
Supplementary Materials

Equivalent definitions of weakly and strongly DR-SM functions.

Proposition 3 ([Bian et al., 2017b]). Suppose F : [0, 1]n ! [0, 1] is continuous and twice differen-
tiable, and H is the Hessian of F , i.e. 8i, j 2 [n], Hij , @2F

@xi@xj
. The followings are equivalent:

1. F satisfies the weak DR-SM property as in Definition 1.

2. Continuous submodularity: 8x, y 2 [0, 1]n, F(x) + F(y) � F(x _ y) + F(x ^ y).

3. 8i 6= j 2 [n], Hij  0, i.e., all off-diagonal entries of Hessian are non-positive.

Also, the following statements are equivalent:

1. F satisfies the strong DR-SM property as in Definition 1.

2. F(.) is coordinate-wise concave along all the coordinates and is continuous submodular,
i.e. 8x, y 2 [0, 1]n, F(x) + F(y) � F(x _ y) + F(x ^ y)

3. 8i, j 2 [n], Hij  0, i.e., all entries of Hessian are non-positive.

Missing proofs of Section 2.

Proof of Lemma 1. Consider a realization of ẑi where ẑi � x⇤
i . We have:

F(O(i�1))� F(O(i)) = F(ẑ1, . . . , ẑi�1, x
⇤
i , x

⇤
i+1, . . . , x

⇤
n)� F(ẑ1, . . . , ẑi�1, ẑi, x

⇤
i+1, . . . , x

⇤
n)

 F(ẑ1, . . . , ẑi�1, x
⇤
i , 1, . . . , 1)� F(ẑ1, . . . , ẑi�1, ẑi, 1, . . . , 1)

=
⇣
F(x⇤

i ,Y
(i�1)
�i )� F(Zu,Y

(i�1)
�i )

⌘
�
⇣
F(ẑi,Y

(i�1)
�i )� F(Zu,Y

(i�1)
�i )

⌘

= h(x⇤
i )� h(ẑi), (2)

where the inequality holds due to weak DR-SM. Similarly, for a a realization of ẑi where ẑi  x⇤
i :

F(O(i�1))� F(O(i)) = F(ẑ1, . . . , ẑi�1, x
⇤
i , x

⇤
i+1, . . . , x

⇤
n)� F(ẑ1, . . . , ẑi�1, ẑi, x

⇤
i+1, . . . , x

⇤
n)

 F(ẑ1, . . . , ẑi�1, x
⇤
i , 0, . . . , 0)� F(ẑ1, . . . , ẑi�1, ẑi, 0, . . . , 0)

=
⇣
F(x⇤

i ,X
(i�1)
�i )� F(Zl,X

(i�1)
�i )

⌘
�

⇣
F(ẑi,X

(i�1)
�i )� F(Zl,X

(i�1)
�i )

⌘

= g(x⇤
i )� g(ẑi) (3)

Putting eq. (2) and eq. (3) together, for every realization ẑi we have:

F (O(i�1))� F(O(i))  max (g(x⇤
i )� g(ẑi), h(x

⇤
i )� h(ẑi)) (4)

Moreover, consider the term F(X(i))� F(X(i�1)). We have:

F(Xi)� F(X(i�1)) = F(ẑ1, . . . , ẑi�1, ẑi, 0, . . . , 0)� F(ẑ1, . . . , ẑi�1, 0, 0, . . . , 0)

= g(ẑi)� g(0) = g(ẑi) + F(Zl,X
(i�1)
�i )� F(X(i�1))

� g(ẑi) + F(Zl,Y
(i�1)
�i )� F(0,Y(i�1)

�i ) � g(ẑi) (5)

where the first inequality holds due to weak DR-SM property and the second inequity holds as
Zl 2 argmax

z2[0,1]
F(z,Y(i�1)

�i ). Similarly, consider the term F(Y(i))� F(Y(i�1)). We have:

F(Y(i))� F(Y(i�1)) = F(ẑ1, . . . , ẑi�1, ẑi, 1, . . . , 1)� F(ẑ1, . . . , ẑi�1, 1, 1, . . . , 1)

= h(ẑi)� h(1) = h(ẑi) + F(Zu,Y
(i�1)
�i )� F(Y(i�1))

� h(ẑi) + F(Zu,X
(i�1)
�i )� F(1,X(i�1)

