
Cooperative Learning of Audio and Video Models
from Self-Supervised Synchronization

Bruno Korbar
Dartmouth College

bruno.18@dartmouth.edu

Du Tran
Facebook Research
trandu@fb.com

Lorenzo Torresani
Dartmouth College
LT@dartmouth.edu

Abstract

There is a natural correlation between the visual and auditive elements of a video.
In this work we leverage this connection to learn general and effective models
for both audio and video analysis from self-supervised temporal synchronization.
We demonstrate that a calibrated curriculum learning scheme, a careful choice of
negative examples, and the use of a contrastive loss are critical ingredients to obtain
powerful multi-sensory representations from models optimized to discern temporal
synchronization of audio-video pairs. Without further finetuning, the resulting
audio features achieve performance superior or comparable to the state-of-the-art
on established audio classification benchmarks (DCASE2014 and ESC-50). At the
same time, our visual subnet provides a very effective initialization to improve the
accuracy of video-based action recognition models: compared to learning from
scratch, our self-supervised pretraining yields a remarkable gain of +19.9% in
action recognition accuracy on UCF101 and a boost of +17.7% on HMDB51.

1 Introduction

Image recognition has undergone dramatic progress since the breakthrough of AlexNet [1] and the
widespread availability of progressively large datasets such as Imagenet [2]. Models pretrained on
Imagenet [2] have enabled the development of feature extractors achieving strong performance on a
variety of related still-image analysis tasks, including object detection [3, 4], pose estimation [5, 6]
and semantic segmentation [7, 8]. Deep learning approaches in video understanding have been less
successful, as evidenced by the fact that deep spatiotemporal models trained on videos [9, 10] still
barely outperform the best hand-crafted features [11].

Researchers have devoted significant and laudable efforts in creating video benchmarks of much
larger size compared to the past [9, 12, 13, 14, 15, 16], both in terms of number of examples as well
as number of action classes. The growth in scale has enabled more effective end-to-end training
of deep models and the finer-grained definition of classes has made possible the learning of more
discriminative features. This has inspired a new generation of deep video models [17, 18, 19] greatly
advancing the field. But such progress has come at a high cost in terms of time-consuming manual
annotations. In addition, one may argue that future significant improvements by mere dataset growth
will require scaling up existing benchmarks by one or more orders of magnitude, which may not be
possible in the short term.

In this paper, we explore a different avenue by introducing a self-supervision scheme that does not
require any manual labeling of videos and thus can be applied to create arbitrarily-large training sets
for video modeling. Our idea is to leverage the natural synergy between the audio and the visual
channels of a video by introducing a self-supervised task that entails deciding whether a given audio
sample and a visual sequence are either “in-sync” or “out-of-sync.” This is formally defined as a
binary classification problem which we name “Audio-Visual Temporal Synchronization” (AVTS). We
propose to address this task via a two-stream network, where one stream receives audio as input and

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

the other stream operates on video. The two streams are fused in the late layers of the network. This
design induces a form of cooperative learning where the two streams must learn to “work together”
in order to improve performance on the synchronization task.

We are not the first to propose to leverage correlation between video and audio as a self-supervised
mechanism for feature learning [20, 21, 22]. However, unlike prior approaches that were trained
to learn semantic correspondence between the audio and a single frame of the video [21] or that
used 2D CNNs to model the visual stream [22], we propose to feed video clips to a 3D CNN [19] in
order to learn spatiotemporal features that can model the correlation of sound and motion in addition
to appearance within the video. We note that AVTS differs conceptually from the “Audio-Visual
Correspondence” (AVC) proposed by Arandjelovic and Zisserman [21, 22]. In AVC, negative training
pairs were formed by drawing the audio and the visual samples from distinct videos. This makes it
possible to solve AVC purely based on semantic information (e.g., if the image contains a piano but
the audio includes sound from a waterfall, the pair is obviously a negative sample). Conversely, in
our work we train on negative samples that are “hard,” i.e., represent out-of-sync audio and visual
segments sampled from the same video. This forces the net to learn relevant temporal-sensitive
features for both the audio and the video stream in order to recognize synchronization as opposed to
only semantic correspondence.

