
Appendix

A Example Graph Where Quantization Helps Greedy

Figure 3: When there are very large weights, the greedy algorithm may require a lot of colors to
terminate, even on graphs with a small chromatic number. For this graph, the largest independent
set is the top two vertices, followed by the next two, and so on. The greedy algorithm will color all
these pairs of vertices a different color, which is n

2

colors. However after quantization the the greedy
algorithm will only use 4 colors.

B Proof of Approximation Guarantees of the Quantized Greedy Algorithm

In this section we prove our approximation guarantee of using the quantized greedy algorithm for
minimum cost intervention design.
Theorem 9. If the number of interventions m satisfies m � log�+ log log n+ 5, then the greedy
algorithm with quantization for the minimum cost intervention design problem creates a graph
separating system I

greedy

such that

cost(I
greedy

)  (2 + ")OPT,

where " = exp(�⌦(m)) + n�1.

B.1 Submodularity Background

Our proof uses several results from submodularity. A set function F over a ground set V is a function
that takes as input a subset of V and outputs a real number. We say that the function F is submodular
if for all v 2 V and A ✓ B ✓ V \ {v} the function satisfies the diminishing returns property

F (A [ {v})� F (A) � F (B [ {v})� F (B).

We say that the function F is monotone if for all A ✓ B ✓ V we have that F (A)  F (B). We say
that F is non-negative if for all A ✓ V we have that F (A) � 0.

One classic problem in submodular optimization is finding a set A with caridinality constraint |A|  k
that maximizes a submodular, monotone, and non-negative function F . The greedy algorithm starts
with the emptyset A

0

= ;, selects the item v
k+1

= argmax
v2V

F (A
k

[ {v}) � F (A
k

). It then
updates A

k+1

= A
k

[ {v
k+1

}.

The classic result of Nemhauser and Wolsey established that the greedy algorithm is a (1 � 1/e)-
approximation algorithm to the optimal [23]. Krause and Golovin generalized this to show that
if the greedy algorithm selects dCke elements for some positive value C, then it is a (1 � e�C)-
approximation to the optimal solution of size k.
Theorem 13 ([23, 20]). Given a submodular, monotone, and non-negative function F over a ground
set V and a cardinality constraint k, let OPT be defined as

OPT = max
A✓V :|A|k

F (A).
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If the greedy algorithm for this problem runs for dCke iterations, for some positive value C, it returns
a set ACk

greedy

such that

F (ACk

greedy

) � (1� e�C)OPT.

Another important problem in submodular function optimization is the submodular set cover problem,
which is a generalization of the set cover problem. Given a submodular, monotone, and non-negative
function F that maps a subsets of a ground set V to integers, we want to find a set A of minimum
cardinality such that F (A) = F (V ). The greedy algorithm is a natural approach to solve this
problem: we run greedy iterations until the set satisfies the submodular set cover constraint. Let
w

max

= argmax
v2V

F ({v}). Wolsey established that the cardinality of the set returned by the
greedy algorithm is a 1 + lnw

max

approximation to the minimum cardinality solution [35].

Theorem 14 ([35]). Given a submodular, monotone, and non-negative function F that maps subsets
of a ground set V to integers, let OPT be defined as

OPT = min
A✓V :F (A)=F (V )

|A|.

Let w
max

= argmax
v2V

F ({v}). The greedy algorithm for this problem returns a set A
greedy

such
that

|A
greedy

|  (1 + lnw
max

)OPT.

B.2 Bound on the Quantized Greedy Algorithm solution size

In this section we show that after �(2 + 5 lnn) + 1 rounds the greedy algorithm with quantization
will have colored every vertex in the graph. Since the number of possible colors in a graph separating
system of size m is 2m, this implies that when m � log�+ log log n+ 4, there are enough colors
for the greedy algorithm to fully color the graph.

Lemma 15. If the intervention size is m � log� + log log n + 4, then the greedy algorithm will
terminate using at most 2m colors.

Proof. The greedy algorithm first colors the maximum weight independent, using 1 color. We will
denote the remaining graph by G = (V,E).