�i ) � h(ẑi) (6)
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where the first inequality holds due to weak DR-SM and the second inequity holds as Zu 2
argmax
z2[0,1]

F(z,X(i�1)
�i ). By eq. (4), eq. (5), eq. (6), and the fact that F(0) + F(1) � 0, we have:

0 
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h
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⇤
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⇤
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⇣
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
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�
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
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2
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F(ẑ)

2
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�
= 2E [F(ẑ)]� F(x⇤)

Proof of Lemma 2. We start by a technical lemma, showing a single-crossing property of the g-h
curve of a weak DR submodular function F(.), and we then characterize the region using this lemma.

Lemma 4. The univariate function d(z) = h(z)� g(z) is monotone non-increasing.

Proof. By using weak DR-SM property of F(.) the proof is immediate, as for any � � 0,

d(z+�)�d(z) =
⇣
F(z + �,Y(i�1)

�i )� F(z,Y(i�1)
�i )

⌘
�(F (z+�,X(i�1)

�i )�F (z+�,X(i�1)
�i ))  0,

where the inequality holds due to the fact that Y(i�1)
�i � X(i�1)

�i and � � 0.

Being equipped with Lemma 4, the positive region is the set of all points (g0, h0) 2 [�1, 1]2 such that

E(g,h)⇠FP


1

2
g +

1

2
h�max(g0 � g, h0 � h)

�

= �

✓
1

2
g1 +

1

2
h1 �max(g0 � g1, h

0 � h1)

◆
+ (1� �)

✓
1

2
g2 +

1

2
h2 �max(g0 � g2, h

0 � h2)

◆
� 0

The above inequality defines a polytope. Our goal is to find the vertices and faces of this polytope.
Now, to this end, we only need to consider three cases: 1) h0 � g0 � h1 � g1, 2) h2 � g2  h0 � g0 
h1�g1 and 3) h0�g0  h2�g2 (note that h1�g1 � h2�g2). From the first and third case we get the
half-spaces h0  �( 32h1+

1
2g1)+(1��)( 32h2+

1
2g2) and g0  �( 32g1+

1
2h1)+(1��)( 32g2+

1
2h2)

respectively, that form two of the faces of the positive-region polytope. From the second case, we get
another half-space, but the observation is that the transition from first case to second case happens
when h0 � g0 = h1 � g1, i.e. on a line with slope one leaving P1, and transition from second case to
the third case happens when h0 � g0 = h2 � g2, i.e. on a line with slope one leaving P2. Therefore,
the second half-space is the region under the line connecting two points Q1 and Q2, where Q1 is the
intersection of h0 = �( 32h1 +

1
2g1) + (1 � �)( 32h2 +

1
2g2) and the line leaving P1 with slope one

(point Q1), and Q2 is the intersection of g0 = �( 32g1 +
1
2h1) + (1 � �)( 32g2 +

1
2h2) and the line

leaving P2 with slope one (point Q2). The line segment Q1 �Q2 defines another face of the positive
region polytope, and Q1 and Q2 will be two vertices on this face. By intersecting the three mentioned
half-spaces with g0 � �1 and h � �1 (which define the two remaining faces of the positive region
polytope), the postive region will be the polytope defined by the pentagon (M0,M1,Q1,Q2,M2),
as claimed (see Figure 2 for a pictorial proof).

Proof of the "Case Zl � Zu (easy)" of Proposition 1 . In this case, the algorithm plays a determin-
istic strategy ẑi = Zl. We therefore have:

V(i)(ẑi, x
⇤
i ) =

1

2
g(ẑi) +

1

2
h(ẑi)�max (g(x⇤

i )� g(ẑi), h(x
⇤
i )� h(ẑi)) � min(g(ẑi)� g(x⇤

i ), 0)

where the inequality holds because g(ẑi) = g(Zl) = 0, and also Zl 2 argmax
z2[0,1]

F(z,Y(i)
�i) and so:
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• h(ẑi) = h(Zl) = F(Zl,Y
(i)
�i)� F(Zu,Y