Temporal synchronization is a harder problem to solve than semantic correspondence, since it requires
to determine whether the audio and the visual samples are not only semantically coherent but also
temporally aligned. To ease the learning, we demonstrate that it is beneficial to adopt a curriculum
learning strategy [23], where harder negatives are introduced after an initial stage of learning on
easier negatives. We demonstrate that using curriculum learning further improves the quality of our
features for all the downstream tasks considered in our experiments.

The audio and the visual components of a video are processed by two distinct streams in our network.
After learning, it is then possible to use the two individual streams as feature extractors or models
for each of the two modalities. In our experiments we study several such applications, including
pretraining for action recognition in video, feature extraction for audio classification, as well as
multisensory (visual and audio) video categorization. Specifically, we demonstrate that, without
further finetuning, the features computed from the last convolutional layer of the audio stream
yield performance on par with or better than the state-of-the-art on established audio classification
benchmarks (DCASE2014 and ESC-50). In addition, we show that our visual subnet provides a very
effective initialization to improve the performance of action recognition networks on medium-size
video classification datasets, such as HMDB51 [24] and UCF101 [25]. Furthermore, additional
boosts in video classification performance can be obtained by finetuning multisensory (audio-visual)
models from our pretrained two-stream network.

2 Technical Approach

In this section we provide an overview of our approach for Audio-Visual Temporal Synchronization
(AVTS). We begin with a formal definition of the problem statement. We then introduce the key-
features of our model by discussing their individual quantitative contribution towards both AVTS
performance and accuracy on our downstream tasks (action recognition and audio classification).

2.1 Audio-Visual Temporal Synchronization (AVTS)

We assume we are given a training datasetD = {(a(1), v(1), y(1)), . . . , (a(N), v(N), y(N))} consisting
of N labeled audio-video pairs. Here a(n) and v(n) denote the audio sample and the visual clip
(a sequence of RGB frames) in the n-th example, respectively. The label y(n) ∈ {0, 1} indicates
whether the audio and the visual inputs are “in sync,” i.e., if they were sampled from the same
temporal slice of a video. If y(n) = 0, then a(n) and v(n) were taken either from different temporal
segments of the same video, or possibly from two different videos, as further discussed below. The
audio input a(n) and the visual clip v(n) are sampled to span the same temporal duration.

At a very high level, the objective of AVTS is to learn a classification function g(.) that minimizes the
empirical error, i.e., such that g(a(n), v(n)) = y(n) on as many examples as possible. However, as our
primary goal is to use AVTS as a self-supervised proxy for audio-visual feature learning, we define
g(.) in terms of a two-stream network where the audio and the video input are separately processed by

2

an audio subnetwork fa(.) and a visual subnetwork fv(.), providing a feature representation for each
modality. The function g(fa(a(n)), fv(v(n))) is then responsible to fuse the feature information from
both modalities to address the synchronization task. An illustration of our two-stream network design
is provided in Fig. 2. The technical details about the two streams are provided in subsection 2.5.

2.2 Choice of Loss Function

A natural choice is to adopt the cross-entropy loss as learning objective, since this would directly
model AVTS as a binary classification problem. However, we found it difficult to achieve convergence
under this loss when learning from scratch. Inspired by similar findings in Chung et al [26], we
discovered experimentally that more consistent and robust optimization can be obtained by minimizing
the contrastive loss, which was originally introduced for training Siamese networks [27] on same-
modality input pairs. In our setting, we optimize the audio and video streams to produce small
distance on positive pairs and larger distance on negative pairs, as in [26]:

