|S .

We divide the proof into two cases: σ(1)
j = σ

(2)
j , and σ(1)

j 6= σ
(2)
j .

Case 1 σ(1)
j = σ

(2)
j

Consider the precision matrix Θ∗(k) of the random vector X(k)
1:j . In this case, we prove that choosing

the conditioning set S = SΘ∗ \ {i, j} implies regression invariance. This is a valid choice for S,
since it is a subset of SΘ \ {i, j} by Lemma C.3.

We will first show that Θ
∗(1)
ij = Θ

∗(2)
ij and Θ

∗(1)
jj = Θ

∗(2)
jj . According to the new SEM of the marginal

distribution of the random vector X(k)
1:j , i.e.,

X
(k)
1:j = (B

(k)
1:j,1:j)

TX
(k)
1:j + ε

(k)
1:j ,

it is easy to conclude that node j no longer has any descendants in the marginal SEM. We therefore
have that

Θ
∗(k)
ij = −(σ

(k)
j )−2B

(k)
ij and Θ

∗(k)
jj = (σ

(k)
j )−2.

Since B(1)
ij = B

(2)
ij and σ(1)

j = σ
(2)
j , then

Θ
∗(1)
ij = Θ

∗(2)
ij and Θ

∗(1)
jj = Θ

∗(2)
jj . (S.3)

By choosing M := S ∪ {i, j} and denoting M∗ := [j] \M , recall that the entries of Θ
(k)
M can be

written as

(Θ
(k)
M )iM jM = Θ

∗(k)
ij −Θ

∗(k)
i,M∗(Θ

∗(k)
M∗,M∗)−1Θ

∗(k)
M∗,j .

Now by invoking Lemma C.2 and Eq. (S.3), we obtain that (Θ
(1)
M )iM jM = (Θ

(2)
M )iM jM and

(Θ
(1)
M )jM jM = (Θ

(2)
M )jM jM . Finally, using Eq. (S.1), we obtain β(1)

i,j|S = β
(2)
i,j|S .

Case 2 σ(1)
j 6= σ

(2)
j

In this case, we prove that regressing on all of the parents of j in both DAGs, i.e., choosing the
conditioning set as S = Pa(1)(j) ∪ Pa(2)(j) \ {i}, implies regression invariance. This is a valid
choice for S, i.e. S ⊆ SΘ \ {i, j}, since Assumption C.1 ensures that if σ(1)

j 6= σ
(2)
j then ` ∈ SΘ for

all ` ∈ Pa(k)(j).

Let M := S ∪ {i}. By regressing X(k)
j onto X(k)

M , we get the regression coefficient as

X
(k)
j = (β

(k)
M )TX

(k)
M + ε̃

(k)
j .

Let (β
(k)
M )`M denote the `M -th entry of β(k)

M . By the Markov property, when regressing X(k)
j onto

X
(k)
M where Pa(k)(j) ⊆ M ⊆ [j − 1], it is guaranteed that (β

(k)
M )`M = B

(k)
`j if ` ∈ Pa(k)(j) and

(β
(k)
M )`M = 0 otherwise. Therefore, we have that β(k)

i,j|S = (β
(k)
M )iM = B

(k)
ij , which completes the

proof.
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We now show how the proof of Theorem 4.3 follows from this lemma.

Proof. By applying Assumption C.1 we have that ∆̄ ⊆ ∆Θ. Then the proof of Theorem 4.3 follows
trivially from Lemma C.4, since Lemma C.4 shows that an edge i− j is deleted during testing the
invariance of regression coefficients if and only if i− j 6∈ ∆̄.

We end this section with a remark about the strength of Assumption C.1.
Remark C.5 (Strength of Assumption C.1). To analyze the strength of Assumption C.1, consider
instead the following stronger assumption:

Assumption C.1’ For any choices of i, j ∈ [p], it holds that

1. If B(1)
ij 6= B

(2)
ij , then Θ

(1)
ij 6= Θ

(2)
ij , and Θ

(1)
i` 6= Θ

(2)
i` for any ` with directed path i→ j ← `

in either G(1) or G(2).

2. If σ(1)
j 6= σ

(2)
j , then Θ

(1)
jj 6= Θ

(2)
jj , and Θ

(1)
ii 6= Θ

(2)
ii ∀ i ∈ Pa(1)(j) ∪ Pa(2)(j).

