
A Additional Empirical Results

Tables 2 and 3 summarize the performance of HOLEX for the head- and tail-prediction tasks,
respectively. Note that the corresponding numbers are averaged when reporting the main results in
Table 1 on the full task.

As has been observed in prior work, the tail-prediction task is considerably easier than head-prediction
for named-entity knowledge bases such as Freebase. This is because many-to-one relations tend to be
more common than one-to-many relations. For instance, many people “live in" one city or “work for"
one company; where as relatively few people have been the “president of” the United States).

We see, for example, that when using 8 random 0/1 vectors in HOLEX, the tail-prediction HITS@10
metric is 90.5%, which is 5.2% higher than that for head-prediction. Similarly, the mean rank for
tail-prediction is 35 in this case, compared to 58 for head prediction.

Knowledge Completion Method Mean HITS@10 MRR HITS@5 HITS@1
Rank (%) (%) (%)

HolE (reimplemented baseline, dim=256) 62 80.3 0.640 75.1 54.6
HOLEX, 8 Haar vectors 63 84.1 - - -
HOLEX, 2 random 0/1 vectors 60 82.8 0.696 78.7 61.8
HOLEX, 4 random 0/1 vectors 59 84.6 0.740 81.4 67.7
HOLEX, 8 random 0/1 vectors 58 85.3 0.763 82.5 70.9
HOLEX, 16 random 0/1 vectors 61 86.1 0.777 83.4 72.8

Table 2: Performance of HOLEX on the head-prediction task. Table 1 reports the average of this and
tail-prediction performance.

Knowledge Completion Method Mean HITS@10 MRR HITS@5 HITS@1
Rank (%) (%) (%)

HolE (reimplemented baseline, dim=256) 41 85.6 0.690 80.7 59.2
HOLEX, 8 Haar vectors 39 89.3 - - -
HOLEX, 2 random 0/1 vectors 36 88.0 0.744 84.1 66.3
HOLEX, 4 random 0/1 vectors 35 89.5 0.785 86.5 72.0
HOLEX, 8 random 0/1 vectors 35 90.5 0.810 87.5 75.4
HOLEX, 16 random 0/1 vectors 37 91.1 0.823 88.6 77.2

Table 3: Performance of HOLEX on the tail-prediction task. Table 1 reports the average of this and
head-prediction performance.

B Proof Details

Proof of Theorem 1. According to the definition of the expanded holographic embedding. We have
the j, i-th entry of the matrix h(a, b;Cd) is:

[h(a, b;Cd)]j,i =

d−1∑
l=0

ci,lalb(l+j) mod d.

in which ci,l is the l, i-th entry of the matrix Cd, and alb(l+j) mod d is Rl,j – the l, j-th entry of
matrix R. Therefore,

h(a, b;Cd)′ = C ′dR.

which is equivalent to what the Theorem states.

Definition 1. A random 0/1 matrix A ∈ {0, 1}l×d is a matrix whose entries are chosen independently
and uniformly at random from {0, 1}.
Claim 1. Suppose x,y ∈ Rd are two vectors, each with exactly one non-zero entry, and at different
locations. Let A ∈ {0, 1}l×d be a random 0/1 matrix. Then Pr(Ax = Ay) ≤ 1

2l
.
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Proof. Suppose the i-th entry is the unique non-zero in x, and similarly for the j-th entry in y.
Ax = Ay must imply that A(:, i) = A(:, j). Otherwise, suppose Ak,i = 1 but Ak,j = 0, this leads
to Ax to be non-zero but Ay to be zero. Contradiction. Given this fact,

Pr(Ax = Ay) ≤ Pr(A(:, i) = A(:, j)) = 1/2l

as claimed.

Proof of Theorem 2. Because d diagonal lines are mutually independent, it suffices to prove the
statement holds for one diagonal line with probability at least 1− η/d. A union bound argument can
be applied to show that the statement holds for all d diagonal lines with probability at least 1− η. In
this case, the rest of the proof focuses on one diagonal line.