The weights of the remaining vertices are quantized to integers such that the maximum weight is
bounded by n3. Let A be the set of all independent sets in G. The maximum weight of an independent
set in G is bounded by n4. Let W be the function that takes a set of independent sets A ✓ A and
outputs the value

W (A) =
X

v2
S

a2A a

w
v

,

that is, it takes a set of independent sets and return the sum of the vertices in their union. It can be
verified that this function is submodular, monotone, and non-negative.

We will assume for now that the weights are all positive. If we have a set of independent sets A such
that W (A) = W (A), then every vertex in the graph will have been covered. Since the minimum
cardinality is � and the maximum weight of an independent set is n4, by Theorem 14, the greedy
algorithm will terminate after �(1 + 4 lnn) iterations.

To handle vertices of weight 0, note that it is a set cover problem to cover the remaining vertices.
Thus the greedy algorithm will need no more that �(1 + lnn) colors to color the remaining vertices,
using a total number of colors �(2 + 5 lnn) + 1.

We have the following corollary by noting that adding an extra intervention doubles the number of
allowed colors.

Corollary 16. If the intervention size is m � log�+ log log n+ 5, then the greedy algorithm will
terminate using at most 2m colors such that all color vectors c have weight kck

1

 dm

2

e.
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B.3 Submodular and Supermodular Chain Problem

In this section we define two new types of submodular optimization problem, which we call the
submodular chain problem and the supermodular chain problem. We will use these in our proof of
the approximation guarantees of the greedy algorithm with quantization.
Definition 17. Given integers k

1

, k
2

, . . . , k
m

and a submodular, monotone, and non-negative function
F , over a ground set V , the submodular chain problem is to find sets A

1

, A
2

, . . . , A
m

✓ V such that
|A

i

|  k
i

that maximizes
mX

i=1

F (A
1

[A
2

,[ · · · [A
i

).

Throughout this section we will assume that m is an even number.

The greedy algorithm for this problem will first choose the set A
1

of cardinality k
1

that maximizes
F (A

1

). It will then choose the set A
2

of cardinality k
2

that maximizes F (A
1

[A
2

). It will continue
this process until all A

i

are chosen.

Note by using the greedy algorithm and Theorem 13 we can obtain a (1� 1/e) approximation to this
problem. However we will instead use the following guarantee.
Lemma 18. Let A⇤

1

, A⇤
2

, . . . , A⇤
m

be the optimal solution to the submodular chain problem. Suppose
that for all 1  p  m/2 � 1 we have that

P
2p

i=1

k
i

� C
P

p

i=1

k
i

. Also assume that F (A
1

[
A

2

[ · · · [A
m

) = F (V ). Then the greedy algorithm for the submodular chain problem returns set
A

1

, A
2

, . . . , A
m

such that
mX

i=0

F (A
1

[A
2

[ · · ·A
2i

) � F (V ) + 2(1� e�C)

m/2�1X

i=0

F (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)

Proof. Since
P

2i

p=1

k
p

� C
P

i

p=1

k
p

, by Theorem 13 we have that

F (A
1

[A
2

[ · · ·A
2p

) � (1� e�C)F (A⇤
1

[A⇤
2

[ · · · [A⇤
p

).

We thus have
m/2�1X

i=0

F (A
1

[A
2

[ · · · [A
2i

) � (1� e�C)

m/2�1X

i=0

F (A⇤
1

[A⇤
2

[ · · · [A⇤
i

).

To conclude the proof, use the monotonicity of the submodular function F to observe that
mX

i=0

F (A
1

[A
2

[ · · · [A
i

) = F (A
1

[A
2

[A
m

)

+

m/2�1X

i=0

F (A
1

[A
2

[ · · · [A
2i

) + F (A
1

[A
2

[ · · · [A
2i+1

)

= F (V ) +

m/2�1X

i=0

F (A
1

[A
2

[ · · · [A
2i

) + F (A
1

[A
2

[ · · · [A
2i+1

)

� F (V ) + 2

m/2�1X

i=0

F (A
1

[A
2

[ · · · [A
2i

).

