
Appendices
A Message Passing Updates for Reinforcement Learning

In this section, we derive message passing updates that can be used to obtain an optimal policy in the
graphical model for control (visualized below).

s1 s2 s3

a1 a2 a3

e1 e2 e3

. . .

. . .

. . .

sT

aT

eT

We define two backward messages, a state-action message β(st, at) = p(et:T = 1|st, at) and a state
message β(st) = p(et:T = 1|st). The state message can be expanded in terms of the state-action
message as:

β(st) = p(et:T = 1|st) =

∫
A
β(st, at)p(at|st)dat

We can then write a recursive form for the state-action message in terms of the state message:

β(st, at) = p(et:T = 1|st, at) = p(et = 1|st, at)p(et+1:T = 1|st, at)

= p(et = 1|st, at)
∫
S,A

β(st+1, at+1)p(at+1|st+1)p(st+1|st, at)dst+1dat+1

= p(et = 1|st, at)Est+1
[β(st+1)]

Next, we define log p(et = 1|st, at) = r(st, at) as the reward factor and set the reference policy
p(at|st) = C to the uniform distribution as before. Non-uniform reference policies correspond to
policy optimization with a modified reward function rnew(s, a) = rold(s, a) + logC − log p(at|st)
and with a uniform reference policy. We can now assign familiar names to these messages, by
defining Q(s, a) = log β(s, a) and V (s) = log β(s) − logC. Our message passing updates now
resemble soft variants of Bellman backup equations:

V (st) = log

∫
A

exp{Q(st, at)}dat

Q(st, at) = [r(st, at) + logC] + logEst+1
[exp{V (st+1)}]

The constant logC term can be absorbed into the reward function to exactly match the equations
we presented in Section 3.1, but we leave the term explicit for clarity of explanation. For the fixed
horizon task we presented, adding a constant offset to the reward cannot change the optimal policy. As
previously mentioned in Section B, under deterministic dynamics, Q(st, at) = r(st, at) + V (st+1),
which aligns with MaxCausalEnt (Ziebart, 2010) and soft Q-learning (Haarnoja et al., 2017; Nachum
et al., 2017).

From these value functions, we can easily obtain the optimal policy p(at|st, e1:T = 1). First note
that due to conditional independence, p(at|st, e1:T = 1) = p(at|st, et:T = 1). Applying Bayes’ rule,
we now have:

p(at|st, et:T = 1) =
p(et:T = 1|st, at)p(at|st)

p(et:T = 1|st)
=
β(st, at)C

β(st)
= exp{Q(st, at)− V (st)}

11

B Control as Variational Inference

Performing inference directly in the graphical model for control produces solutions that are optimistic
with respect to stochastic dynamics, and produces risk-seeking behavior. This is because posterior
inference is not constrained to force p(st+1|st, at, e1:T) = p(st+1|st, at): that is, it assumes that,
like the action distribution, the next state distribution will “conspire” to make positive outcomes more
likely. Prior work has sought to address this issue via the framework of causal entropy Ziebart (2010).
To provide a more unified treatment of control as inference, we instead present a variational inference
derivation that also addresses this problem. When conditioning the graphical model in Figure 3 on
e1:T = 1 as before, the optimal trajectory distribution is

p(τ |e1:T) ∝ p(s1)

T−1∏
t=1

p(st+1|st, at)p(at|st)er(s,a).

We will assume that the action prior p(at|st) is uniform without loss of generality, since non-uniform
distributions can be absorbed into the reward term er(s,a), as discussed in Appendix A.

The correct maximum entropy reinforcement learning objective emerges when perform-
ing variational inference in this model, with a variational distribution of the form
qθ(τ) = p(s1)

∏T−1
t=1 p(st+1|st, at)qθ(at|st). In this distribution, the initial state distribution and

dynamics are forced to be equal to the true dynamics, and only the action conditional qθ(at|st), which
corresponds to the policy, is allowed to vary. Writing out the variational objective and simplifying,
we get

−DKL(qθ(τ)||p(τ |e1:T)) = Eτ∼q(τ)

[
T∑
t=1

r(st, at)− log qθ(a|s)

]
.

