
1 Supplementary material

This Supplementary material is organized as follows. Section 1.1 discusses the computational com-
plexity of the proposed curve finding method. Section 1.2 describes how to apply batch normalization
at test time to points on curves connecting pairs of local optima. Section 1.3 provides formulas
for a polygonal chain and Bezier curve with n bends. Section 1.4 provides details and results of
experiments on curve finding and contains a table summarizing all path finding experiments. Section
1.5 provides additional visualizations of the train loss and test accuracy surfaces. Section 1.6 contains
details on curve ensembling experiments. Section 1.7 describes experiments on relation between
mode connectivity and the number of parameters in the networks. Section 1.8 discusses a trivial
construction of curves connecting two modes, where points on the curve represent reparameterization
of the endpoints, unlike the curves in the main text. Section 1.9 provides details of experiments on
FGE. Finally, Section 1.10 describes pathways traversed by FGE.

1.1 Computational complexity of curve finding

The forward pass of the proposed method consists of two steps: computing the point φθ(t) and then
passing a mini-batch of data through the DNN corresponding to this point. Similarly, the backward
pass consists of first computing the gradient of the loss with respect to φθ(t), and then multiplying the
result by the Jacobian ∂φθ

∂θ . The second step of the forward pass and the first step of the backward pass
are exactly the same as the forward and backward pass in the training of a single DNN model. The
additional computational complexity of the procedure compared to single model training comes from
the first step of the forward pass and the second step of the backward pass and in general depends on
the parametrization φθ(·) of the curve.

In our experiments we use curve parametrizations of a specific form. The general formula for a curve
with one bend is given by

φθ(t) = ŵ1 · c1(t) + θ · c(t) + ŵ2 · c2(t).

Here the parameters of the curve are given by θ ∈ R|net| and coefficients c1, c2, c : [0, 1]→ R.

For this family of curves the computational complexity of the first step of the method is O(|net|), as
we only need to compute a weighted sum of ŵ1, ŵ2 and θ ∈ R|net|. The Jacobian matrix

∂φθ(t)

∂θ
= c(t) · I,

thus the additional computational complexity of the backward pass is also O(|net|), as we only need
to multiply the gradient with respect to φθ(t) by a scalar. Thus, the total additional computational
complexity is O(|net|). In practice we observe that the gap in time-complexity between one epoch
of training a single model and one epoch of the proposed method with the same network architecture
is usually below 50%.

1.2 Batch Normalization

Batch normalization (Ioffe and Szegedy [2015]) is essential to modern deep learning architectures.
Batch normalization re-parametrizes the output of each layer as

x̂ = γ
x− µ(x)
σ(x) + ε

+ β,

where µ(x) and σ(x) are the mean and standard deviation of the output x, ε > 0 is a constant for
numerical stability and γ and β are free parameters. During training, µ(x) and σ(x) are computed
separately for each mini-batch and at test time statistics aggregated during training are used.

When connecting two DNNs that use batch normalization, along a curve φ(t), we compute µ(x) and
σ(x) for any given t over mini-batches during training, as usual. In order to apply batch-normalization
to a network on the curve at the test stage we compute these statistics with one additional pass over
the data, as running averages for these networks are not collected during training.
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Table 1: The properties of loss and error values along the found curves for different architectures and tasks

Model Length Train Loss Train Error (%) Test Error (%)

DNN Curve Ratio Min Int Mean Max Min Int Max Min Int Max

MNIST

FC Single — 0.018 — — 0.018 0.01 — 0.01 1.46 — 1.5
FC Segment 1 0.018 0.252 0.252 0.657 0.01 0.53 2.13 1.45 1.96 3.18
FC Bezier 1.58 0.016 0.02 0.02 0.024 0.01 0.02 0.04 1.46 1.52 1.56
FC Polychain 1.73 0.013 0.022 0.022 0.029 0 0.03 0.07 1.46 1.51 1.58

CIFAR-10

3conv3fc Single — 0.05 — — 0.05 0.06 — 0.06 12.3 — 12.36
3conv3fc Segment 1 0.05 1.124 1.124 2.416 0.06 35.69 88.24 12.28 43.3 88.27
3conv3fc Bezier 1.30 0.034 0.038 0.037 0.05 0.05 0.1 0.2 12.06 12.7 13.66
3conv3fc Polychain 1.67 0.04 0.044 0.044 0.05 0.06 0.15 0.31 12.17 12.68 13.31

VGG-16 Single — 0.04 — — 0.04 0 — 0.01 6.87 — 7.01
VGG-16 Segment 1 0.039 1.759 1.759 2.569 0 61.43 90 6.87 63.75 90
VGG-16 Bezier 1.55 0.028 0.03 0.03 0.04 0 0.01 0.02 6.59 6.77 7.01
VGG-16 Polychain 1.83 0.025 0.031 0.031 0.045 0 0.01 0.04 6.54 6.89 7.28

