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1 Canonical Form of the verification problem

If the property is a simple inequality P (x̂n) , cT x̂n > b, it is sufficient to add to the network a final
fully connected layer with one output, with weight of c and a bias of −b. If the global minimum
of this network is positive, it indicates that for all x̂n the original network can output, we have
cT x̂n − b > 0 =⇒ cT x̂n > b, and as a consequence the property is True. On the other hand, if the
global minimum is negative, then the minimizer provides a counter-example.

Clauses specified using OR (denoted by
∨

) can be encoded by using a MaxPooling unit. If the
property is P (x̂n) ,

∨
i

[
cTi x̂n > bi

]
, this is equivalent to maxi

(
cTi x̂n − bi

)
> 0.

Clauses specified using AND (denoted by
∧

) can be encoded similarly: the property P (x̂n) =∧
i

[
cTi x̂n > bi

]
is equivalent to mini

(
cTi x̂n − bi

)
> 0 ⇐⇒ −

(
maxi

(
−cTi x̂n + bi

))
> 0

2 Toy Problem example

We have specified the problem of formal verification of neural networks as follows: given a network
that implements a function x̂n = f(x0), a bounded input domain C and a property P , we want to
prove that

x0 ∈ C, x̂n = f(x0) =⇒ P (x̂n). (1)

A toy-example of the Neural Network verification problem is given in Figure 1. On the domain
C = [−2; 2]× [−2; 2], we want to prove that the output y of the one hidden-layer network always
satisfy the property P (y) , [y > −5]. We will use this as a running example to explain the methods
used for comparison in our experiments.
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Figure 1: Example Neural Network. We attempt to prove the property that the network output is
always greater than -5

2.1 Problem formulation

For the network of Figure 1, the variables would be {x1, x2, ain, aout, bin, bout, y} and the set of
constraints would be:

− 2 ≤ x1 ≤ 2 −2 ≤ x2 ≤ 2 (2a)

â = x1 + x2 b̂ = −x1 − x2
y = −a− b (2b)

a = max(â, 0) b = max(b̂, 0) (2c)
y ≤ −5 (2d)

Here, â is the input value to hidden unit, while a is the value after the ReLU. Any point satisfying all
the above constraints would be a counterexample to the property, as it would imply that it is possible
to drive the output to -5 or less.

2.2 MIP formulation

In our example, the non-linearities of equation (2c) would be replaced by
a ≥ 0 a ≥ â

a ≤ â− la(1− δa) a ≤ uaδa
δa ∈ {0, 1}

(3)

where la is a lower bound of the value that â can take (such as -4) and ua is an upper bound (such as
4). The binary variable δa indicates which phase the ReLU is in: if δa = 0, the ReLU is blocked and
aout = 0, else the ReLU is passing and aout = ain. The problem remains difficult due to the integrality
constraint on δa.

2.3 Running Reluplex

Table 2 shows the initial steps of a run of the Reluplex algorithm on the example of Figure 1. Starting
from an initial assignment, it attempts to fix some violated constraints at each step. It prioritises
fixing linear constraints ((2a), (2b) and (2d) in our illustrative example) using a simplex algorithm,
even if it leads to violated ReLU constraints (2c). This can be seen in step 1 and 3 of the process.

If no solution to the problem containing only linear constraints exists, this shows that the counterex-
ample search is unsatisfiable. Otherwise, all linear constraints are fixed and Reluplex attempts to fix
one violated ReLU at a time, such as in step 2 of Table 2 (fixing the ReLU b), potentially leading
to newly violated linear constraints. In the case where no violated ReLU exists, this means that a
satisfiable assignment has been found and that the search can be interrupted.

This process is not guaranteed to converge, so to guarantee progress, non-linearities getting fixed too
often are split into two cases. This generates two new sub-problems, each involving an additional
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Step x1 x2 â a b̂ b y

1
0 0 0 0 0 0 0

Fix linear constraints
0 0 0 1 0 4 -5

2
0 0 0 1 0 4 -5

Fix a ReLU
0 0 0 1 4 4 -5

3
0 0 0 1 4 4 -5

Fix linear constraints
-2 -2 -4 1 4 4 -5

. . .

Figure 2: Evolution of the Reluplex algorithm. Red cells corresponds to value violating Linear
constraints, and orange cells corresponds to value violating ReLU constraints. Resolution of violation
of linear constraints are prioritised.

linear constraint instead of the linear one. The first one solves the problem where â ≤ 0 and a = 0,
the second one where â ≥ 0 and a = â. In the worst setting, the problem will be split completely
over all possible combinations of activation patterns, at which point the sub-problems are simple LPs.

