
A Appendix

In this appendix, we prove all the lemmas and theorems whose proofs has been omitted in the main
paper. For the ease of readability we restate the statement object for proving in the beginning of each
section.

A.1 Basic Notation

The Hilbert-Schmid norm of a matrix A is defined as ‖A‖HS :=
∑

i,j a
2
ij and the Hilbert-Schmid

inner product of two matrices A,B of the same size is defined as 〈A,B〉HS =
∑

ij aijbij . When

regarding an n × m matrix as a point in R
mn, then the standard euclidian norm of this point

is the same as the Hilbert-Schmid norm of the matrix. Therefore, for notational simplicity, we
omit the HS subscript and write ‖A‖ and 〈A,B〉. Note that the Hilbert-Schmid norm satisfies
‖A ⊗ B‖ = ‖A‖‖B‖. Further, we measure the variance of a random matrix A by the sum of the
variances of its entries:

Var[A] =
∑

ij

Var[aij ] =
∑

ij

E[a2ij ]− E[aij ]
2 = E[‖A‖2]− ‖E[A]‖2 (9)

A.2 Proof of Lemma 1

Lemma. Assume the learnable parameters θ are a set of matrices W 1, . . . ,W r, let ĥt−1 be the

hidden state ht−1 concatenated with the input xt and let zk = ĥt−1W
k for k = 1, . . . , r. Assume

that ht is obtained by point-wise operations over the zk’s, that is, (ht)j = f(z1j , . . . , z
r
j ), where

f is such that
∂f
∂zk

j

is bounded by a constant. Let Dk ∈ R
n×n be the diagonal matrix defined by

Dk
jj =

∂(ht)j
∂zk

j

, and let D =
(

D1| . . . |Dr
)

. Then, it holds ∂ht

∂θ = ĥt−1 ⊗D.

Proof. Note that zba =
∑

i w
b
ia(ĥt−1)i only depends on wk

ij if j = a and k = b, that
∂zk

j

∂wk
ij

= (ĥt−1)i,

and that
∂(ht)ℓ
∂zi

j

= 0 if j 6= ℓ. Therefore

∂(ht)ℓ
∂wk

ij

=
∑

a,b

∂(ht)ℓ
∂zba

∂zba
∂wk

ij

=
∂(ht)ℓ
∂zkℓ

∂zkℓ
∂wk

ij

=
∂(ht)ℓ
∂zkℓ

· δℓ,j(ĥt−1)i , (10)

where δℓ,j is the Kronecker delta, which is 1 if ℓ = j and 0 if ℓ 6= j. If we assume that the parameters

wk
ij are ordered lexicographically in i, k, j, then Dk

ℓ,j = δℓ,j
∂(ht)j
∂zk

j

.

A.3 Proof of Lemma 2

As mentioned in the paper Lemma 2 is essentially borrowed from [14]. We state the lemma slightly
more general as in the paper, that is, for arbitrary many summands.

Lemma 3. Let C =
∑m

i=1 Ai ⊗ Bi, where the Ai’s are of the same size and the B′
is are of the

same size. Let the c1, . . . , cm be chosen independently and uniformly at random from {−1,+1}
and let p1, . . . , pm > 0 be positive reals. Define A′ =

∑m
i=1 cipiAi and B′ =

∑m
i=1 ci

1
pi
Bi. Then,

C ′ = A′ ⊗B′ is an unbiased approximation of C, that is E [C ′] = C. The free parameters pi can be

chosen to minimize the variance of A′. For the optimal choice pi =
√

‖Bi‖/‖vi‖ it holds

Var[C ′] =
∑

i

∑

i 6=j

‖Ai‖‖Aj‖‖Bi‖‖Bj‖+ 〈Ai, Aj〉〈Bi, Bj〉 . (11)

Proof. The independence of the ci implies that E[cicj ] = 1 if i = j and E[cicj ] = 0 if i 6= j.
Therefore, the first claim follows easily by linearity of expectation:

E[C ′] = E[(
∑

i

cipiAi)⊗ (
∑

j

cj
1
pj
Bj)] =

∑

i

∑

j

E[cicj ]
pi

pj
Ai ⊗Bj =

∑

i

Ai ⊗Bi .
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For the proof of the second claim we use Proposition 1 from [14]. Let D =
∑

i
~Ai

~BT
i ,

where ~A denotes the vector obtained by concatenating the columns of a matrix A, and let

D′ = (
∑

i cipi
~Ai)(

∑

j cj
1
pj

~Bj)
T . C ′ and D′ have same entries for the same choice of ci’s. It

follows that ‖E[C ′]‖ = ‖E[D′]‖, E[‖C ′‖2] = E[‖D′‖2], and therefore Var[C ′] = Var[D′]. By

Proposition 1 from [14], choosing pi =
√

‖Bi‖/‖Ai‖ minimizes Var[D′] resulting in Var[D′] =
∑

i

∑

i 6=j ‖
~Ai‖‖ ~Aj‖‖ ~Bi‖‖ ~Bj‖+ 〈 ~Ai, ~Aj〉〈 ~Bi, ~Bj〉. This implies the Lemma because ‖A‖ = ‖ ~Ai‖

and 〈A,B〉 = 〈 ~A, ~B〉 for any matrices A and B.