(i)
�i) � 0

• h(x⇤
i )� h(ẑi) = F(x⇤

i ,Y
(i�1)
�i )� F(Zl,Y

(i�1)
�i )  0

To complete the proof for this case, it is only remained to show g(ẑi)� g(x⇤
i ) � 0. As Zl � Zu, for

any given x⇤
i 2 [0, 1] either x⇤

i  Zl or x⇤
i � Zu (or both). If x⇤

i  Zl then:

g(ẑi)� g(x⇤
i ) = �g(x⇤

i ) = F(Zl,X
(i�1)
�i )� F(x⇤

i ,X
(i�1)
�i ) � F(Zl,Y

(i�1)
�i )� F(x⇤

i ,Y
(i�1)
�i ) � 0

where the first inequality uses weak DR-SM property and the second inequality uses the fact Zl 2
argmax
z2[0,1]

F(z,Y(i)
�i). If x⇤

i  Zu, we then have:

g(ẑi)� g(x⇤
i ) = F(Zl,X

(i�1)
�i )� F(x⇤

i ,X
(i�1)
�i )

= F(Zl,X
(i�1)
�i )� F(Zu,X

(i�1)
�i ) + F(Zu,X

(i�1)
�i )� F(x⇤

i ,X
(i�1)
�i )

�
⇣
F(Zl,Y

(i�1)
�i )� F(Zu,Y

(i�1)
�i )

⌘
+
⇣
F(Zu,X

(i�1)
�i )� F(x⇤

i ,X
(i�1)
�i )

⌘
� 0

where the first inequality uses weak DR-SM property and the second inequality holds because both
terms are non-negative, following the fact that:

Zl 2 argmax
z2[0,1]

F(z,Y(i)
�i) and Zu 2 argmax

z2[0,1]
F(z,X(i)

�i)

Therefore, we finish the proof of the easy case.

Proof of the main technical lemma, i.e., Lemma 3. First of a all, we claim any ADV’s strategy x⇤
i 2

[0, Zl) (or x⇤
i 2 (Zu, 1]) is weakly dominated by Zl (or Zu) if ALG plays a (randomized) strategy

ẑi 2 [Zl, Zu]. To see this, if x⇤
i 2 [0, Zl),

max (g(x⇤
i )� g(ẑi), h(x

⇤
i )� h(ẑi))

= max
⇣
F(x⇤

i ,X
(i�1)
�i )� F(ẑi,X

(i�1)
�i ),F(x⇤

i ,Y
(i�1)
�i )� F(ẑi,Y

(i�1)
�i )

⌘

= F(x⇤
i ,Y

(i�1)
�i )� F(ẑi,Y

(i�1)
�i )  F(Zl,Y

(i�1)
�i )� F(ẑi,Y

(i�1)
�i )

= h(Zl)� h(ẑi)  max (g(Zl)� g(ẑi), h(Zl)� h(ẑi))

and therefore V(i)(ẑi, Zl)  V(i)(ẑi, x⇤
i ) for any x⇤

i 2 [0, Zl). Similarly, V(i)(ẑi, Zu)  V(i)(ẑi, x⇤
i )

for any x⇤
i 2 (Zu, 1]. So, without loss of generality, we can assume ADV’s strategy x⇤

i is in [Zl, Zu].

Now, consider the curve r = {(g(z), h(z)}z2[Zl,Zu] as in Figure 2. ALG’s strategy is a 2-point mixed
strategy over P1 = (g1, h1) = r(z(1)) and P2 = (g2, h2) = r(z(1)), where these two points are on
different sides of the line L : h0 � � = g0 � ↵ (or both of them are on the line L). Without loss
of generality, assume h1 � g1 � � � ↵ � h2 � g2. Note that r(Zl) = (0,�) is above the line L
and r(Zl) = (↵, 0) is below the line L. So, because h(z)� g(z) is monotone non-increasing due to
Lemma 4, we should have Zl  z(1)  z(2)  Zu.