Assumption C.1’ is a strictly stronger assumption than Assumption C.1, i.e., Assumption C.1 is
satisfied whenever Assumption C.1’ is satisfied. We expect Assumption C.1’ to be much weaker
than Assumptions 4.1 and 4.2 in the finite sample regime, and therefore the same also holds for
Assumption C.1. This is because the number of hypersurfaces violating Assumption C.1’ scales at
most as O(p4), which is a much smaller number as compared to Assumptions 4.1 and 4.2 that scale
as O(|∆Θ|2|SΘ|−1).

C.3 Proof of Theorem 4.4

In this section, we provide a proof of Theorem 4.4 when Algorithm 3 is initialized in the difference-
UG.
Lemma C.6. For all nodes j incident to at least one edge in ∆̄, σ(1)

j = σ
(2)
j if and only if

∃ S ⊆ SΘ \ {i, j} s.t. σ
(1)
j|S = σ

(2)
j|S .

Proof. Proving the “if” direction is equivalent to showing that, if σ(1)
j 6= σ

(2)
j , then

∀S ⊆ SΘ \ {j}, σ(1)
j|S 6= σ

(2)
j|S . (S.4)

This follows directly from Assumption 4.2.

To prove the “only if” direction, consider again the marginal distribution of X(k)
1:j . Since σ(1)

j = σ
(2)
j ,

we have that Θ
∗(1)
jj = Θ

∗(2)
jj . Let M := SΘ∗ ∪ {j} and let S := M \ {j}, since (σ

(k)
j|S)2 =

((Θ
(k)
M )jM jM )−1 and (Θ

(1)
M )jM jM = (Θ

(2)
M )jM jM by using Lemma C.2, we have that σ(1)

j|S = σ
(2)
j|S .

Lemma C.7. ∀ i− j ∈ ∆̄ such that σ(1)
j = σ

(2)
j it holds that,

1. if i→ j ∈ ∆, then i ∈ S for all S s.t. σ
(1)
j|S = σ

(2)
j|S .

2. if j → i ∈ ∆, then i 6∈ S for all S s.t. σ
(1)
j|S = σ

(2)
j|S .

Proof. We prove both statements by contradiction. For B(1)
ij 6= B

(2)
ij , suppose there exists a S such

that σ(1)
j|S = σ

(2)
j|S while i 6∈ S. This contradicts Assumption 4.2.

Similarly, in the second statement for B(1)
ji 6= B

(2)
ji , suppose there exists S such that σ(1)

j|S∪{i} =

σ
(2)
j|S∪{i}. This also contradicts Assumption 4.2.

We now show how the proof of Theorem 4.4 follows from this lemma.

6



G(1)

1 2

3

0.5

-0.25 0.5

G(2)

1 2

3

0.5

0.1 0.5

Figure D.1: Example of two linear SEMs that satisfy Assumpitons 4.1 and 4.2 but do not satisfy the
faithfulness assumption. The autoregressive matrices B(1) and B(2) are shown as edge weights in
G(1) and G(2). We assume that all noise terms are standard normal random variables.

Proof. By Lemma C.6, there exists S such that σ(1)
j|S = σ

(2)
j|S if and only if σ(1)

j = σ
(2)
j . Therefore, all

the nodes where the internal noise variance is unchanged will be chosen by Algorithm 3. In addition,
it also follows from Lemma C.7 that for any i→ j ∈ ∆, i ∈ S and for any j → i ∈ ∆, i 6∈ S. This
proves that for any node i where σ(k)

i is invariant, all edges adjacent to i are oriented and that all
edges oriented before the last step of Algorithm 3 are correctly oriented.

It remains to show that all edges oriented in the last step of Algorithm 3 are correct. This easily follows
from the acyclicity property of the underlying graphs and from the fact that all edge orientations
before the last step are correct.

D Examples for Remark 4.7

Since our assumptions are closely related to the faithfulness assumption, it is interesting to compare the
entailment relationship between our assumptions, i.e., Assumptions 4.1 and 4.2, and the faithfulness
assumption. In this section, we give the following two counterexamples to show that our assumptions
and the faithfulness assumption do not imply one another.