We see that we obtain the same problem as (undiscounted) entropy-regularized reinforcement learning,
where qθ(a|s) serves as the policy. For more in-depth discussion, see Appendix D.1. We can recover
the discounted objective by modifying the dynamics such that the agent has a (1− γ) probability of
transitioning into an absorbing state with 0 reward.

We have thus derived how maximum entropy reinforcement learning can be recovered by applying
variational inference with a specific choice of variational distribution to the graphical model for
control.

C Derivations for Event-based Message Passing Updates

C.1 ALL query

The goal of the ALL query is to trigger an event at every timestep. Mathematically, we want
trajectories such that e1:T = 1. As the ALL query is mathematically identical to MaxEnt RL, we
redirect the reader to Appendix A for the derivation.

C.2 ANY query

The goal of the ANY query is to trigger an event at least once. Mathematically, we want trajectories
such that e1 = 1 or e2 = 1 ... eT = 1.

First, we introduce a more concise notation by introducing a stopping time t∗ = argmint≥0{et = 1}
which denotes the first time that an event happens. Asking for the stopping time to be within a certain
interval is the same as asking the event to happen at least once within that interval:

p(t∗ ∈ [t, T]) = p(et = 1 or et+1 = 1 ... eT = 1)

We can now derive the message passing updates. We derive the state messages as:

β(st) = p(t∗ ∈ [t, T]|st) =

∫
A
p(t∗ ∈ [t, T]|st, at)p(at|st)dat

12

The state-action message can be derived as:
β(st, at) = p(t∗ ∈ [t, T]|st, at)

= p(et = 1|st, at) + p(t∗ ∈ [t+ 1, T]|st, at)− p(et = 1|st, at)p(t∗ ∈ [t+ 1, T]|st, at)
= p(et = 1|st, at) + p(et = 0|st, at)p(t∗ ∈ [t+ 1, T]|st, at)

= p(et = 1|st, at) + p(et = 0|st, at)
∫
S,A

p(t∗ ∈ [t+ 1, T], st+1, at+1|st, at)dst+1dat+1

= p(et = 1|st, at) + p(et = 0|st, at)Est+1

[∫
A
p(t∗ ∈ [t+ 1, T]|st+1, at+1)p(at+1|st+1)dat+1

]
= p(et = 1|st, at) + p(et = 0|st, at)Est+1

[β(st+1)]

We can now define our Q and value functions as log-messages as done in Appendix A to obtain the
following backup rules:

V (st) = log

∫
A

exp{Q(st, at)}dat

Q(st, at) = log
(
p(et = 1|st, at) + p(et = 0|st, at)Est+1

[exp{V (st)}]
)

One caveat here is that the policy, p(at|st, t∗ ∈ [t, T]), always seeks to make the event happening
in the future, which we refer to as the seeking policy. The correct non-seeking policy would be
indifferent to actions after the event has happened. However, in terms of achieving the objective, both
policies will behave exactly the same until the event is triggered, after which the behavior of the
policy will no longer matter. For example, if we operate in the first exit scenario, and consider the
episode terminated after the goal event is achieved, then we never encounter the scenario when the
event occurs in the past.

If we would like to compute the non-seeking policy, we can compute a forward pass which keeps
track of the probability that the event has happened:

p(t∗ ∈ [1, t]|s1:t, a1:t) = p(et = 1|st, at) + p(et = 0|st, at)p(t∗ ∈ [1, t− 1]|s1:t−1, a1:t−1)

We can then use this forward message in conjunction with our backward messages to obtain a
non-seeking policy as:

p(at|s1:t, a1:t−1, t
∗ ∈ [1, T]) =

p(at|s1:t, a1:t, t
∗ ∈ [1, T])p(at|st)

p(at|s1:t, a1:t−1, t∗ ∈ [1, T])

Where
p(t∗ ∈ [1, T]|s1:t, a1:t) = p(t∗ ∈ [1, t− 1]|s1:t−1, a1:t−1) + p(t∗ /∈ [1, t− 1]|s1:t−1, a1:t−1)p(t ∈ [t, T]|st, at)

p(t∗ ∈ [1, T]|s1:t, a1:t−1) =

∫
A
p(t∗ ∈ [1, T]|s1:t, a1:t)p(at|st)dat

Note that while the policy is conditioned on all past states and actions, it only depends on them
through the forward message, or the cumulative probability that the event has happened.