A.4 Proof of Theorem 1

The spectral norm for matrix A is defined as σ(A) := maxv:‖v‖=1 ‖Av‖. Note that ‖AB‖ ≤
σ(A)‖B‖ holds for any matrix B.

Theorem 2. Let ǫ > 0 be arbitrary small. Assume for all t that the spectral norm of Ht is at most

1− ǫ, ‖ĥt‖ ≤ C1 and ‖Dt‖ ≤ C2. Then for the class of RNNs defined in Lemma 1, the estimate G′
t

obtained by the KF-RTRL algorithm satisfies at any time t that Var[G′
t] ≤

16
ǫ3(2−ǫ)C

2
1C

2
2 .

Before proving this theorem let us show how it implies Theorem 1. Note that the hidden state ht

and the inputs xt take values between −1 and 1. Therefore, ‖ĥt‖
2 = O(n). By Lemma 1 the rn

non-zero entries of D are of the form
∂(ht)j
∂zk

j

= ∂f
∂zk

j

. By the assumptions on f the entries of Dt are

bounded and ‖Dt‖
2 = O(n) follows. Theorem 2 implies that Var[G′

t] = O(n2). Since the number
of entries in G′

t is of order Θ(n3), the mean of the variances of the entries of G′
t is of order O(n−1).

Proof of Theorem 2. The proof idea goes as follows. Write G′
t = Gt + Ĝt as the sum of the

true (deterministic) value Gt = dht

dθ of the gradient and the random noise Ĝt induced by the

approximations until time t. Note that Var[G′
t] = Var[Ĝt]. Then, write Var[Ĝt] as the sum of the

variance induced by the t-th time step and the variance induced by previous steps. The bound on the

spectral norm of Ht ensures that the latter summand can be bounded by (1− ǫ)2Var[Ĝt−1]. Therefore
the variance stays of the same order of magnitude as the one induced in each time-step and this
magnitude can be bounded as well.

Now let us prove the statement formally. Define

B :=
p1
p2

ut−1 ⊗Dt +
p2
p1

ĥt ⊗HtAt−1 (12)

By equation Equation 7 and 8

G′
t = (p1c1ut−1 + p2c2ĥt)⊗ ( c1p1

HtAt−1 +
c2
p2

Dt) (13)

= ut−1 ⊗HtAt−1 + ĥt ⊗Dt + c1c2B (14)

Observe that

ut−1 ⊗HtAt−1 = Ht(ut−1 ⊗At−1) = HtG
′
t−1 = HtGt−1 +HtĜt−1 , (15)

which implies together with Equation 3 that

Gt + Ĝt = G′
t = HtGt−1 +HtĜt−1 + ĥt ⊗Dt + c1c2B = Gt +HtĜt−1 + c1c2B . (16)

It follows that Ĝt = HtĜt−1 + c1c2B.

Claim 1. For two random matrices A and B and c chosen uniformly at random in {−1,+1}
independent from A and B, it holds Var[A+ cB] = Var[A] + E[‖B‖2].

We postpone the proof and first show the theorem. Claim 1 implies that

Var[Ĝt] = Var[HtĜt−1] + E[‖B‖2] . (17)
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Let us first bound the first term. Since G′
t is unbiased, it holds E[Ĝt−1] = 0, Var[Ĝt−1] =

E[‖Ĝt−1‖
2], and therefore

Var[HtĜt−1] = E[‖HtĜt−1‖
2]− ‖E[HtĜt−1]‖

2

≤ (1− ǫ)2E[‖Ĝt−1‖
2]

= (1− ǫ)2Var[Ĝt−1] .

A bound for the second term can be obtained by the triangle inequality:

‖B‖ ≤ ‖
p1
p2

ut−1 ⊗Dt‖+ ‖
p2
p1

ĥt ⊗HtAt−1‖ (18)

= 2
(

‖ut‖‖ĥt‖‖Dt‖‖HtAt−1‖
)1/2

(19)

≤ 4
ǫC1C2 , (20)

where the last inequality follows the following claim.

Claim 2. ‖ut‖‖At‖ ≤ 4C1C2

ǫ2 holds for all time-step t.