Example D.1. We give a 3-node example that satisfies Assumptions 4.1 and 4.2 but does not
satisfy the faithfulness assumption. Consider two linear SEMs (B(1), ε(1)) and (B(2), ε(2)) with
ε
(k)
j ∼ N (0, 1) ∀ j, k and where B(1) and B(2) are the autoregressive matrices defined as shown

in Figure D.1. Clearly, P(1) does not satisfy the faithfulness assumption with respect to G(1) since
nodes 1 and 3 are d-connected given ∅, but X(1)

1 ⊥⊥ X
(1)
3 . However, it is a short exercise to show

that for all choices of S, i.e. ∅ and {2}, we have β(1)
1,3|S 6= β

(2)
1,3|S , β(1)

3,1|S 6= β
(2)
3,1|S , σ(1)

3|S 6= σ
(2)
3|S and

σ
(1)
1|S∪{3} 6= σ

(2)
1|S∪{3}. Therefore, this example satisfies Assumptions 4.1 and 4.2.

Example D.2. We give a 3-node example that satisfies the faithfulness assumption but does not satisfy
Assumption 4.1. Consider two linear SEMs where all ε(k)

j are standard normal random variables

and B(1) and B(2) are defined as shown in Figure D.2. Although B(1)
13 6= B

(2)
13 , by choosing S = ∅,

we still have that β(1)
1,3|S = β

(2)
1,3|S = 0.5. Therefore, although both SEMs satisfy the faithfulness

assumption, the pair does not satisfy Assumption 4.1.

Next, we give an example explaining the hypersurfaces that correspond to the set of parameters
violating our assumptions versus the faithfulness assumption. This example shows that the number
of hypersurfaces corresponding to violations of the faithfulness assumption is much higher than the
number of hypersurfaces corresponding to violations of our assumptions, which implies that the
faithfulness assumption is more restrictive in the finite sample regime.

G(1)

1 2

3

0.5

0.25 0.5

G(2)

1 2

3

0.5

0.1 0.8

Figure D.2: Example of two linear SEMs that satisfy the faithfulness assumption but do not satisfy
Assumption 4.1. The autoregressive matrices B(1) and B(2) are shown as edge weights in G(1) and
G(2). We assume that all noise terms are standard normal random variables.
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G(1)

1 2

3

G(2)

1 2

3

Figure D.3: Example of two fully connected linear SEMs. The red edges correspond to the edges that
have different edge weights across the two DAGs, the black edges correspond to the edges that have
the same edge weights across the two DAGs. The variances of internal noise terms remain the same
for both DAGs.

Example D.3. We give a 3-node example to provide intuition for why the number of hypersurfaces
violating the faithfulness assumption is usually much higher than the number of hypersurfaces
violating our assumptions. Consider the two fully connected linear SEMs (B(1), ε(1)) and (B(2), ε(2))

shown in Figure D.3. In this example, B(1)
12 6= B

(2)
12 while the noise variances and all other edge

weights are not changed across the two DAGs.

If we think of each parameter B(k)
ij or σ(k)

j not as a parameter but rather as an indeterminate, the set
of parameters that violate the faithfulness assumption and our assumptions correspond to a system
of polynomial equations in the following 7 indeterminates: (B

(1)
12 , B

(2)
12 , B13, B23, σ1, σ2, σ3). Note

that here we use a single indeterminate B13 to encode both the parameters B(1)
13 and B(2)

13 since they
have the same value. The set of parameters that violate the faithfulness assumption are given by the
following 11 polynomial equations and hence correspond to a collection of 11 hypersurfaces:

cov(X
(1)
1 , X

(1)
2 ) : B

(1)
12 σ

2
1 = 0,

cov(X
(1)
1 , X

(1)
3 ) : B13σ

2
1 +B

(1)
12 B23σ

2
1 = 0,

cov(X
(1)
2 , X

(1)
3 ) : (B

(1)
12 )2B23σ

2
1 +B

(1)
12 B13σ

2
1 +B23σ

2
2 = 0,

cov(X
(1)
1 , X

(1)
2 | X(1)

3 ) : − B13B23σ
2
1σ

2
2 −B(1)

12 σ
2
1σ

2
3

(B13 +B
(1)
12 B23)2σ2

1 +B2
23σ

2
2 + σ2

3

= 0,

cov(X
(1)
1 , X

(1)
3 | X(1)