D Derivations for Variational Objectives

D.1 ALL query

We briefly reviewed the variational derivation for standard RL in Section B. In this section, we
present a more thorough derivation under the events framework and additionally discuss extensions
to discounted formulations.

First, we write down the joint trajectory-event distribution, which is simply the product of all factors
in the graphical model:

p(τ, e1:T = 1) = p(s1)

T−1∏
t=1

p(st+1|st, at)p(at|st)p(et = 1|st, at)

13

We can obtain the optimal trajectory distribution by conditioning and setting the reference policy
p(at|st) as the uniform distribution:

p(τ |e1:T = 1) ∝ p(s1)

T−1∏
t=1

p(st+1|st, at)p(et = 1|st, at)

We now perform variational inference with a distribution of the following form, where the dynamics
have been forced to equal the true dynamics of the MDP:

qθ(τ) = p(s1)

T−1∏
t=1

p(st+1|st, at)qθ(at|st)

Here, qθ(at|st) is the only term that is allowed to vary, and represents the learned policy. When
we minimize the KL divergence between q and p, the dynamics terms cancel and we recover the
following entropy-regularized policy objective:

−DKL(qθ(τ)||p(τ |e1:T = 1)) = −Eqθ [
T∑
t=0

log qθ(at|st)−
T∑
t=0

log p(et = 1|st, at)] + C

= Eqθ [

T∑
t=0

log p(et = 1|st, at) +H(π(·|st))] + C

The constant C is due to proportionality in the optimal trajectory distribution, and can be ignored in
the optimization process.

If we define the empirical returns Q̂ as Q̂(st, at) =
∑T
t′=t log p(et′ = 1|st′ , at′), we can write the

returns recursively as:

Q̂(st, at) = log p(et = 1|st, at) + Q̂(st+1, at+1)

In this discounted case, we consider the case when the dynamics has a (1− γ) chance of transitioning
into an absorbing state with reward or log p(et = 1|st, at) = 0. This means we now adjust the
recursion as:

Q̂(st, at) = log p(et = 1|st, at) + γQ̂(st+1, at+1)

D.2 ANY query

As with our derivation in the RL case, we begin by writing down our trajectory distribution. Our
target trajectory distribution is p(τ |t∗ ∈ [1, T]), or trajectories where the event happens at least once.

First, we can use Bayes’ rule to obtain:

log p(τ |t∗ ∈ [1, T]) = log p(t∗ ∈ [1, T]|τ) + log p(τ)− log p(t∗ ∈ [1, T])

The last term is a proportionality constant with respect to the trajectories. The second term is the
trajectory distribution induced by the reference policy. The first term can be simplified further.

Note that the probability that the event first happens at t∗ is p(t∗ = t|τ) = p(et =

1|st, at)
∏t−1
t′=1 p(et′ = 0|st′ , at′) (i.e. the event happens at t∗ but not before). Now we can write:

p(t∗ ∈ [1, T]|τ) =

T∑
t=1

p(t∗ = t|τ) =

T∑
t=1

p(et = 1|st, at)
t−1∏
t′=1

p(et′ = 0|st′ , at′)

To write down a recursion, we now define the quantity β̂(st:T , at:T) = p(t∗ ∈ [t, T]|st:T , at:T). We
can now express the above term recursively as:

T∑
t=1

p(et = 1|st, at)
t−1∏
t′=1

p(et′ = 0|st′ , at′) = p(e1 = 1|s1, a1) + p(e1 = 0|s1, a1)β̂(s2:T , a2:T)

= β̂(s1:T , a1:T)

14

Thus, if we define our empirical Q-function Q̂(st, at) = log β̂(s1:T , a1:T), our recursion now
becomes:

Q̂(st, at) = log(p(et = 1|st, at) + p(et = 0|st, at)eQ̂(st+1,at+1))

Using the same variational distribution qθ(τ) = p(s1)
∏T
t=1 p(st+1|st, at)qθ(at|st) as before, we

can write our optimization objective as:

−DKL(qθ(τ)||p(τ |t∗ ∈ [1, T])) = Eq[Q̂(s1:T , a1:T)−
T∑
t=1

log qθ(at|st)] + C

Where the constant C absorbs terms from the reference policy p(at|st) which we set to uniform, and
the proportionality constant log p(t∗ ∈ [1, T]).