ResNet-158 Single — 0.015 — — 0.015 0.02 — 0.02 5.56 — 5.74
ResNet-158 Segment 1 0.013 0.551 0.551 2.613 0 16.37 81.41 5.57 20.79 80.00
ResNet-158 Bezier 2.13 0.013 0.017 0.018 0.022 0 0.02 0.07 5.48 5.82 6.24
ResNet-158 Polychain 3.48 0.013 0.017 0.017 0.047 0 0.05 0.139 5.48 5.88 7.35

WRN-10-28 Single — 0.033 — — 0.035 0 — 0 4.49 — 4.56
WRN-10-28 Segment 1 0.033 0.412 0.412 2.203 0 5.44 65.62 4.49 10.55 66.6
WRN-10-28 Bezier 1.83 0.03 0.033 0.038 0.038 0 0.01 0.04 4.4 4.62 4.83
WRN-10-28 Polychain 1.95 0.026 0.029 0.029 0.037 0 0 0 4.38 6.93 10.38

CIFAR-100

VGG-16 Single — 0.14 — — 0.141 0.05 — 0.06 29.44 — 29.94
VGG-16 Segment 1 0.137 3.606 3.606 4.941 0.04 73.25 99 29.44 80.59 99.01
VGG-16 Bezier 1.52 0.095 0.107 0.105 0.141 0.03 0.08 0.18 29.28 30.49 31.23
VGG-16 Polychain 1.64 0.118 0.139 0.139 0.2 0.04 0.19 0.39 29.33 30.13 30.92

ResNet-164 Single — 0.079 — — 0.08 0.06 — 0.09 24.41 — 24.4
ResNet-164 Segment 1 0.076 1.844 1.844 5.53 0.06 38.03 98.65 24.4 53.69 98.83
ResNet-164 Bezier 1.87 0.074 0.083 0.084 0.098 0.05 0.28 0.96 24.15 24.99 26.1
ResNet-164 Polychain 2.56 0.067 0.078 0.078 0.109 0.06 0.28 0.85 23.98 24.92 26.12

1.3 Formulas for curves with n bends

For n bends θ = {w1, w2, . . . , wn}, the parametrization of a polygonal chain connecting points
w0, wn+1 is given by

φθ(t) = (n+ 1) ·
((

t− i

n+ 1

)
· wi+1 +

(
i+ 1

n+ 1
− t
)
· wi
)
,

for i
n+1 ≤ t ≤ i+1

n+1 and 0 ≤ i ≤ n.

For n bends θ = {w1, w2, . . . , wn}, the parametrization of a Bezier curve connecting points w0 and
wn+1 is given by

φθ(t) =

n+1∑
i=0

wiC
i
n+1t

i(1− t)n+1−i
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Table 2: The value of perplexity along the found curves for PTB dataset

Model Train Validation Test

DNN Curve Min Max Min Max Min Max

PTB

RNN Single 37.5 39.2 82.7 83.1 78.7 78.9
RNN Segment 37.5 596.3 82.7 682.1 78.7 615.7
RNN Bezier 29.8 39.2 82.7 88.7 78.7 84.0
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Figure 1: The `2-regularized cross-entropy train loss (Top) and test error (Bottom) surfaces of a
deep residual network (ResNet-164) on CIFAR-100. Left: Three optima for independently trained
networks. Middle and Right: A quadratic Bezier curve, and a polygonal chain with one bend,
connecting the lower two optima on the left panel along a path of near-constant loss. Notice that in
each panel, a direct linear path between each mode would incur high loss.
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Figure 2: Same as Fig. 1 for VGG-16 on CIFAR-10.

1.4 Curve Finding Experiments

All experiments on curve finding were conducted with TensorFlow (Abadi et al. [2016]) and as
baseline models we used the following implementations:

• ResNet-bottleneck-164 and Wide ResNet-28-10 (https://github.com/tensorflow/
models/tree/master/research/resnet);

• ResNet-158 (https://github.com/tensorflow/models/tree/master/official/
resnet);
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• A reimplementation of VGG-16 without batch-normalization from (https://github.
com/pytorch/vision/blob/master/torchvision/models/vgg.py);

Table 1 summarizes the results of the curve finding experiments with all datasets and architectures.
For each of the models we report the properties of loss and the error on the train and test datasets.
For each of these metrics we report 3 values: “Max” is the maximum values of the metric along
the curve, “Int” is a numerical approximation of the integral

∫
<metric>(φθ)dφθ/

∫
dφθ, where

<metric> represents the train loss or the error on the train or test dataset and “Min” is the minimum
value of the error on the curve. “Int” represents a mean over a uniform distribution on the curve, and
for the train loss it coincides with the loss (1) in the paper. We use an equally-spaced grid with 121
points on [0, 1] to estimate the values of “Min”, “Max”, “Int”. For “Int” we use the trapezoidal rule to
estimate the integral. For each dataset and architecture we report the performance of single models
used as the endpoints of the curve as “Single”, the performance of a line segment connecting the
two single networks as “Segment”, the performance of a quadratic Bezier curve as “Bezier” and the
performance of a polygonal chain with one bend as “Polychain”. Finally, for each curve we report
the ratio of its length to the length of a line segment connecting the two modes.