We define the supermodular chain problem similarly.
Definition 19. Given integers k

1

, k
2

, . . . , k
m

and a submodular, monotone, and non-negative function
F , over a ground set V , the supermodular chain problem is to find sets A

1

, A
2

, . . . , A
m

✓ V such
that |A

i

|  k
i

that minimizes
mX

i=0

F (V )� F (A
1

[A
2

,[ · · · [A
i

).
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We establish the following guarantee for the greedy algorithm on the supermodular chain problem.
Lemma 20. Let A⇤

1

, A⇤
2

, . . . , A⇤
m

be the optimal solution to the supermodular chain problem. Suppose
that for all 1  p  m/2� 1 we have that

P
2t

i=1

k
i

� C
P

t

i=1

k
i

. Also assume that F (A
1

[A
2

[
· · · [ A

m

) = F (V ). Then the greedy algorithm for the supermodular chain problem returns set
A

1

, A
2

, . . . , A
m

such that
mX

i=0

F (V )� F (A
1

[A
2

[ · · ·A
i

)  e�CmF (V ) + 2

mX

i=0

F (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)

Proof. Starting from Lemma 18, we have that

(m+ 1)F (V )�
mX

i=0

F (A
1

[A
2

[ · · ·A
2i

)  mF (V )� 2(1� e�C)

m/2�1X

i=0

F (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)

 e�CmF (V ) +mF (V )� 2

m/2�1X

i=0

F (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)

= e�CmF (V ) + 2

m/2�1X

i=0

F (V )� F (A⇤
1

[A⇤
2

[ · · ·A⇤
i

).

Using the monotonicity of the submodular function F , we can continue with

e�CmF (V ) + 2

m/2�1X

i=0

F (V )� F (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)  e�CmF (V ) + 2

mX

i=0

F (V )� F (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)

and conclude that
mX

i=0

F (V )� F (A
1

[A
2

[ · · ·A
2i

) = (m+ 1)F (V )�
mX

i=0

F (A
1

[A
2

[ · · ·A
2i

)

 e�CmF (V ) + 2

mX

i=0

F (V )� F (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)

B.4 Proof of quantized greedy algorithm approximation guarantees

For simplicity, we will assume that the number of interventions m is divisible by 4.

We will need the following lemma, which can be proved by standard binomial approximations.
Lemma 21. If m and t are integers such that t  m

4

, we have

2tX

i=1

✓
m

i

◆
� ⌦(m)

 
1 +

tX

i=1

✓
m

i

◆!
.

We use the following technical lemma to prove our approximation guarantee. We defer the proof to
Section B.5.
Lemma 22. Let A⇤ be the optimal solution to the coloring problem. Let A+ be the optimal solution
to the coloring problem when we force it to color the maximum weighted independent set with the
weight 0 color, but allow it an extra color of weight 1. That is, it can color m+ 1 independent sets
with a color of weight 1, rather than the usual m independent sets. We have

cost(A+)  cost(A⇤).

We can now show that the quantized greedy algorithm is a good approximation to the optimal solution
to the quantized problem.
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Lemma 23. Suppose all the weights in the graph that are not in the maximum weight independent
set are bounded by n3. Then if the number of interventions m satisfies m � log�+ log log n+ 5 the
greedy coloring algorithm returns a solution I of cost

cost(I)  (2 + exp(�⌦(m)))OPT.

Proof. Let A be the set of all independent sets in G. Let W be the function that takes a set of
independent sets A ✓ A and outputs the value

W (A) =
X

v2
S

a2A a

w
v

,

that is, it takes a set of independent sets and return the sum of the vertices in their union. It can be
verified that this function is submodular, monotone, and non-negative.

A feasible solution to the coloring variant of the minimum cost intervention design problem is a
coloring that maps vertices to color vectors {0, 1}m. The colors c with weight i are the coloring
vectors c such that kck

1

= i. We can describe a feasible solution to the coloring variant of the
minimum cost intervention design by A

0

, A
1

, A
2

, . . . , A
m

, where A
i

is the set of independent sets
that are colored with a coloring vector of weight i.

One simplifying assumption is that the optimal solution A⇤ and the greedy solution A both use the
color of weight 0 to color the maximum weight independent set. By Lemma 22 this assumption is
valid if we allow the optimal solution to use an additional color of weight 1. We just need to show the
approximation guarantee on the sets A

1

, A
2

, . . . , A
m

.