To achieve a discounted objective case, we consider the case when the dynamics has a (1− γ) chance
of transitioning into an absorbing state where the event can never happen p(et = 1|st, at) = 0. Note
that this is different from the all query. This means we now adjust the recursion as:

Q̂(st, at) = γ log
(
p(et = 1|st, at) + p(et = 0|st, at)eQ̂(st+1,at+1)

)
+ (1− γ) log p(et = 1|st, at)

E Policy Gradients for Events

Because the ALL query is mathematically identical to standard RL, we do not derive the policy
gradient estimator here.

For the ANY query, we consider the objective

J(π) = Eπ[Q̂(s1:T , a1:T)−
T∑
t=1

log π(at|st)]

. For simplicity we disregard the entropy term as that portion remains unchanged from standard RL.

Applying logarithmic differentiation, and simplifying, we can obtain the gradient estimator.

Eπ[

T∑
t=1

∇ log π(at|st)(Q̂(s1:T , a1:T)− log π(at|st))]

The next step is that we wish to only consider future returns, i.e. we wish to replace Q̂(s1:T , a1:T) with
Q̂(st:T , at:T). First, note that before the event happens before t, then Q̂(s1:T , a1:T) and Q̂(st:T , at:T)
are identical, but if t is after then event then the returns estimator should be 0. Thus, we need to keep
track of the cumulative probability that an event occurs and rewrite the estimator as:

Eπ[

T∑
t=1

∇ log π(at|st)p(t ≤ t∗|s1:t, a1:t)(Q̂(st:T , at:T)− log π(at|st))]

F Variational Inverse Control with Events (VICE)

In this section, we explicitly write down the MLE objective for the inverse formulation of each query
type (AT, ALL, ANY).

We then show that we can train a sampler for the model by optimizing a trajectory-based objective
corresponding to the inference procedures outlined in Appendix D. The statement we show for each
query type is that the KL between trajectory distributions upper bounds the KL between our sampler
and the model we wish to draw samples from.

F.1 AT query VICE

In the AT query, we assume we observe states and actions where the event occurred at a specific
timestep, denoted as t. We assume our data comes from the distribution pdata(st, at|et = 1)

15

The maximum likelihood objective is:

LAT (θ) = −Epdata [log pθ(st, at|et = 1)]

We now derive the objective for training our sampler q(st, at) so that it matches pθ(st, at). By
the chain rule for KL divergence, we have the upper-bound DKL(q(st, at)||pθ(st, at|et = 1)) ≤
DKL(q(τ)||pθ(τ |et = 1)). After obtaining q(τ), we can sample states and actions by executing full
trajectories and picking the states and actions that correspond to timestep t.

F.2 ALL query VICE

In the ALL query, we assume our data comes from the average distribution of states and actions along
trajectories where the event happens at all timesteps (averaged over timesteps) pdata(s, a|e1:T =

1) = 1
T

∑T
t=1 pdata(st, at|e1:T = 1). This is similar to matching the occupancy measure of a policy,

which is equivalent to inverse reinforcement learning as shown by Ho & Ermon (2016).

The maximum likelihood objective is:

LALL(θ) = −Epdata [log pθ(st, at|e1:T = 1)]

We can upper-bound the KL-divergence of interest between the sampler and the model with a
KL-divergence on trajectories as:

D(
1

T

∑
t

q(st, at)||
1

T

∑
t

pθ(st, at|e1:T = 1))

≤ 1

T

∑
t

D(q(st, at)||pθ(st, at|e1:T = 1))

≤ 1

T

∑
t

D(q(τ)||pθ(τ |e1:T = 1))

= D(q(τ)||pθ(τ |e1:T = 1))

The first inequality comes from the log-sum inequality, and the second inequality comes from the
chain rule for KL divergence.