2 ) :
B13σ

2
1σ

2
2

(B
(1)
12 )2σ2

1 + σ2
2

= 0,

cov(X
(1)
2 , X

(1)
3 | X(1)

1 ) : B23σ
2
2 = 0,

cov(X
(2)
1 , X

(2)
2 ) : B

(2)
12 σ

2
1 = 0,

cov(X
(2)
1 , X

(2)
3 ) : B13σ

2
1 +B

(2)
12 B23σ

2
1 = 0,

cov(X
(2)
2 , X

(2)
3 ) : (B

(2)
12 )2B23σ

2
1 +B

(2)
12 B13σ

2
1 +B23σ

2
2 = 0,

cov(X
(2)
1 , X

(2)
2 | X(2)

3 ) : − B13B23σ
2
1σ

2
2 −B(2)

12 σ
2
1σ

2
3

(B13 +B
(2)
12 B23)2σ2

1 +B2
23σ

2
2 + σ2

3

= 0,

cov(X
(2)
1 , X

(2)
3 | X(2)

2 ) :
B13σ

2
1σ

2
2

(B
(2)
12 )2σ2

1 + σ2
2

= 0.
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Fig. 2. Parameter values corresponding to unfaithful distributions in the 3-node case.

Since in this example no CI relations are imposed by the Markov prop-
erty, a distribution P is unfaithful to G if any of the polynomials in (1)–(6)
[corresponding to (conditional) covariances] are zero. Therefore, the set of
unfaithful distributions for the 3-node example is the union of 6 real alge-
braic varieties, namely the three coordinate hyperplanes given by (1), (5)
and (6), two real algebraic hypersurfaces of degree 2 given by (2) and (4),
and one real algebraic hypersurface of degree 3 given by (3).

Assuming that the causal parameters lie in the cube (a12, a13, a23) ∈
[−1,1]3, we use surfex, a software for visualizing algebraic surfaces, to
generate a plot of the set of parameters leading to unfaithful distribu-
tions. Figure 2(a)–(c) shows the nontrivial hypersurfaces corresponding to
cov(X1,X3) = 0, cov(X1,X2 | X3) = 0 and cov(X2,X3) = 0. Figure 2(d)
shows a plot of the union of all six hypersurfaces.

It is clear that the set of unfaithful distributions has measure zero. How-
ever, due to the curvature of the varieties and the fact that we are taking a
union of 6 varieties, the chance of being “close” to an unfaithful distribution
is quite large. As discussed earlier, being close to an unfaithful distribution
is of great concern due to sampling error. Hence, the set of distributions
that does not satisfy λ-strong-faithfulness is of interest. As a direct conse-
quence of Definition 1.3, this set of distributions corresponds to the set of
parameters satisfying at least one of the following inequalities:

|cov(X1,X2)| ≤ λ
√

var(X1) var(X2),

|cov(X1,X3)| ≤ λ
√

var(X1) var(X3),

|cov(X2,X3)| ≤ λ
√

var(X2) var(X3),

|cov(X1,X2 |X3)| ≤ λ
√

var(X1 |X3) var(X2 |X3),

|cov(X1,X3 |X2)| ≤ λ
√

var(X1 |X2) var(X3 |X2),

|cov(X2,X3 |X1)| ≤ λ
√

var(X2 |X1) var(X3 |X1).

The set of parameters (a12, a13, a23) satisfying any of the above relations
for λ ∈ (0,1) has nontrivial volume. As we show in this paper, the volume

Figure D.4: Parameter values corresponding to unfaithful distributions in Example D.3; the first
three figures are the hypersurfaces corresponding to cov(X1, X2) = 0, cov(X1, X2 | X3) = 0 and
cov(X1, X3) = 0 respectively when setting σi = 1 for visualization in 3d; the last figure shows the
hypersurfaces of the first 6 polynomials with σi = 1. Figure adopted from [19, Figure 2])
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To get a better sense of how the hypersurfaces of these polynomials are distributed in the parameter
space, Figure D.4 visualizes the first 6 hypersurfaces. This figure was directly adopted from Figure 2
of [19]. On the other hand, the polynomials of the parameters violating our assumptions are as
follows:

β
(1)
1,2|∅ − β

(2)
1,2|∅ : B

(1)
12 −B

(2)
12 = 0,

β
(1)
2,1|∅ − β

(2)
2,1|∅ :