3 Planet approximation

The feasible set of the Mixed Integer Programming formulation is given by the following set of
equations. We assume that all li are negative and ui are positive. In case this isn’t true, it is possible
to just update the bounds such that they are.

l0 ≤ x0 ≤ u0 (4a)
x̂i+1 =Wi+ixi + bi+i ∀i ∈ {0, n− 1} (4b)
xi ≥ 0 ∀i ∈ {1, n− 1} (4c)
xi ≥ x̂i ∀i ∈ {1, n− 1} (4d)
xi ≤ x̂i − li · (1− δi) ∀i ∈ {1, n− 1} (4e)
xi ≤ ui · δi ∀i ∈ {1, n− 1} (4f)

δi ∈ {0, 1}hi ∀i ∈ {1, n− 1} (4g)
x̂n ≤ 0 (4h)

The level 0 of the Sherali-Adams hierarchy of relaxation Sherali & Adams [6] doesn’t include any
additional constraints. Indeed, polynomials of degree 0 are simply constants and their multiplication
with existing constraints followed by linearization therefore doesn’t add any new constraints. As a
result, the feasible domain given by the level 0 of the relaxation corresponds simply to the removal of
the integrality constraints:

l0 ≤ x0 ≤ u0 (5a)
x̂i+1 =Wi+ixi + bi+i ∀i ∈ {0, n− 1} (5b)
xi ≥ 0 ∀i ∈ {1, n− 1} (5c)
xi ≥ x̂i ∀i ∈ {1, n− 1} (5d)
xi ≤ x̂i − li · (1− di) ∀i ∈ {1, n− 1} (5e)
xi ≤ ui · di ∀i ∈ {1, n− 1} (5f)
0 ≤ di ≤ 1 ∀i ∈ {1, n− 1} (5g)

x̂n ≤ 0 (5h)

Combining the equations (5e) and (5f), looking at a single unit j in layer i, we obtain:
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li[j] ui[j]
x̂i[j]

xi[j]

Figure 3: Feasible domain corresponding to the Planet relaxation for a single ReLU.

xi[j] ≤ min
(
x̂i[j] − li(1− di[j]), ui[j]di[j]

)
(6)

The function mapping di[j] to an upperbound of xi[j] is a minimum of linear functions, which means
that it is a concave function. As one of them is increasing and the other is decreasing, the maximum
will be reached when they are both equals.

x̂i[j] − li[j](1− d?i[j]) = ui[j]d
?
i[j]

⇔ d?i[j] =
x̂i[j] − li[j]
ui[j] − li[j]

(7)

Plugging this equation for d? into Equation(6) gives that:

xi[j] ≤ ui[j]
x̂i[j] − li[j]
ui[j] − li[j]

(8)

which corresponds to the upper bound of xi[j] introduced for Planet [2].

4 MaxPooling

For space reason, we only described the case of ReLU activation function in the main paper. We now
present how to handle MaxPooling activation, either by converting them to the already handled case
of ReLU activations or by introducing an explicit encoding of them when appropriate.

4.1 Mixed Integer Programming

Similarly to the encoding of ReLU constraints using binary variables and bounds on the inputs, it is
possible to similarly encode MaxPooling constraints. The constraint

y = max (x1, . . . , xk) (9)

can be replaced by

y ≥ xi ∀i ∈ {1 . . . k} (10a)
y ≤ xi + (ux1:k

− lxi
)(1− δi) ∀i ∈ {1 . . . k} (10b)∑

i∈{1...k}

δi = 1 (10c)

δi ∈ {0, 1} ∀i ∈ {1 . . . k} (10d)

where ux1:k
is an upper-bound on all xi for i ∈ {1 . . . k} and lxi

is a lower bound on xi.

4.2 Reluplex

In the version introduced by [4], there is no support for MaxPooling units. As the canonical
representation we evaluate needs them, we provide a way of encoding a MaxPooling unit as a
combination of Linear function and ReLUs.

To do so, we decompose the element-wise maximum into a series of pairwise maximum

max (xj , x2, x3, x4) = max( max (x1, x2) ,

max (x3, x4))
(11)
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and decompose the pairwise maximums as sum of ReLUs:
max (x1, x2) = max (x1 − x2, 0) + max (x2 − lx2

, 0) + lx2
, (12)

where lx2
is a pre-computed lower bound of the value that x2 can take.

As a result, we have seen that an elementwise maximum such as a MaxPooling unit can be decomposed
as a series of pairwise maximum, which can themselves be decomposed into a sum of ReLUs units.
The only requirement is to be able to compute a lower bound on the input to the ReLU, for which the
methods discussed in the paper can help.

4.3 Planet

As opposed to Reluplex, Planet Ehlers [2] directly supports MaxPooling units. The SMT solver
driving the search can split either on ReLUs, by considering separately the case of the ReLU being
passing or blocking. It also has the possibility on splitting on MaxPooling units, by treating separately
each possible choice of units being the largest one.