Using Lemma 2, the ADV’s positive region is (M0,M1,Q1,Q2,M2), where {Mj}j=1,2,3 and
{Qj}j=1,2 are as described in Lemma 2. The upper concave envelope conc-env(r) upper-bounds
the curve r. Therefore, to show that curve r is entirely covered by the ADV’s positive region, it is only
enough to show its upper concave envelope conc-env(r) is entirely covered (as can also be seen from
Figure 2). Lets denote the line leaving Pj with slope one by Lj for j = 1, 2. The curve conc-env(r)
consists of three parts: the part above L1, the part below L2 and the part between L1 and L2 (the
last part is indeed the line segment connecting P1 and P2). Interestingly, the line connecting P1 to
Q1 and the line connecting P2 to Q2 both have slope 1. So, as it can be seen from Figure 2, if we
show Q1 is above the line h0 = � and Q2 is to the right of the line g0 = ↵, then the conc-env(r)
will entirely be covered by the positive region and we are done. To see why this holds, first note that
� has been picked so that P , (Pg,Ph) = �P1 + (1� �)P2). Due to Lemma 2,

Q1, h = �(
3

2
h1 +

1

2
g1) + (1� �)(

3

2
h2 +

1

2
g2) =

3

2
Ph +

1

2
Pg

Q2, g = �(
3

2
g1 +

1

2
h1) + (1� �)(

3

2
g2 +

1

2
h2) =

3

2
Pg +

1

2
Ph
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Moreover, point P = (Pg,Ph) dominates the point C , ( ↵2

↵+� ,
�2

↵+� ) coordinate-wise. This domi-
nance is simply true because points C and P are actually the intersections of the line L : h0�� = g0�↵
(with slope one) with the line connecting (0,�) to (↵, 0) and with the curve conc-env(r) respectively.
As conc-env(r) upper-bounds the line connecting (0,�) to (↵, 0), and because L has slope one,
Ph � Ch = �2

↵+� and Pg � Cg = ↵2

↵+� . Putting all the pieces together,

Q1,h � 3

2

�2

↵+ �
+

1

2

↵2

↵+ �
=

�
↵2 + �2 � 2↵�

�
+ 2�2 + 2↵�

2(↵+ �)
= � +

(↵� �)2

2(↵+ �)
� �

Q2,g � 3

2

↵2

↵+ �
+

1

2

�2

↵+ �
=

�
↵2 + �2 � 2↵�

�
+ 2↵2 + 2↵�

2(↵+ �)
= ↵+

(↵� �)2

2(↵+ �)
� ↵

which implies Q1 is above the line h0 = � and Q2 is to the right of the line g0 = ↵, as desired.

More details on polynomial implementation of Algorithm 1

Algorithm 3: Approximate One-Dimensional Optimization
input: function f : [0, 1]! [0, 1], additive error � > 0, Lipschitz Constant C > 0 ;
output: coordinate value z 2 [0, 1]n ;
Set ✏ �

C ;
Initialize z

⇤  0 ;
Initialize z  0 ;
while z  1 do

if f(z) > f(z⇤) then

z
⇤  z ;

z  z + ✏ ;
return z

⇤

Algorithm 4: Approximate Annotated Upper-concave Envelope
input: function f : [0, 1]! [0, 1], function g : [0, 1]! [0, 1], additive error � > 0, Lipschitz Constant
C > 0 ;

output: coordinate value z 2 [0, 1]n ;
Set ✏ �

C ;
Initialize stacks s, t ;
Initialize z  0 ;
while z  1 do

if s is empty or f(z) is strictly larger than the first coordinate of the the top element of s then

while s has at least two elements and the slope from (the second-to-top element of s) to (the top
element of s) is less than the slope from (the top element of s) to (f(z), g(z)) do

Pop the top element of s ;
Pop the top element of t ;

Push (f(z), g(z)) onto s ;
Push z onto t ;

z  z + ✏ ;
return (s, t)

Analysis of the Binary-Search Bi-Greedy (proof of Theorem 2)

We start by the following technical lemma, which is used in various places of our analysis. The proof
is immediate by strong DR-SM property (Definition 1).

Lemma 5. For any y, z 2 [0, 1]n such that y  z, we have @F
@xi

(y)� @F
@xi

(z) � 0, 8i.
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Proof of Lemma 5. We rewrite this difference as a sum over integrals of the second derivatives:

@F
@xi

(y)� @F
@xi

(z) =
nX

j=1

2

664

@F
@xi

(y1, . . . , yj�1, yj , zj+1, . . . , zn)

� @F
@xi

(y1, . . . , yj�1, zj , zj+1, . . . , zn)

3

775

=
nX

j=1

Z zj

yj

� @2F
@xi@xj

(y1, . . . , yj�1, w, zj+1, . . . , zn)dw � 0

To see why the last inequality holds, because of the strong DR-SM Proposition 3 implies that all of
the second derivatives of F are always nonpositive. As 8i : zi � yi, the RHS is nonnegative.