We can calculate the cost of a feasible solution of the minimum cost intervention design problem by

cost(A
1

, . . . , A
m

) =

mX

i=0

W (A)�W (A
1

[A
2

[ · · ·A
m

),

where |A
i

| 
�
m

i

�
. This is an instance of the supermodular chain problem.

Using Corollary 16, the greedy algorithm will terminate only using colors of weight at most m/2,
so we only need to show optimality of the sets A

1

, A
2

, . . . , A
m/2

. By Lemma 21, we have that the
number of colors of weight at most 2t is a factor of ⌦(m) more than the number of colors the optimal
solution uses of weight at most t, even after including the extra color given to the optimal solution.
By Lemma 20 and using the monotonicity of W , we have that

cost(I
greedy

) = cost(A
1

, A
2

, . . . , A
m/2

)

=

m/2X

i=0

W (A)�W (A
1

[A
2

[ · · ·A
i

)

 e�⌦(m)

m

2
F (A) + 2

m/2X

i=0

W (A)�W (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)

 e�⌦(m)

m

2
F (A) + 2

mX

i=0

W (A)�W (A⇤
1

[A⇤
2

[ · · ·A⇤
i

)

= e�⌦(m)

m

2
W (A) + 2OPT.

To conclude, observe that OPT � W (A), since every vertex not in the maximum weighted indepen-
dent set is colored with a color of weight at least 1.

Lemma 23 shows an approximation guarantee of the quantized greedy algorithm to the quantized
optimal solution. To relate the quantized greedy algorithm to the true optimal solution, we use the
following lemma, which we prove in Section B.5.
Lemma 24. Suppose an intervention design I is an ↵-approximation solution to the optimal solution
to the quantized problem. Then it is an (↵ + n�1)-approximation to the optimal solution to the
original problem.

With Lemma 24, we can conclude the proof of Theorem 9.
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B.5 Proof of Technical Lemmas

Lemma 22. Let A⇤ be the optimal solution to the coloring problem. Let A+ be the optimal solution
to the coloring problem when we force it to color the maximum weighted independent set with the
weight 0 color, but allow it an extra color of weight 1. That is, it can color m+ 1 independent sets
with a color of weight 1, rather than the usual m independent sets. We have

cost(A+)  cost(A⇤).

Proof. Let a⇤
0

and a+
0

be the sets of vertices covered with the color of weight 0 for A⇤ and A+,
respectively. From the optimality of a+

0

as a maximum weight independent set, we have
X

i2a

+

0

\a⇤
0

w
i

�
X

i2a

⇤
0

\a+

0

w
i

.

Consider a new coloring A0, also with an extra weight 1 coloring, that uses a+
0

as the set of vertices
colored with the weight 0 color, a⇤

0

\ a+
0

as the set of vertices colored with the extra weight 1 color,
then does the same coloring as A⇤, removing the vertices that are already colored.

The only vertices colored by A0 with a positive cost and different color than A⇤ are a⇤
0

\a+
0

, which are
all colored with a cost of weight 1. The only vertices colored by A⇤ with a positive cost and different
color than A0 are a+

0

\ a⇤
0

. Let c⇤
v

be the cost to color vertex v using A⇤. We can thus conclude

cost(A0)� cost(A⇤) =
X

v2a

⇤
0

\a+

0

w
v

�
X

v2a

+

0

\a⇤
0

c⇤
v

w
v


X

v2a

⇤
0

\a+

0

w
v

�
X

v2a

+

0

\a⇤
0

w
v

 0.

Lemma 24. Suppose an intervention design I is an ↵-approximation solution to the optimal solution
to the quantized problem. Then it is an (↵ + n�1)-approximation to the optimal solution to the
original problem.

Proof. This is a modification of the proof of the FPTAS of the knapsack algorithm [14] (see also
[34]).

Let c⇤ be the optimal coloring in the original weights, c0 be the optimal coloring in the quantized
weights, and c be the approximate coloring.