F.3 ANY query VICE

In the ANY query formulation, we assume our data comes from the distribution of states and actions
at the first timestep an event happens, pdata(st∗ , at∗ |t∗ ∈ [1, T]).

LANY (θ) = −Epdata [log pθ(pdata(st, at|t∗ = t))]

To show that optimizing the trajectory distribution bounds, we first rewrite p(st∗ , at∗ |t∗ ∈ [1, T])

over timesteps as p(st∗ , at∗ |t∗ ∈ [1, T]) =
∑T
t=1 p(st, at|t∗ = t)p(t∗ = t).

Lemma F.1. Let X = (x1, x2, ...), Y = (y1, y2, ...). Let µ̄ denote a set of weights which sum to one,
and denote p̄(X) = Eµ̄[pi(xi)], and p̄(X,Y) = Eµ̄[pi(xi, yi)] denote convex combinations of the
individual distributions pi. Then,

D(p̄(X,Y)||q̄(X,Y)) ≥ D(p̄(X)||q̄(X))

Proof. This statement directly follows from the chain rule for KL divergences, which implies:

D(p̄(X,Y)||q̄(X,Y)) = D(p̄(X)||q̄(X)) +D(p̄(X|Y)||q̄(X|Y)) ≥ D(p̄(X)||q̄(X))

16

Now, we can apply Lemma F.1 to derive the upper-bound:

D(
∑
t

q(st, at)p(t
∗ = t)||

∑
t

pθ(st, at|t∗ = t)p(t∗ = t))

≤ D(
∑
t

q(τ)p(t∗ = t)||
∑
t

pθ(τ |t∗ = t)p(t∗ = t))

= D(q(τ)||pθ(τ |t∗ ∈ [1, T]))

We can obtain samples from q(st∗ , at∗) by executing full trajectories and using the first state when
an event is triggered.

F.4 Justification for using the discriminator

In the previous section, we have justified the algorithm which updates the model via the gradient
Eqn. 1, by training a sampling policy that minimizes KL to the model distribution.

In Section 5.1, we propose to implement the update via training a discriminator instead of an energy-
based model pθ(s, a|e = 1). An approximate connection can be made in this case, which ignores
changes in the state-distribution of the sampling policy. To see this, we represent the state-action
marginal of the policy as q(s, a) = q(a|s)p̄(s), where ¯p(s) is the state-marginal of the reference
policy (set to uniform, see Appendix A). Note that this is not the state distribution induced by the
policy, q(s).

We can use Bayes rule to write our model as pθ(s, a|e = 1) ∝ pθ(e = 1|s, a)p̄(a|s)p̄(s), meaning
our model is only parameterized by the event probability.

Following previous work Finn et al. (2016b), we model the discriminator as Dθ(s, a) =
pθ(s,a|e=1)

pθ(s,a|e=1)+q(s,a) = pθ(e=1|s,a)+Cθ
pθ(e=1|s,a)+Cθ+q(a|s) , where Cθ is a learnable constant that corresponds to

proportionality factors.

The inconsistency with using q(s, a) = q(a|s)p̄(s) instead of q(s, a) = q(a|s)q(s) arises in the
policy optimization objective, which is minimizing the KL between the latter quantity an the model.
This means that we do not draw unbiased negative examples for training the discriminator, which is
also noted in (Fu et al., 2018).

G Experiments

G.1 Experimental details for prespecified events

On the Lobber task, we use a diagonal gaussian policy where the mean is parametrized by a 32x32
neural network. We use a TRPO batch size of 40000 and train for 1000 iterations.

On the HalfCheetah task, we use a diagonal gaussian policy where the mean is parametrized by a
32x32 neural network. We use a TRPO batch size of 10000 and train for 1000 iterations.

G.2 Experimental details for learning event probabilities

We evaluate the performance of VICE in learning event probabilities on the Ant,Maze, and Pusher
tasks, providing comparisons to classifier-based methods. Although the binary indicator baseline is
not comparable to VICE (since it observes the event while the other methods do not), we present
comparisons to provide a general idea of the difficulty of the task. All experiments are run with five
random seeds, and mean results are presented.