A modified zero-sum game. We follow the same approach and notations as in the proof of The-
orem 1 (Section 2.1). Suppose x⇤ is the optimal solution. For each coordinate i we again define
a two-player zero-sum game between ALG and ADV, where the former plays ẑi and the latter plays
x⇤
i . The payoff matrix for the strong DR-SM case, denoted by V(i)

S (ẑi, x⇤
i ) is defined as before

(Equation (1)); the only major difference is we redefine h(.) and g(.) to be the following functions,:

g(z) , F(z,X(i�1)
�i )� F(0,X(i�1)

�i ) , h(z) , F(z,Y(i�1)
�i )� F(1,Y(i�1)

�i ).

Now, similar to Lemma 1, we have a lemma that shows how to prove the desired approximation
factor using the above zero-sum game. The proof is exactly as Lemma 1 and is omitted for brevity.

Lemma 6. Suppose 8i 2 [n] : V(i)
S (ẑi, x⇤

i ) � ��/n for constant � > 0. Then 2F(ẑ) � F(x⇤)� �.

Analyzing zero-sum games. We show that V(i)
S (ẑi, x⇤

i ) is lower-bounded by a small constant, and
then by using Lemma 6 we finish the proof. The formal proof, which appears in the supplementary
materials, uses both ideas similar to those of Buchbinder et al. [2015], as well as new ideas on how to
relate the algorithm’s equilibrium condition to the value of the two-player zero-sum game.

Proposition 4. if ALG plays the strategy ẑi described in Algorithm 2, then V(i)
S (ẑi, x⇤

i ) � �2C✏/n.

Proof of Proposition 4. Consider the easy case where @F
@xi

(0,X(i�1)
�i )  0 (and therefore we have

@F
@xi

(0,Y(i�1)
�i )  0 due to Strong DR-SM). In this case, ẑi = 0 and hence g(ẑi) = g(0) = 0.

Moreover, because of the Strong DR-SM property,

h(0) = F(0,Y(i�1)
�i )� F(1,Y(i�1)

�i ) � � @F
@xi

(0,Y(i�1)
�i ) � 0,

h(x⇤
i )� h(0)  g(x⇤

i )� g(0)  x⇤
i ·

@F
@xi

(0,X(i�1)
�i )  0,

and therefore V(i)
S (ẑi, x⇤

i ) =
1
2g(0) +

1
2h(0) �max (g(x⇤

i )� g(0), h(x⇤
i )� h(0)) � 0. The other

easy case is when @F
@xi

(1,Y(i�1)
�i ) � 0 (and therefore @F

@xi
(1,X(i�1)

�i ) � 0, again because of Strong

DR-SM). In this case ẑi = 1 and a similar proof shows V(i)
S (1, x⇤

i ) � 0.

The only remaining case (the not-so-easy one) is when @F
@xi

(0,X(i�1)
�i ) > 0 and @F

@xi
(1,Y(i�1)

�i ) < 0.
In this case, Algorithm 2 runs the binary search and ends up at a point ẑi. Because of the monotonicity
and continuity of the equilibrium condition of the binary search, there exists z̃ that is (✏/n)-close to
ẑi and @F

@xi
(z̃,X�i)(1� z̃)+ @F

@xi
(z̃,Y�i)z̃ = 0. By a straightforward calculation using the Lipschitz

continuity of F with constant C and knowing that |z̃ � ẑi|  ✏/n, we have:

V(i)
S (ẑi, x

⇤
i ) =

1

2
g(ẑi) +

1

2
h(ẑi)�max (g(x⇤

i )� g(ẑi), h(x
⇤
i )� h(ẑi)) � V(i)

S (z̃, x⇤
i )�

2C✏

n

So, we only need to show V(i)
S (z̃, x⇤

i ) � 0. Let ↵ , @F
@xi

(z̃,X(i�1)
�i ) and � , � @F

@xi
(z̃,Y(i�1)

�i ).
Because of Lemma 5, ↵+ � � 0. Moreover, ↵(1� z̃) = �z̃, and therefore we should have ↵ � 0
and � � 0. We now have two cases:
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Case 1 (z̃ � x⇤
i ): g(x⇤

i )� g(z̃)  h(x⇤
i )� h(z̃) due to strong DR-SM and that z̃ � x⇤

i , so:

V(i)
S (z̃, x⇤

i ) =
1

2
g(z̃) +

1

2
h(z̃) + (h(z̃)� h(x⇤

i ))

=
1

2

Z z̃

0

@F
@xi

(x,X(i�1)
�i )dx+

1

2

Z 1

z̃
� @F
@xi

(x,Y(i�1)
�i )dx+

Z x⇤
i

z̃
� @F
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where inequality (1) holds due to the coordinate-wise concavity of F , inequality (2) holds as � � 0
and x⇤

i � 0, and equality (3) holds as �z̃ = ↵(1� z̃).