We also examined the quantity “Mean” defined as
∫
< metric > (φθ(t))dt, which coincides with

the loss (2) from the paper, but in all our experiments it is nearly equal to “Int”.

Besides convolutional and fully-connected architectures we also apply our approach to RNN archi-
tecture on next word prediction task, PTB dataset (Marcus et al. [1993]). As a base model we used
the implementation available at https://www.tensorflow.org/tutorials/recurrent. As the
main loss we consider perplexity. The results are presented in Table 2.

1.5 Train loss and test accuracy surfaces

In this section we provide additional visualizations. Fig. 1 and Fig. 2 show visualizations of the train
loss and test accuracy for ResNet-164 on CIFAR-100 and VGG-16 on CIFAR-10.

1.6 Curve Ensembling
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Figure 3: Error as a function of the point on the curves φθ(t) found by the proposed method, using a
ResNet-164 on CIFAR-100. Top left: train error. Bottom left: test error; dashed lines correspond to
quality of ensemble constructed from curve points before and after logits rescaling. Top right: train
loss (`2 regularized cross-entropy). Bottom right: cross-entropy before and after logits rescaling for
the polygonal chain.

Here we explore ensembles constructed from points sampled from these high accuracy curves. In
particular, we train a polygonal chain with one bend connecting two independently trained ResNet-
164 networks on CIFAR-100 and construct an ensemble of networks corresponding to 50 points
placed on an equally-spaced grid on the curve. The resulting ensemble had 21.03% error-rate on
the test dataset. The error-rate of the ensemble constructed from the endpoints of the curve was
22.0%. An ensemble of three independently trained networks has an error rate of 21.01%. Thus, the
ensemble of the networks on the curve outperformed an ensemble of its endpoints implying that the
curves found by the proposed method are actually passing through diverse networks that produce
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predictions different from those produced by the endpoints of the curve. Moreover, the ensemble
based on the polygonal chain has the same number of parameters as three independent networks, and
comparable performance.

Furthermore, we can improve the ensemble on the chain without adding additional parameters or
computational expense, by accounting for the pattern of increased training and test loss towards the
centres of the linear paths shown in Figure 3. While the training and test accuracy are relatively
constant, the pattern of loss, shared across train and test sets, indicates overconfidence away from
the three points defining the curve: in this region, networks tend to output probabilities closer to 1,
sometimes with the wrong answers. This overconfidence decreases the performance of ensembles
constructed from the networks sampled on the curves. In order to correct for this overconfidence
and improve the ensembling performance we use temperature scaling [Guo et al., 2017], which is
inversely proportional to the loss. Figure 3, bottom right, illustrates the test loss of ResNet-164 on
CIFAR-100 before and after temperature scaling. After rescaling the predictions of the networks, the
test loss along the curve decreases and flattens. Further, the test error-rate of the ensemble constructed
from the points on the curve went down from 21.03% to 20.7% after applying the temperature scaling,
outperforming 3 independently trained networks.

However, directly ensembling on the curves requires manual intervention for temperature scaling,
and an additional pass over the training data for each of the networks (50 in this case) at test time to
perform batch normalization as described in section 1.2. Moreover, we also need to train at least two
networks for the endpoints of the curve.

1.7 The Effects of Increasing Parametrization
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Figure 4: The worst train loss along the curve, maximum of the losses of the endpoints, and the ratio
of the length of the curve and the line segment connecting the two modes, as a function of the scaling
factor K of the sizes of fully-connected layers.

One possible factor that influences the connectedness of a local minima set is the overparameterization
of neural networks. In this section, we investigate the relation between the observed connectedness
of the local optima and the number of parameters (weights) in the neural network. We start with a
network that has three convolutional layers followed by three fully-connected layers, where each
layer has 1000K neurons. We vary K ∈ {0.3, 0.5, 0.8, 1}, and for each value of K we train two
networks that we connect with a Bezier curve using the proposed procedure.

For each value of K, Figure 4 shows the worst training loss along the curve, maximum of losses
of the endpoints, and the ratio of the length of the curve and the line segment connecting the two
modes. Increasing the number of parameters we are able to reduce the difference between the worst
value of the loss along the curve and the loss of single models used as the endpoints. The ratio of
the length of the found curve and the length of the line segment connecting the two modes also
decreases monotonically with K. This result is intuitive, since a greater parametrization allows for
more flexibility in how we can navigate the loss surfaces.

