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1 Video of the Agent Trajectories and Observations

The video available at http://streetlearn.cc and https://youtu.be/2yjWDNXYh5s shows
the performance of trained CityNav agents in the Paris Rive Gauche and Central London environments,
as well as of the MultiCityNav agents trained jointly on 4 environments (Greenwich Village, Midtown,
Central Park and Harlem) and then transferred to a fifth environment (Lower Manhattan). The
video shows the high-resolution StreetView images (actual inputs to the network are 84ˆ 84 RGB
observations), overlaid with the map of the environment indicating its position and the location of the
goal.

2 Further Analysis

2.1 Architecture Ablation Analysis

Figure 1: Learning curves of the CityNav agent (2LSTM+Skip+HD) on NYU, comparing different
ablations, all they way down to GoalNav (LSTM). 2LSTM architectures have a global pathway
LSTM and a policy LSTM with optional Skip connection between the convnet and the policy LSTM.
HD is the heading prediction auxiliary task.

In this analysis, we focus on agents trained with a two-day learning curriculum and early rewards at
200m, in the NYU environment. Here, we study how the learning benefits from various auxiliary
tasks as well as we provide additional ablation studies where we investigate various design choices.
We quantify the performance in terms of average reward per episode obtained at goal acquisition.
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Each experiment was repeated 5 times with different seeds. We report average final reward and
plot the mean and standard deviation of the reward statistic. As Fig. 1 shows, the auxiliary task
of heading (HD) prediction helps in achieving better performance in the navigation task for the
GoalNav architecture, and, in conjunction with a skip connection from the convnet to the policy
LSTM, for the 2-LSTM architecture. The CityNav agent significantly outperforms our main baseline
GoalNav (LSTM in Fig. 1), which is a goal-conditioned variant of the standard RL baseline [4].
CityNav perfoms on par with GoalNav with heading prediction, but the latter cannot adapt to new
cities without re-training or adding city-specific components, whereas the MultiCityNav agent with
locale-specific LSTM pathways can, as demonstrated in the paper’s section on transfer learning. Our
weakest baseline (CityNav no vision) performs poorly as the agent cannot exploit visual cues while
performing navigation tasks. In our investigation, we do not consider other auxiliary tasks introduced
in prior works [2, 3] as they are either unsuitable for our task, do not perform well, or require extra
information that we consider too strong. Specifically, we did not implement the reward prediction
auxiliary task on the convnet from [2], as the goal is not visible from pixels, and the motion model
of the agent with widely changing visual input is not appropriate for the pixel control tasks in that
same paper. From [3], we kept the 2-LSTM architecture and substituted depth prediction (which
we cannot perform on this dataset) by heading and neighbor traversability prediction. We did not
implement loop-closure prediction as it performed poorly in the original paper and uses privileged
map information.

2.2 Goal Representation

Figure 2: Learning curves for CityNav agents with different goal representations: landmark-based, as
well as latitude and longitude classification-based and regression-based.

As described in Section 3.1 of the paper, our task uses a goal description which is a vector of
normalised distances to a set of fixed landmarks. Reducing the density of the landmarks to half,
a quarter or an eighth (50%, 25%, 12.5%) does not significantly reduce the performance (Fig. 2).
We also investigate some alternative representations: a) latitude and longitude scalar coordinates
normalised to be between 0 and 1 (Lat/long scalar in Figure 2), and b) a binned representation
Lat/long binned using 35 bins for X and Y each, with each bin covering 100m. The Lat/long scalar
goal representations performs best.

Fig. 2 compares the performance of the CityNav agent for different goal representations gt on the
NYU environment. The most intuitive one consists in normalized latitude and longitude coordinates,
or in binned representation of latitude and longitude (we used 35 bins for X and 35 bins for Y, where
each bin covers 100m, or 80 bins for each coordinate).

An alternative goal representation is expressed in terms of the distances tdgt,kuk from the goal position

pxgt , y
g
t q to a set of arbitrary landmarks txk, ykuk. We defined gt,i “

expp´αdgt,kq
ř

k expp´αdgt,kq
and tuned

α “ 0.002 using grid search. We manually defined 644 landmarks covering New York, Paris and
London, which we use throughout the experiments and which are illustrated on Fig.2a. We observe
that reducing the density of the landmarks to half, a quarter or an eighth has a slightly detrimental
effect on performance because some areas are sparsely covered by landmarks. Because the landmark
representation is independent of the coordinate system, we choose it and use it in all the other
experimnets in this paper.
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Finally, we also train a Goal-less CityNav agent by removing inputs gt. The poor performance of
this agent (Fig. 2) confirms that the performance of our method cannot be attributed to clever street
graph exploration alone. Goal-less CityNav learns to run in circles of increasing radii—a reasonable,
greedy behaviour that is a good baseline to the other agents.