For the computation of lower bounds, the constraint
y = max (x1, x2, x3, x4) (13)

is replaced by the set of constraints:
y ≥ xi ∀i ∈ {1 . . . 4} (14a)

y ≤
∑
i

(xi − lxi
) + max

i
lxi
, (14b)

where xi are the inputs to the MaxPooling unit and lxi
their lower bounds.

5 Mixed Integers Variants

5.1 Encoding

Several variants of encoding are available to use Mixed Integer Programming as a solver for Neural
Network Verification. As a reminder, in the main paper we used the formulation of Tjeng & Tedrake
[7]:

xi = max (x̂i, 0) ⇒ δi ∈ {0, 1}hi , xi ≥ 0, xi ≤ ui · δi (15a)
xi ≥ x̂i, xi ≤ x̂i − li · (1− δi) (15b)

An alternative formulation is the one of Lomuscio & Maganti [5] and Cheng et al. [1]:

xi = max (x̂i, 0) ⇒ δi ∈ {0, 1}hi , xi ≥ 0, xi ≤Mi · δi (16a)
xi ≥ x̂i, xi ≤ x̂i −Mi · (1− δi) (16b)

where Mi = max (−li,ui). This is fundamentally the same encoding but with a sligthly worse
bounds that is used, as one of the side of the bounds isn’t as tight as it could be.

5.2 Obtaining bounds

The formulation described in Equations (15) and (16) are dependant on obtaining lower and upper
bounds for the value of the activation of the network.

Interval Analysis One way to obtain them, mentionned in the paper, is the use of interval arith-
metic [3]. If we have bounds li,ui for a vector xi, we can derive the bounds l̂i+1, ûi+1 for a vector
x̂i+1 =Wi+1xi + bi+1

l̂i+1[j] =
∑
k

(
W+

i+1[j,k]l
+
i[k] +W−i+1[j,k]u

+
i[k]

)
+ bi+1[j] (17a)

ûi+1[j] =
∑
k

(
W+

i+1[j,k]u
+
i[k] +W−i+1[j,k]l

+
i[k]

)
+ bi+1[j] (17b)
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with the notation a+ = max(a, 0) and a− = min(a, 0). Propagating the bounds through a ReLU
activation is simply equivalent to applying the ReLU to the bounds.

Planet Linear approximation An alternative way to obtain bounds is to use the relaxation of
Planet. This is the methods that was employed in the paper: we build incrementally the network
approximation, layer by layer. To obtain the bounds over an activation, we optimize its value subject
to the constraints of the relaxation.

Given that this is a convex problem, we will achieve the optimum. Given that it is a relaxation, the
optimum will be a valid bound for the activation (given that the feasible domain of the relaxation
includes the feasible domains subject to the original constraints).

Once this value is obtained, we can use it to build the relaxation for the following layers. We can
build the linear approximation for the whole network and extract the bounds for each activation to
use in the encoding of the MIP. While obtaining the bounds in this manner is more expensive than
simply doing interval analysis, the obtained bounds are better.

5.3 Objective function

In the paper, we have formalised the verification problem as a satisfiability problem, equating the
existence of a counterexample with the feasibility of the output of a (potentially modified) network
being negative.

In practice, it is beneficial to not simply formulate it as a feasibility problem but as an optimization
problem where the output of the network is explicitly minimized.

5.4 Comparison

We present here a comparison on CollisionDetection and ACAS of the different variants.

1. Planet-feasible uses the encoding of Equation (15), with bounds obtained based on the
planet relaxation, and solve the problem simply as a satisfiability problem.

2. Interval is the same as Planet-feasible, except that the bounds used are obtained by interval
analysis rather than with the Planet relaxation.

3. Planet-symfeasible is the same as Planet-feasible, except that the encoding is the one of
Equation (16).

4. Planet-opt is the same as Planet-feasible, except that the problem is solved as an optimiza-
tion problem. The MIP solver attempt to find the global minimum of the output of the
network. Using Gurobi’s callback, if a feasible solution is found with a negative value, the
optimization is interrupted and the current solution is returned. This corresponds to the
version that is reported in the main paper.

The comparison also include two variants of BlackBox: BlackBox and BlackBoxNoOpt. Similarly
to Planet-opt, BlackBox attempts to do global optimization and interrupt the search when a feasible
solution with negative value is found. BlackBoxNoOpt works like the other MIP encoding by simply
encoding the problem as satisfiability.

The first observation that can be made is that when we look at the CollisionDetection dataset
in Figure 4a, only Planet-opt and BlackBox solves the dataset to 100% accuracy. The reason
why the other methods don’t reach it is not because of timeout but because they return spurious
counterexamples. As they encode only satisfiability problem, they terminate as soon as they identify
a solution with a value of zero. Due to the large constants involved in the big-M, those solutions
are sometimes not actually valid counterexamples. This is a significant advantage to encoding the
problem as optimization problems versus simply as satisfiability problems.