We use Gaussian policies, where the mean is parametrized by a neural network, and the covariance a
learned diagonal matrix. The event distribution is represented by a neural network as well. Further
hyperparameters are presented in Table 3.

On the Ant task, both the policy mean network and event distribution network have two hidden layers
with 200 units and ReLu activations.

On the Maze task, the mean network has two convolutional layers, with filter size 5× 5, followed
by two fully connected layers with 32 units each with ReLu activations. The event distribution is

17

represented using a convolutional neural network with two convolutional layers with 5× 5 filters,
and a final fully-connected layer with 16 units.

On the Pusher task, the policy is represented by a convolutional neural network with three convolu-
tional layers, with a stride of 2 in the first layer, and a stride of 1 in the subsequent layers. We use
a filter size of 3x3 in all the layers, and the number of filters are 64, 32 and 16. In line with prior
work (Finn et al., 2016a), we pre-train the convolutional layers using an auto-encoder loss on data
collected from random policies. The fully connected part of the neural network consists of two layers,
each having 200 units and ReLu activations to represent the policy. The event distribution is also
represented by the same architecture.

Ant Maze Pusher
Batch Size 10000 5000 10000
Iterations 1000 150 1000
Discount 0.99 0.99 0.99
Entropy 0.1 0.1 0.01

Demonstrations 500 1000 10000
Table 3: Hyperparameters used for VICE on the Ant,Maze, and Pusher tasks

18

0 200 400 600 800
Iterations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

Binary-Indicator
CLS-ALL
CLS-ANY
VICE-ALL
VICE-ANY

(a) Ant

0 20 40 60 80 100 120 140
Iterations

0.1

0.2

0.3

0.4

0.5

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

Binary-Indicator
CLS-ALL
CLS-ANY
VICE-ALL
VICE-ANY

(b) Maze

0 200 400 600 800
Iterations

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

Binary Indicator
CLS-ALL
CLS-ANY
VICE-ALL
VICE-ANY

(c) Pusher

Figure 7: Learning curves for the various methods for the Ant,Maze, and Pusher tasks, averaged
across five random seeds. On all three domains, VICE-ALL and VICE-ANY successfully solve the
task consistently, while the naive classifier fails often. Although the binary indicator works reasonably
on the Maze task, it fails to solve the task in the more challenging environments.

19

G.3 Detailed learning curves for learning event probabilities

0 200 400 600 800
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(a) Ant - VICE-ALL

0 20 40 60 80 100 120 140
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(b) Maze - VICE-ALL

0 200 400 600 800
Iterations

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(c) Pusher - VICE-ALL

0 200 400 600 800
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(d) Ant - VICE-ANY

0 20 40 60 80 100 120 140
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(e) Maze - VICE-ANY

0 200 400 600 800
Iterations

0.05

0.10

0.15

0.20

0.25

0.30

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(f) Pusher - VICE-ANY

0 200 400 600 800
Iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(g) Ant - CLS-ALL

0 20 40 60 80 100 120 140
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(h) Maze - CLS-ALL

0 200 400 600 800
Iterations

0.22

0.23

0.24

0.25

0.26

0.27

0.28

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(i) Pusher - CLS-ALL

0 200 400 600 800
Iterations

1

2

3

4

5

6

7

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(j) Ant - CLS-ANY

0 20 40 60 80 100 120 140
Iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(k) Maze - CLS-ANY

0 200 400 600 800
Iterations

0.23

0.24

0.25

0.26

0.27

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(l) Pusher - CLS-ANY

0 200 400 600 800
Iterations

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(m) Ant - Binary Indicator

0 20 40 60 80 100 120 140
Iterations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(n) Maze - Binary Indicator

0 200 400 600 800
Iterations

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

Fi
na

l D
ist

an
ce

 fr
om

 G
oa

l

(o) Pusher - Binary Indicator

Figure 8: Learning curves for all methods on each of the five random seeds for the Ant,Maze, and
Pusher tasks. The mean across the five runs is depicted in bold.

20