Case 2 (z̃ < x⇤
i ): This case is the reciprocal of Case 1, with a similar proof. Note that g(x⇤

i ) �
g(z̃) � h(x⇤

i )� h(z̃) due to strong DR-SM and the fact that z̃ < x⇤
i , so:
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=

↵2

2(↵+ �)
+

�2

2(↵+ �)
� ↵�
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(↵� �)2

2(↵+ �)
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where inequality (1) holds due to the coordinate-wise concavity of F , inequality (2) holds as ↵ � 0
and x⇤

i  1, and equality (3) holds as �z̃ = ↵(1� z̃).

Combining Proposition 4 and Lemma 6 for � = 2C✏ finishes the analysis and the proof of Theorem 2.

Detailed specifics of experiments in Section 4

Strong-DR Non-concave Quadratic Programming (NQP)

We generated synthetic functions of the form F(x) = 1
2x

THx + hT
x + c. We generated H 2 R

n⇥n

as a matrix with every entry uniformly distributed in [�1, 0], and then symmetrized H. We then
generated h 2 R

n as a vector with every entry uniformly distributed in [0,+1]. Finally, we solved
for the value of c to make F(~0) + F(~1) = 0.

Weak-DR Non-concave Quadratic Programming (NQP)

This experiment is the same as in the previous subsection, except that the diagonal entries of H
are uniformly distributed in [0,+1] instead, making the resulting function F(x) only weak DR-SM
instead.
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Softmax extension of Determinantal Point Processes (DPP)

We generated synthetic functions of the form F(x) = log det(diag(x)(L� I) + I), where L needs
to be positive semidefinite. We generated L in the following way. First, we generate each of the
n eigenvalues by drawing a uniformly random number in [�0.5, 1.0] and using e raised to that
number. This yields a diagonal matrix D. We then generate a random unitary matrix V and then set
L = VDVT . By construction, L is positive semidefinite and has the specified eigenvalues.

Geometric proof via picture- larger versions of Figure 2 and Figure 1.

Here are the larger versions of Figure 2 and Figure 1.
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More application domain details

Here is a list containing further details about applications in machine learning, electrical engineering
and other application domains.

Special Class of Non-Concave Quadratic Programming (NQP).

• The objective is to maximize F(x) = 1
2x

THx + hT
x + c, where off-diagonal entries of H

are non-positive (and hence these functions are Weak DR-SM).
• Minimization of this function (or equivalently maximization of this function when off-

diagonal entries of H are non-negative) have been studied in Kim and Kojima [2003] and
Luo et al. [2010], and has applications in communication systems and detection in MIMO
channels [Luo et al., 2010].

• Another application of quadratic submodular optimization is large-scale price optimization
on the basis of demand forecasting models, which has been studied in Ito and Fujimaki
[2016]. They show the price optimization problem is indeed an instance of weak-DR
minimization.

Revenue Maximization over Social Networks.

• The model was proposed in Bian et al. [2017b] and is a generalization of the revenue
maximization problem addressed in Hartline et al. [2008].

• A seller wishes to sell a product to a social network of buyers. We consider restricted seller
strategies which freely give (possibly fractional) trial products to buyers: this fractional
assignment is our input x of interest.

• The objective takes two effects into account: (i) the revenue gain from buyers who didn’t
receive free product, where the revenue function for each such buyer is a nonnegative
nondecreasing Weak DR-SM function and (ii) the revenue loss from those who received free
product, where the revenue function for each such buyer is a nonpositive nonincreasing Weak
DR-SM function. The combination for all buyers is a nonmonotone Weak DR-SM function
and additionally is nonnegative at ~0 and ~1.