B
(1)
12 σ

2
1

(B
(1)
12 )2σ2

1 + σ2
2

− B
(2)
12 σ

2
1

(B
(2)
12 )2σ2

1 + σ2
2

= 0,

(σ
(1)
2|∅)

2 − (σ
(2)
2|∅)

2 : (B
(1)
12 )2σ2

1 − (B
(2)
12 )2σ2

1 = 0,

(σ
(1)
1|{2})

2 − (σ
(2)
1|{2})

2 :
1

(B
(1)
12 )2σ−2

2 + σ−2
1

− 1

(B
(2)
12 )2σ−2

2 + σ−2
1

= 0.

Clearly, the number of polynomials that violate Assumptions 4.1 and 4.2 is much smaller as compared
to those of the faithfulness assumption. HAs a consequence our assumption is weaker than the
faithfulness assumption in the finite sample regime (where violations correspond to points that are
close to any of the hypersurfaces).

E Constraint-based method for estimating the difference-UG

In this section, we present a constraint-based method for estimating the difference-UG model in linear
SEMs with general additive noise, i.e., where the noise is not necessarily Gaussian. Our constraint-
based method is built on performing a hypothesis test on each (i, j)-th entry and then finding the
set of (i, j)-th entries where Θ

(1)
ij 6= Θ

(2)
ij . The test for invariance of diagonal entries, i.e., Θ

(k)
ii , is

equivalent to the hypothesis test Hi|[p]\{i}
0 as discussed in Section 3, since (σ

(k)
i|[p]\{i})

2 = (Θ
(k)
ii )−1.

For the non-diagonal entries, since the non-zero pattern of Θ
(k)
ij is the same as the non-zero pattern of

the partial correlation coefficients, i.e., ρ(k)
ij|[p]\{i,j}, we first find the set of non-diagonal entries that

are different between Θ(1) and Θ(2) by doing partial correlation tests for each distribution and then
comparing the non-zero patterns. After that, for each entry (i, j) that is estimated to be non-zero in
both Θ(1) and Θ(2), we use the test statistic:

Q̂ :=
(

Θ̂
(1)
ij − Θ̂

(2)
ij

)2

·
(

Θ̂
(1)
ii Θ̂

(1)
jj +(Θ̂

(1)
ij )2

n1
+

Θ̂
(2)
ii Θ̂

(2)
jj +(Θ̂

(2)
ij )2

n2

)−1

and test if it fits the F-distribution with parameters F (1, n1 + n2 − 2p + 2). If this is the case,
we conclude that this particular entry (i, j) is invariant between the two precision matrices. The
consistency guarantees of Hi|[p]\{i}

0 and partial correlation tests follow trivially from previous results.
For Q̂, it follows from Proposition 3 of [5] on the asymptotic normal distribution of the empirical
precision matrix Θ̂ that if the null hypothesis is true, then Q̂ converges in distribution to χ2(1) as
n1, n2 →∞.

F Additional high-dimensional evaluation

High-dimensional setting: 10% changes. We present the results of increasing the number of
changes between the two DAGs, and hence the size of SΘ. We used the same simulation parameters
as for Figure 2, i.e. p = 100 nodes, a neighbourhood size of s = 10, and sample size n = 300,
except that the total number of changes was 10% of the number of edges in B(1), rather than 5%. As
shown in Figure F.1, both initializations of the DCI algorithm still outperform separate estimation
by GES and the PC algorithm. However, because the underlying DAGs have maintained constant
sparsity while the difference-DAG has become more dense, the gains in performance by using the
DCI algorithm have slightly diminished, as expected by our theoretical analysis.
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(a) difference-DAG skeleton ∆̄ (b) difference-DAG ∆

Figure F.1: ROC curves for estimating the difference-DAG ∆ and its skeleton ∆̄ with p = 100 nodes,
expected neighbourhood size s = 10, n = 300 samples, and 10% percent change between DAGs.