1.8 Trivial connecting curves

For convolutional networks with ReLU activations and without batch normalization we can construct
a path connecting two points in weight space such that the accuracy of each point on the curve
(excluding the origin of the weight space) is at least as good as the minimum of the accuracies of
the endpoints. Unlike the paths found by our procedure, these paths are trivial and merely exploit
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Algorithm 1 Fast Geometric Ensembling

Require:
weights ŵ, LR bounds α1, α2,
cycle length c (even), number of iterations n

Ensure: ensemble
w ← ŵ {Initialize weight with ŵ}
ensemble← [ ]
for i← 1, 2, . . . , n do
α← α(i) {Calculate LR for the iteration}
w ← w − α∇Li(w) {Stochastic gradient update}
if mod(i, c) = c/2 then

ensemble← ensemble + [w] {Collect weights}
end if

end for

redundancies in the parametrization. Also, the training loss goes up substantially along these curves.
Below we give a construction of such paths.

Let ŵ1 and ŵ2 be two sets of weights. This path of interest consists of two parts. The first part
connects the point ŵ1 with 0 and the second one connects the point ŵ2 with 0. We describe only the
first part φ(t) of the path, such that φ(0) = 0, φ(1) = ŵ1, as the second part is completely analogous.
Let the weights of the network ŵ1 be {Wi, bi}1≤i≤n where Wi, bi are the weights and biases of the
i-th layer, and n is the total number of layers. Throughout the derivation we consider the inputs of
the network fixed. The output of the i-th layer oi = WiReLU(oi−1) + bi, 1 ≤ i ≤ n, where i = 0
corresponds to the first layer and i = n corresponds to logits (the outputs of the last layer). We
construct φ(t) = {Wi(t), bi(t)}1≤i≤n in the following way. We set Wi(t) =Wit and bi(t) = bit

i.
It is easy to see that logits of the network with weights φ(t) are equal to on(t) = tnon for all t > 0.
Note that the predicted labels corresponding to the logits on(t) and on are the same, so the accuracy
of all networks corresponding to t > 0 is the same.

1.9 Fast geometric ensembling experiments

Alg. 1 provides an outline of the algorithm. As baseline models we used the following implementa-
tions:

• VGG-16 (https://github.com/pytorch/vision/blob/master/torchvision/
models/vgg.py);
• Preactivation-ResNet-164 (https://github.com/bearpaw/
pytorch-classification/blob/master/models/cifar/preresnet.py);

• ResNet-50 ImageNet (https://github.com/pytorch/vision/blob/master/
torchvision/models/resnet.py);

• Wide ResNet-28-10 (https://github.com/meliketoy/wide-resnet.pytorch/
blob/master/networks/wide_resnet.py);

For the FGE (Fast Geometric Ensembling) strategy on ResNet we run the FGE routine summarized
in Alg. 1 after epoch 125 of the usual (same as Ind) training for 22 epochs. The total training
time is thus 125 + 22 = 147 epochs. For VGG and Wide ResNet models we run the pre-training
procedure for 156 epochs to initialize FGE. Then we run FGE for 22 epochs starting from checkpoints
corresponding to epochs 120 and 156 and ensemble all the gathered models. The total training time
is thus 156 + 22 + 22 = 200 epochs. For VGG we use cycle length c = 2 epochs, which means
that the total number of models in the final ensemble is 22. For ResNet and Wide ResNet we use
c = 4 epochs, and the total number of models in the final ensemble is 12 for Wide ResNets and 6 for
ResNets.

1.10 Polygonal chain connecting FGE proposals

In order to better understand the trajectories followed by FGE we construct a polygonal chain
connecting the points that FGE ensembles. Suppose we run FGE for n learning rate cycles obtaining
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n points w1, w2, . . . , wn in the weight space that correspond to the lowest values of the learning
rate. We then consider the polygonal chain consisting of the line segments connecting wi to wi+1 for
i = 1, . . . , n− 1. We plot test accuracy and train error along this polygonal chain in Figure 5. We
observe that along this curve both train loss and test error remain low, agreeing with our intuition that
FGE follows the paths of low loss and error. Surprisingly, we find that the points on the line segments
connecting the weights wi, wi+1 have lower train loss and test error than wi and wi+1. See Izmailov
et al. [2018] for a detailed discussion of this phenomenon.
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Figure 5: Train loss and test error along the polygonal chain connecting the sequence of points
ensembled in FGE. The plot is generated using PreResNet-164 on CIFAR 100. Circles indicate the
bends on the polygonal chain, i.e. the networks ensembled in FGE.
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