Let us postpone the proof and show by induction that Var[Ĝt] ≤
16

ǫ3(2−ǫ)C
2
1C

2
2 . Assume this is true

for t− 1, then

Var[Ĝt] = Var[HtĜt−1] + E[‖B‖2] (21)

≤ (1− ǫ)2Var[Ĝt−1] + ( 4ǫC1C2)
2 (22)

≤ (1− ǫ)2 16
ǫ3(2−ǫ)C

2
1C

2
2 + ( 4ǫC1C2)

2 (23)

= 16
ǫ3(2−ǫ)C

2
1C

2
2 , (24)

which implies the theorem. Let us first prove Claim 1. Note that E[cX] = 0 holds for any random
variable X , and therefore

Var[A+ cB] =
∑

ij

Var[Aij + cBij ] (25)

=
∑

ij

E[(Aij + cBij)
2]− E[Aij + cBij ]

2 (26)

=
∑

ij

E[A2
ij ]− E[Aij ]

2 + E[c2B2
ij ] (27)

= Var[A] + E[‖B‖2] . (28)

It remains to prove Claim 2.

We show this claim by induction over t. For t = 0 this is true since G0 is the all zero matrix. For the

induction step let us assume that ‖ut−1‖‖At−1‖ ≤ 4C1C2

ǫ2 . Using our update rules for ut and At (see

Equation 7 and 8) and the triangle inequality we obtain ‖ut‖ ≤
√

‖HtAt−1‖‖ut−1‖+

√

‖ĥt‖‖Dt‖
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and ‖At‖ ≤
√

‖HtAt−1‖‖ut−1‖+

√

‖ĥt‖‖Dt‖. It follows that

‖ut‖‖At‖ ≤

(

√

‖HtAt−1‖‖ut−1‖+

√

‖ĥt‖‖Dt‖

)2

(29)

≤

(

√

(1− ǫ)‖At−1‖‖ut−1‖+

√

‖ĥt‖‖Dt‖

)2

(30)

≤

(
√

(1− ǫ)
4C1C2

ǫ2
+
√

C1C2

)2

(31)

=
(

√

(1− ǫ) · 2
ǫ + 1

)2

C1C2 (32)

≤

(
√

(1− ǫ+ ǫ2

4 ) ·
2
ǫ + 1

)2

C1C2 (33)

=
(

(1− ǫ
2 )

2
ǫ + 1

)2
C1C2 (34)

=
4C1C2

ǫ2
. (35)

A.5 Computation of Variance of UORO Approach

In the first approximation step of the UORO algorithm Ft is approximated by a rank one matrix vvTFt,
where v is chosen uniformly at random from {−1,+1}n. For the RNN architectures considered in
this paper, Ft is a concatenation of diagonal matrices, cf. Lemma 1. Intuitively, all the non-diagonal
elements of the UORO approximation are far off the true value 0. Therefore, the variance per entry
introduced in this step will be of order of the diagonal entries of Ft . More precisely, it holds that

Var[vvTFt] =
∑

i,j

E[(vivj(Ft)jj)
2]− E[vivj(Ft)jj ]

2 =
∑

i 6=j

(Ft)
2
jj = (n− 1)‖Ft‖

2 , (36)

where we used that Ft is diagonal, E[vivj ] = 0 if i 6= j and E[vivj ] = 1 if i = j.

Recall that for ht and Dt of the KF-RTRL algorithm, it holds ‖ht‖‖Dt‖ = ‖Ft‖ and that we bounded
the variance of the gradient estimate essentially by ‖ht‖

2‖Dt‖
2 = ‖Ft‖

2 (actually, we bounded it
by using an upper bound C1C2 of ‖h‖‖D‖). Therefore, the first approximation step of one UORO
update introduces a variance that is by a factor n larger than the total variance of the KF-RTRL
approximation. Assuming that the entries of Ft are of constant size (as assumed for obtaining the
O(n−1) bound per entry for KF-RTRL), implies this first UORO approximation step has constant
variance per entry. The second UORO approximation step can only increase the variance. We remark
that with the same assumption on the spectral norm as in Theorem 2, one could similarly derive a
bound of O(1) on the mean variance per entry of the UORO algorithm.

A.6 Extending KF-RTRL to LSTMs

Our approach can also be applied to LSTMs. However, it requires more computation and memory
because an LSTM has twice as many parameters as an RHN for the same number of units. Addi-
tionally, the hidden state is twice as large as it consists of a cell state, ct, and a hidden state, ht. To

apply KF-RTRL to LSTMs, we have to show that
∂(ct|ht)

∂θ can be exactly decomposed as a Kronecker
product of the same form as in Lemma 1. If we show this, then the rest of the algorithm can easily be
applied. The following equations define the transition function of an LSTM:







ft
it
ot
gt






= Whht−1 +Wxxt

ct = σ(ft)⊙ ct−1 + σ(it)⊙ tanh(gt)

ht = σ(ot)⊙ tanh(ct)
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Observe that both ct and ht are the results of linear operations followed by point-wise operations,

as is required to apply Lemma 1. Thus, we get that ∂ct
∂θ = h′

t−1 ⊗ Dct and ∂ht

∂θ = h′
t−1 ⊗ Dht

,

where h′
t−1 is the concatenation of the input and hidden states, as in Lemma 1. Consequently

∂(ct|ht)
∂θ = h′

t−1 ⊗

(

Dct
Dht

)

.
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