The other results that we can observe is the impact of the quality of the bounds when the networks get
deeper, and the problem becomes therefore more complex, such as in the ACAS dataset. Interval has
the worst bounds and is much slower than the other methods. Planetsym-feasible, with its slightly
worse bounds, performs worse than Planet-feasible and Planet-opt.
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(a) CollisionDetection Dataset

100 101 102 103

Computation time (in s)
0

20

40

60

80

100

%
 o

f p
ro

pe
rti

es
 v

er
ifi

ed

interval
planetsym-feasible
planet-feasible
planet-opt

(b) ACAS Dataset

Figure 4: Comparison between the different variants of MIP formulation for Neural Network verification.

6 Experimental setup details

We provide in Table 1 the characteristics of all of the datasets used for the experimental comparison
in the main paper.

Data set Count Model Architecture

Collision
Detection 500

6 inputs
40 hidden unit layer, MaxPool

19 hidden unit layer
2 outputs

ACAS 188
5 inputs

6 layers of 50 hidden units
5 outputs

PCAMNIST 27

10 or {5, 10, 25, 100, 500, 784} inputs
4 or {2, 3, 4, 5, 6, 7} layers

of 25 or {10, 15, 25, 50, 100} hidden units,
1 output, with a margin of +1000 or

{-1e4, -1000, -100, -50, -10, -1 ,1, 10, 50, 100, 1000, 1e4}

Table 1: Dimensions of all the data sets. For PCAMNIST, we use a base network with 10 inputs,
4 layers of 25 hidden units and a margin of 1000. We generate new problems by changing one
parameter at a time, using the values inside the brackets.

7 Additional performance details

Given that there is a significant difference in the way verification works for SAT problems vs. UNSAT
problems, we report also comparison results on the subset of data sorted by decision type.

8 PCAMNIST details

PCAMNIST is a novel data set that we introduce to get a better understanding of what factors
influence the performance of various methods. It is generated in a way to give control over different
architecture parameters. The networks takes k features as input, corresponding to the first k eigenvec-
tors of a Principal Component Analysis decomposition of the digits from the MNIST data set. We
also vary the depth (number of layers), width (number of hidden unit in each layer) of the networks.
We train a different network for each combination of parameters on the task of predicting the parity
of the presented digit. This results in the accuracies reported in Table 2.
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(a) On SAT properties
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(b) On UNSAT properties
Figure 5: Proportion of properties verifiable for varying time budgets depending on the methods
employed on the CollisionDetection dataset. We can identify that all the errors that BlackBox makes
are on SAT properties, as it returns incorrect counterexamples.

0 2000 4000 6000
Computation time (in s)

0

20

40

60

80

100

%
 o
f p

ro
pe

rti
es
 v
er
ifi
ed BaBSB

BaB
reluBaB
reluplex
MIPplanet
planet
BlackBox
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(b) On UNSAT properties
Figure 6: Proportion of properties verifiable for varying time budgets depending on the methods
employed on the ACAS dataset. We observe that planet doesn’t succeed in solving any of the SAT
properties, while our proposed methods are extremely efficient at it, even if there remains some
properties that they can’t solve.

The properties that we attempt to verify are whether there exists an input for which the score assigned
to the odd class is greater than the score of the even class plus a large confidence. By tweaking the
value of the confidence in the properties, we can make the property either True or False, and we
can choose by how much is it true. This gives us the possibility of tweaking the “margin”, which
represent a good measure of difficulty of a network.

In addition to the impact of each factors separately as was shown in the main paper, we can also look
at it as a generic dataset and plot the cactus plots like for the other datasets. This can be found in
Figure 7
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Figure 7: Proportion of properties verifiable for varying time budgets depending on the methods
employed. The PCAMNIST dataset is challenging as None of the methods reaches more than 50%
success rate.

Network Parameter Accuracy
Nb inputs Width Depth Train Test

5 25 4 88.18% 87.3%
10 25 4 97.42% 96.09%
25 25 4 99.87% 98.69%
100 25 4 100% 98.77%
500 25 4 100% 98.84%
784 25 4 100% 98.64%

10 10 4 96.34% 95.75%
10 15 4 96.31% 95.81%
10 25 4 97.42% 96.09%
10 50 4 97.35% 96.0%
10 100 4 97.72% 95.75%

10 25 2 96.45% 95.71%
10 25 3 96.98% 96.05%
10 25 4 97.42% 96.09%
10 25 5 96.78% 95.9%
10 25 6 95.48% 95.2%
10 25 7 96.81% 96.07%

Table 2: Accuracies of the network trained for the PCAMNIST dataset.
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