Since the landmark-based representation performs well while being independent of the coordinate
system and thus more scalable, we use this representation as canonical.

2.3 Allocentric and Egocentric Goal Representation

We do an analysis of the activations of the 256 hidden units of the region-specific LSTM, by training
decoders (2-layer multi-layer perceptrons, MLP, with 128 units on the hidden layer and rectified
nonlinearity transfer functions) for the allocentric position of the agent and of the goal as well as for
the egocentric direction towards the goal. Allocentric decoders are multinomial classifiers over the
joint Lat/Long position, and have 50ˆ50 bins (London) or 35ˆ35 bins (NYU), each bin covering an
area of size 100mˆ100m. The egocentric decoder has 16 orientation bins. Fig.3 illustrates the noisy
decoding of the agent’s position along 3 trajectories and the decoding of the goal (here, St Paul’s),
overlayed with the ground truth trajectories and goal location. The average error of the egocentric
goal direction decoding is about 600 (as compared to 900 for a random predictor), suggesting some
decoding but not a cartesian manifold representation in the hidden units of the LSTM.

Figure 3: Decoding of the agent position (blue dots) and goal position (cyan stars) over 3 trajectories
(in red) with a goal at St Paul’s Cathedral, in London (in black).

2.4 Reward Shaping: Goal Rewards vs. Rewards

The agent is considered to have reached the goal if it is within 100m of the goal, and the reward
shaping consists in giving the agent early rewards as it is within 200m of the goal. Early rewards are
shaped as following:

rt “ max

ˆ

0,min

ˆ

1,
200´ dgt

100

˙˙

ˆ rg

where dgt is the distance from the current position of the agent to the goal and rg is the reward that
the agent will receive if it reaches the goal. Early rewards are given only once per panorama / node,
and only if the distance dgt to the goal is decreasing (in order to avoid the agent developing a behavior
of harvesting early rewards around the goal rather than going directly towards the goal). However,
depending on the path taken by the agent towards the goal, it could earn slightly more rewards if
it takes a longer path to the goal rather than a shorter path. Throughout the paper, and for ease of
comparison with experiments that include reward shaping, we report only the rewards at the goal
destination (goal rewards).
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3 Implementation Details

3.1 Neural Network Architecture

For all the experiments in the paper we use the standard vision model for Deep RL [4] with 2
convolutional layers followed by a fully connected layer. The baseline GoalNav architecture has a
single recurrent layer (LSTM), from which we predict the policy and value function, similarly to [4].

The convolutional layers are as follows. The first convolutional layer has a kernel of size 8x8 and
a stride of 4x4, and 16 feature maps. The second layer has a kernel of size 4x4 and a stride of 2x2,
and 32 feature maps. The fully connected layer has 256 units, and outputs 256-dimensional visual
features ft. Rectified nonlinearities (ReLU) separate the layers.

The convnet is connected to the policy LSTM (in case of two-LSTM architectures, we call it a Skip
connection). The policy LSTM has additional inputs: past reward rt´1 and previous action at´1

expressed as a one-hot vector of dimension 5 (one for each action: forward, turn left or right by 22.50,
turn left or right by 67.50).

The goal information gt is provided as an extra input, either to the policy LSTM (GoalNav agent) or
to each goal LSTM in the CityNav and MultiCityNav agents. In case of landmark-based goals, gt is a
vector of 644 elements (see Section 4 for the complete list of landmark locations in the New York and
London environments). In the case of Lat/Long scalars, gt is a 2-dimensional vector of Lat and Long
coordinates normalized to be between 0 and 1 in the environment of interest. In the case of binned
Lat/Long coordinates, we bin the normalized scalar coordinates using 35 bins for Lat and 35 bins for
Long in the NYU environment, each bin representing 100m, and the vector gt contains 70 elements.