G Real data analysis - ovarian cancer

We tested our method on an ovarian cancer data set [18]. This data set consists of the gene expression
data of patients with ovarian cancer. The patients are divided into six subtypes (C1-C6). The C1
subtype was characterized by differential expression of genes associated with stromal and immune
cell types and is associated with shorter survival rates. In this experiment, we divide the subjects
into two groups, group 1 with n1 = 78 subjects containing patients with C1 subtype, and group
2 with n2 = 113 subjects containing patients with C2-C6 subtypes. In this work, we focused on
two pathways from the KEGG database [9, 15], the apoptosis pathway containing 87 genes, and the
TGF-β pathway with 82 genes.

We compared our results to those obtained by the DPM method [21], which infers the difference in
the undirected setting. As input to Algorithm 2, we took SΘ to be all of the nodes in the output of the
DPM algorithm and took ∆Θ to be the fully connected graph on SΘ. We then learned the difference
DAG using Algorithm 3. The final set of edges over different tuning parameters was chosen using
stability selection as proposed in [13] and is shown in Figure G.1. This procedure identified two hub
nodes in the apoptosis pathway: BIRC3 and PRKAR2B. BIRC3 has been shown to be an inhibitor of
apoptosis [7] and is one of the top disregulated genes in ovarian cancer [8]. This gene has also been
recovered by the DPM method as one of the hub nodes. While BIRC3 has high in-degree, hub gene
PRKAR2B has high out-degree, making it a better candidate for possible interventions in ovarian
cancer since knocking out a gene with high out-degree will have widespread downstream effects on
the target genes. Indeed, PRKAR2B is a known important regulatory unit for cancer cell growth [2]
and the RII-β protein encoded by PRKAR2B has already been studied as a therapeutic target for
cancer therapy [14, 3]. In addition, PRKAR2B has also been shown to play an important role in

(a) Apoptosis pathway (b) TGF-β pathway

Figure G.1: Estimate of the difference DAG between the two groups for the apoptosis and TGF-β
pathways. The black lines represent the edges discovered by both our method and DPM, the red lines
represent the edges discovered only by our method, and the grey lines represent the undirected edges
discovered only by DPM.
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(a) apoptosis, PC (b)TGF-β, GES (c) TGF-β, PC

Figure G.2: Estimate of the difference DAG between the two groups for the apoptosis and TGF-β
pathways using the PC and GES algorithms.

disease progression in ovarian cancer cells [1]. Since the DPM method does not infer directionality, it
is not possible to tell which of the hub genes might be a better interventional target. This is remedied
by our method and its impact for identifying possible therapeutic targets in real data is showcased by
finding an already known drug target for cancer.

For the TGF-β pathway, our analysis identified THBS2 and COMP as hub nodes. Both of these genes
have been implicated in resistance to chemotherapy in epithelial ovarian cancer [12], confirming the
importance of our findings. These nodes were also recovered by DPM.

Overall, the undirected graph discovered by DPM is similar to the DAG found by our method. The
disparity in the TGF-β pathway between the difference UG model ∆Θ and the difference DAG model
∆ can be explained by the fact that the edge between COMP−BMP7 in ∆Θ can be accounted for
by the two edges BMP7→ID1 and COMP→ID1 in ∆. Though these edges might represent the true
regulatory pathways, the sparsity-inducing penalty in the DPM algorithm could remove them while
leaving the edge between COMP and BMP7. This disparity between the two algorithms highlights the
importance of replacing correlative reasoning with causal reasoning, and accentuates the significance
of our contribution.

We also applied the GES and PC algorithms on the ovarian cancer data set. We considered the set of
edges that appeared in one estimated skeleton but disappeared in the other as the estimated skeleton
of the D-DAG ∆̄. In determining orientations, we considered the arrows that were directed in one
estimated CP-DAG but disappeared in the other as the estimated set of directed arrows. Figure G.2
shows the results by applying the PC algorithm on the apoptosis and TGF-β pathway and the results
by applying GES on the TGF-β pathway. Here we omitted GES results on the apoptosis pathway
since GES algorithm did not discover any differences on the apoptosis pathway. Figure G.2 shows
that PC and GES cannot discover any hub nodes.

(a) GES

(b) PC

Figure G.3: Estimate of the difference DAG between naive and activated T cells using the PC and
GES algorithms.
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H Real data analysis - T cell activation

We compare DCI with the GES and PC algorithms on the T cell activation data set. Figure G.3 (a)
shows the results of applying GES to naive and activated data sets separately and calculating the
difference. Figure G.3 (b) shows the estimated results of applying PC to the T cell data set.
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