The effect of applying expanded holographic embedding with l random 0/1 vectors on one diagonal
line is to multiply this diagonal line with a l-by-d random 0/1 matrix A. This fact can be quickly
checked with the graphical example in Figure 1 (middle). Suppose x and y are two possible
configurations of one diagonal line of interest (i.e., both x and y have one non-zero entry of value 1).
If a random 0/1 matrix A can tell apart every pairs of x and y, we can decide which configuration
the diagonal line is actually in by examining the result of the expanded holographic embedding. In
other words, it is sufficient to prove the following: let l = d3 log d− log ηe − 1. sample an l-by-d
random 0/1 matrix A, then with probability at least 1− η/d, we must have Ax 6= Ay holds, for any
two vectors x and y with exact one non-zero entry of value 1.

Pr(∀x,y ∈ D : x 6= y,Ax 6= Ay) (10)
= 1− Pr(∃x,y ∈ D : x 6= y,Ax = Ay) (11)

≥ 1− d(d− 1)

2
Pr(Ax0 = Ay0) (12)

≥ 1− d(d− 1)

2

1

2l
≥ 1− η/d. (13)

Here, D is the space with vectors of exact one non-zero entry of value 1. The size of D is d(d−1)
2 . It

is a union bound argument from (2) to (3). From (3) to (4) we use Claim 1. The last inequality is
because l ≥ 3 log d− log η − 1.

The proof of theorem 3 makes many connections to compressed sensing. We provide a brief review
here. Many definitions and lemmas can be found in [20]. We first introduce the notion of restricted
isometry property.

Definition 2 (restricted isometry property [20]). The restricted isometry constant δs of a matrix
A ∈ Rm×d is defined as the smallest δs such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22

for all s-sparse x ∈ Rd.

It is well known that restricted isometry property implies recovery of sparse vectors, which can be
shown below.

Lemma 1 (Theorem 2.6, [20]). Suppose the restricted isometry constants δ2s of a matrix A ∈ Rm×d

satisfies δ2s < 1
3 , then every s-sparse vector x∗ ∈ Rd is recovered by `1-minimization.

Therefore, in order to guarantee sparse recovery of x∗, we need a good matrix A. It turns out that
random Bernoulli matrix has good restricted isometry constant upper bound:

Lemma 2 (Theorem 2.12, [20]). Let A ∈ Rm×d be a Bernoulli random matrix, where every entry
of the matrix takes the value 1√

m
or − 1√

m
with equal probability. Let ε, δ ∈ (0, 1) and assume

m ≥ Cδ−2(s log(d/s)) + log(ε−1) for a universal constant C > 0. Then with probability at least
1− ε the restricted isometry constant of A satisfies δs ≤ δ.
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Lemma 3 (Compressed sensing). Let A ∈ Rm×d be a Bernoulli random matrix, where every entry
of the matrix takes the value 1√

m
or − 1√

m
with equal probability. Let x∗ ∈ Rd be a vector with at

most s non-zero entries. let ε ∈ (0, 1) and assume

m ≥ C(s log(d/s) + log(ε−1))

for a universal constant C > 0. Let random linear measurements y = Ax∗ be given, and x be a
solution of

min
z
‖z‖1 subject to y = Az (14)

Then with probability at least 1− ε, x = x∗.

Proof of Lemma 3. By setting δ = 1
3 in Lemma 2, and using Lemma 1, Lemma 3 is proved.

Lemma 4. Let ε ∈ (0, 1). If x1, x2 ∈ Rd have at most s non-zero entries, A ∈ Rm×d is a Bernoulli
random matrix,m ≥ C(s log(d/s)+log(ε−1)) for a universal constantC > 0. If we have y1 = Ax1,
y2 = Ax2, and y1 = y2, then with probability at least 1− ε, we know that x1 = x2.

Proof. Lemma 4 is a corollary of Lemma 3. Lemma 3 says that if x is sparse, then y uniquely
determines x by running `1 regression. That means, y can be used as a certificate for testing whether
the unknown vector x is what we want. Using Lemma 3, we know that by running `1 regression, we
could recover the unique solution for both y1 = Ax1 and y2 = Ax2. Since y1 = y2, by probability
1− ε, the two programs have the same unique solution, denoted as x′.

If x1 6= x2, it means x′ is not the same as at least one of them. Without loss of generality, assume
x′ 6= x1. This contradicts the claim of Theorem 3, which says x′ equals x1.

Proof of Theorem 3. Theorem 3 is a simple corollary of Lemma 4. To prove Theorem 3, it is
sufficient to prove that a l-by-d Bernoulli random matrix can differentiate all s-sparse vectors with
high probability, which is implied by Lemma 4.
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