Map Inference for Determinantal Point Processes (DPP) & Its Softmax-Extension.

• DPP are probabilistic models that arise in statistical physics and random matrix theory, and
their applications in machine learning have been recently explored, e.g. [Kulesza et al.,
2012].

• DPPs can be used as generative models in applications such as text summarization, human
pose estimation, or news threading tasks [Kulesza et al., 2012].

• A discrete DPP is a distribution over sets, where p(S) ⇠ det(AS) for a given PSD matrix
A. The log-likelihood estimation task corresponds to picking a set Ŝ 2 P(feasible set, e.g.
a matching) that maximizes f(S) = log(det(AS)). This function is non-monotone and
submodular. Note that as a technical condition to apply bi-greedy algorithms, we require
that det(A) � 1 (implying f(~1) � 0).

• The approximation question was studied in [Gillenwater et al., 2012]. Their idea is to first
find a fractional solution for a continuous extension (hence a a continuous submodular
maximization step is required) and then rounding the solution. However, they sometimes
need a fractional solution in conv(P) (so, the optimization task sometimes fall out of the
hypercube, making rounding more complicated).

• Beyond multilinear extension, the other continuous extension that has been used in this
literature is called the softmax extension [Gillenwater et al., 2012, Bian et al., 2017a]:

F(x) = logES⇠Ix
[exp(f(S))] = log det (diag(x)(A� I) + I)

where Ix is the independent distribution with marginals x (i.e. each item i is independently
in the set w.p. xi).
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• F(x) is Strong DR-SM and non-monotone [Bian et al., 2017a]. In almost all machine learn-
ing applications, the rounding works on an unrestricted problem. Hence the optimization
that needs to be done is Strong DR-SM optimization over unit hypercube.

• One can think of adding a regularizer term �kxk2 to the log-likelihood objective function to
avoid overfitting. In that case, the underlying fractional problem becomes a Weak DR-SM
optimization over the unit hypercube when � is large enough.

Log-Submodularity and Mean-Field Inference.

• Another probabilistic model that generalizes DPP and all other strong Rayleigh measures [Li
et al., 2016, Zhang et al., 2015] is the class of log-submodular distributions over sets, i.e.
p(S) ⇠ exp(f(S)) where f(·) is a discrete submodular functions. MAP inference over this
distribution has applications in machine learning and beyond [Djolonga and Krause, 2014].

• One variational approach towards this MAP inference task is to do mean-field inference to
approximate the distribution p with a product distribution x 2 [0, 1]n, i.e. finding x

⇤ that:

x
⇤ 2 argmax

x2[0,1]n
H(x)�ES⇠Ix [log p(S)] = argmin

x2[0,1]n
KL(x||p)

where KL(x||p) = ES⇠I [
log Ix(S)
log p(S) ].

• The function F(x) = H(x)�ES⇠Ix [log p(S)] is Strong DR-SM [Bian et al., 2017a].

Cone Extension of Continuous Submodular Maximization.

• Suppose K is a proper cone. By considering the lattice corresponding to this cone one can
generalize DR submodularity to K-DR submodularity [Bian et al., 2017a].

• An interesting application of this cone generalization is minimizing the loss in the logistic
regression model with a particular non-separable and non-convex regularizer, as described
in [Antoniadis et al., 2011, Bian et al., 2017a]. Bian et al. [2017a] show the vanilla version
is a K-Strong DR-SM function maximization for some particular cone.

• Note that by adding a K-`2-norm regularizer �kAxk2, the function will become Weak
DR-SM, where A is a matrix with generators of K as its column. Here is the logistic loss:

l(x, {yt}) =
1

T

TX

t=1

ft(x, yt) =
1

T

TX

t=1

log
�
1 + exp

�
�ytx

T zt
��

where yt is the label of the tth data-point, x are the model parameters, and {zt} are feature
vectors of the data-points.

Remark 1. In many machine learning applications, and in particular MAP inference of DPPs and
log-submodular distributions, unless we impose some technical assumptions, the underlying Strong
DR-SM (or Weak DR-SM) function is not necessarily positive (or may not even satisfy the weaker yet
sufficient condition F(~0) + F(~1) � 0). In those cases, adding a positive constant to the function can
fix the issue, but the multiplicative approximation guarantee becomes weaker. However, this trick
tends to work in practice since these algorithms tend to be near optimal.
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