The goal LSTM also takes 256-dimensional inputs from to the convnet. The goal LSTM contains 256
hidden units and is followed by a tanh nonlinearity, a dropout layer with probability p “ 0.5, then
a 64-dimensional linear layer and finally a tanh layer. It is this (CityNav) or these (MultiCityNav)
64-dimensional outputs that are connected to the policy LSTM. We chose to use this bottleneck,
consisting of a dropout, linear layer from 256 to 64, followed by a nonlinearity, in order to force
the representations in the goal LSTM to be more robust to noise and to send only a small amount
of information (possibly related to the egocentric position of the agent w.r.t. the goal) to the policy
LSTM. Please note that the CityNav agent can still be trained to solve the navigation task without
that layer.

Similarly to [4], the policy LSTM contains 256 hidden units, followed by two parallel layers: one
linear layer going from 256 to 1 and outputing the value function, and one linear layer going from
256 to 5 (the number of actions), and a softmax nonlinearity, outputting the policy.

The heading θt prediction auxiliary task is done using an MPL with a hidden layer of 128 units,
connected to the hidden units of each goal LSTM in the CityNav and MultiCityNav agents, and
outputs a softmax of 16-dimensional vectors, corresponding to 16 binned directions towards North.
The auxiliary task is optimized using a multinomial loss.

3.2 Learning Hyperparameters

The costs for all auxiliary heading prediction tasks, of the value prediction, of the entropy regulariza-
tion and of the policy loss are added before being sent to the RMSProp gradient learning algorithm [5]
(momentum 0, discounting factor 0.99, ε “ 0.1, initial learning rate 0.001). The weight of heading
prediction is 1, the entropy cost is 0.004 and the value baseline weight is 0.5.

In all our experiments, we train our agent with IMPALA [1], an actor-critic implementation of deep
reinforcement learning that decouples acting and learning. In our experiments, IMPALA results
in similar performance to A3C [4] on a single city task, but as it has been demonstrated to handle
better multi-task learning than A3C, we prefer it to A3C for our multi-city and transfer learning
experiments. We use 256 actors for CityNav and 512 actors for MultiCityNav, with batch sizes of
256 or 512 respectively, and sequences are unrolled to length 50. We used a learning rate of 0.001,
linearly annealed to 0 after 2B steps (NYU), 4B steps (London) or 8B steps (multi-city and transfer
learning experiments). The discounting coefficient in the Bellman equation is 0.99. Rewards are
clipped at 1 for the purpose of gradient calculations.

4



3.3 Curriculum Learning

Because of the distributed nature of the learning algorithm, it was easier to implement the duration
of phase 1 and phase 2 of curriculum learning using the Wall clock of the actors and learners rather
than by sharing the total number of steps with the actors, which explains why phase durations are
expressed in terms of days, rather than in a given number of steps. With our software implementation,
hardware and batch size as well as number of actors, the distributed learning algorithm runs at about
6000 environment steps/sec, and a day of training corresponds to about 500M steps. In terms of
gradient steps, given than we use unrolls of length 50 steps and batch sizes of 256 or 512, each
gradient step corresponds to either 50ˆ 256 “ 12800 or 50ˆ 512 “ 25600 environment steps, and
is taken every 2s or 4s respectively for a speed of 6000 environment steps/sec.

4 Environment

For the experiments on data from Manhattan, New York, we relied on sub-areas of a larger StreetView
graph that contains 256961 nodes and 266040 edges. We defined 5 areas by selecting a starting point at
a given coordinate and collecting panoramas in a panorama adjacency graph using breadth-first-search,
until a given depth of the search tree. We defined areas as following:

• Wall Street / Lower Manhattan: 6917 nodes and 7191 edges, 200-deep search tree starting
at (40.705510, -74.013589).

• NYU / Greenwich Village: 17227 nodes and 17987 edges, 200-deep search tree starting at
(40.731342, -73.996903).

• Midtown: 16185 nodes and 16723 edges, 200-deep search tree starting at (40.756889,
-73.986147).

• Central Park: 10557 nodes and 10896 edges, 200-deep search tree starting at (40.773863,
-73.971984).

• Harlem: 14589 nodes and 15099 edges, 220-deep search tree starting at (40.806379, -
73.950124).

The Central London StreetView environment contains 24428 nodes and 25352 edges, and is defined by
a bounding box between the following Lat/Long coordinates: (51.500567, -0.139157) and (51.526175,
-0.080043). The Paris Rive Gauche environment contains 34026 nodes and 35475 edges, and is
defined by a bounding box between Lat/Long coordinates: (48.839413, 2.2829247) and (48.866578,
2.3653221).

We provide, in a text file1, the locations of the 644 landmarks used throughout the study.
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