E =
1

N

N∑
n=1

(y(n))||fv(v(n))− fa(a(n))||22 +(1− y(n))max(η− ||fv(v(n))− fa(a(n))||2, 0)2 (1)

where η is a margin hyper-parameter. Upon convergence, AVTS prediction on new test examples (a, v)
can be addressed by simply thresholding the distance function, i.e., by defining g(fa(a), fv(v)) ≡
1{||fv(v(n)) − fa(a(n))||2 < τ} where 1{.} denotes the logical indicator function and τ is a set
threshold. We also tried adding one or more fully connected (FC) layers on top of the learned feature
extractors and fine-tuning the entire network end-to-end with respect to a cross-entropy loss. We
found both these approaches to perform similarly on the AVTS task, with a slight edge in favor of the
fine-tuning solution (see details in subsection 3.2). However, on downstream tasks (action recognition
and audio classification), we found AVTS fine-tuning using the cross-entropy loss to yield no further
improvement after the contrastive loss optimization.

2.3 Selection of Negative Examples

We use an equal proportion of positive and negative examples for training. We generate a positive
example by extracting the audio and the visual input from a randomly chosen video clip, so that the
video frames correspond in time with the audio segment. We consider two main types of negative
examples. Easy negatives are those where the video frames and the sound come from two different
videos. Hard negatives are those where the pair is taken from the same video, but there is at least half
a second time-gap between the audio sample and the visual clip. The purpose of hard negatives is to
train the network to recognize temporal synchronization as opposed to mere semantic correspondence
between the audio and the visual input. An illustration of a positive example, and the two types of
hard negatives is provided in Fig. 1. We have also tried using super-hard negatives which we define
as examples where the audio and the visual sequence overlap for a certain (fixed) temporal extent.

Not surprisingly, we found that including either hard or super-hard negatives as additional training
examples was detrimental when the negative examples in the test set consisted of only “easy”
negatives (e.g., the AVTS accuracy of our system drops by about 10% when using a negative training
set consisting of 75% easy negatives and 25% hard negatives compared to using negative examples
that are all easy). Less intuitively, at first we found that introducing hard or super-hard negatives in the
training set degraded also the quality of audio and video features with respect to our downstream tasks
of audio classification and action recognition in video. As further discussed in the next subsection,
adopting a curriculum learning strategy was critical to successfully leverage the information contained
in hard negatives to achieve improved performance in terms of AVTS and downstream tasks.

2.4 Curriculum Learning

We trained our system from scratch with easy negatives alone, with hard negatives alone, as well as
with fixed proportions of easy and hard negatives. We found that when hard negatives are introduced
from the beginning — either fully or as a proportion — the objective is very difficult to optimize and
test results on the AVTS task are consequently poor. However, if we introduce the hard negatives
after the initial optimization with easy negatives only (in our case between 40th and 50th epoch),
fine-tuning using some harder negatives yields better results in terms of both AVTS accuracy as well

3

Figure 1: Illustration of a positive example, a “hard” negative and “super-hard” negative. “Easy”
negative are not shown here: they involve taking audio samples and visual clips from different videos.
Easy negatives can be recognized merely based on semantic information, since two distinct videos
are likely to contain different scenes and objects. Our approach uses hard negatives (audio and
visual samples taken from different slices of the same video) to force the network to recognized
synchronization, as opposed to mere semantic correspondence.

as performance on our downstream tasks (audio classification and action recognition). Empirically,
we obtained the best results when fine-tuning with a negative set consisting of 25% hard negatives
and 75% easy negatives. For a preview of results see Table 1, which outlines the difference in
AVTS accuracy when training using curriculum learning as opposed to single-stage learning. Even
more remarkable are the performance improvements enabled by curriculum feature learning on the
downstream tasks of audio classification and action recognition (see Table 4).

2.5 Architecture Design

Figure 2: Our architecture design. The complete model for AVTS training can be viewed in (a). The
video subnetwork (shown in (b)) is a MCx network [19] using 3D convolutions in the early layers,
and 2D convolutions in the subsequent layers. The audio subnetwork (shown in (c)) is the VGG
model used by Chung and Zisserman [26].

As illustrated in Fig. 2(a), our network architecture is composed of two main parts: the audio
subnetwork and the video subnetwork, each taking its respective input. Our video subnetwork
(shown in Fig. 2(b)) is based on the mixed-convolution (MCx) family of architectures [19]. A MCx

4