Let w
v

be the true weight, and w0
v

be the quantized weight. Let µ = w

max

n

3

. Since w0
v

= bwv
µ

c, we
have and w0

v

 wv
µ

. We also have cost(I⇤) � w
max

.

We thus have

cost(I) =
X

v2V

kc(v)k
1

w
v

 µ
X

v2V

kc(v)k
1

(w0
v

+ 1)

= µ
X

v2V

kc(v)k
1

w0
v

+ µ
X

v2V

kc(v)k
1

 ↵µ
X

v2V

kc0(v)kw0
v

+ µ
X

v2V

kc(v)k
1
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Using the optimality of c0 in the quantized weights, we have

↵µ
X

v2V

kc0(v)kw0
v

+ µ
X

v2V

kc(v)k
1

 ↵µ
X

v2V

kc⇤(v)k
1

w0
v

+ µ
X

v2V

kc(v)k
1

 ↵
X

v2V

kc⇤(v)k
1

w
v

+ µ
X

v2V

kc(v)k
1

= ↵OPT+ µ
X

v2V

kc(v)k
1

 ↵OPT+ µmn

= ↵OPT+
w

max

mn

n3

 ↵OPT+
w

max

n

 (↵+ n�1)OPT.

C Proof of Results on k-Sparse Intervention Design Problems

Proposition 10. For any graph G, the size of the smallest k-sparse graph separating system m⇤
k

satisfies m⇤
k

� ⌧

k

, where ⌧ is the size of the smallest vertex cover in the graph G.

Proof. Suppose that there exists a graph separating system I of size m⇤
k

< ⌧

k

. Note that the vertices
in S =

S
I2I I form a vertex cover. The number of vertices in S is |S|  km⇤

k

< ⌧ , contradicting
the result that the smallest vertex cover has at least ⌧ vertices.

Theorem 11. Given a chordal graph G with maximum degree �, Algorithm 2 finds a k-sparse graph
separating system of size m

k

such that

m
k


✓
1 +

k(�+ 1)�

n

◆
m⇤

k

,

where m⇤
k

is the size of the smallest k-sparse graph separating system.

Proof. Given the vertices S in the smallest vertex cover of the graph, we can color these vertices
with �+ 1 colors. We can then partition each color class into ⌧

k

+�+ 1 independent sets of size k,
as we have at most ⌧

k

of size k and at most �+ 1 sets that cannot be grouped into exactly k vertices
due to rounding errors.

Note that the size of the smallest vertex cover ⌧ satisfies ⌧ � n

�

. We have

�+ 1 =
k(�+ 1)�

n

n

k�
 k(�+ 1)�

n

⌧

k
 k(�+ 1)�

n
m⇤

k

.

Thus we use at most ⌧

k

+�+ 1 
⇣
1 + k(�+1)�

n

⌘
m⇤

k

interventions.

D Proof of NP-Hardness

We establish the following theorem in this section.
Theorem 25. The minimum cost intervention design problem is NP-hard, even if every vertex has
weight 1 and the input graph is an interval graph.

Theorem 8 follows immediately from Theorem 25.

First, we need to introduce the numerical three dimensional matching problem:
Definition 26 (Numerical Three Dimensional Matching). Given a positive integer t and 3t rational
numbers a

i

, b
i

, c
i

satisfying
P

t

i=1

a
i

+ b
i

+ c
i

= t and 0 < a
i

, b
i

, c
i

< 1, 8i 2 [t], does there exist
permutations ⇢,� of [t] such that a

i

+ b
rho(i)

+ c
�(i)

= 1, 8i 2 [t]?
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The numerical three dimensional matching problem is known to be strongly NP-complete [5].

Kroon et al. [21] reduces the optimal cost chromatic partition problem on interval graphs to numerical
three dimensional matching. The input to an instance of the optimal cost chromatic partitioning
problem is a graph and a set of weighted colors. The cost to color a vertex with a given color is the
weight of that color. The cost of a coloring is the sum of the coloring cost of each vertex. A solution
to the problem is a valid coloring of minimum cost.

Kroon et al. show that the optimal cost chromatic partition problem is NP-hard, even if the input graph
is an interval graph and color weights take four values: 0, 1, 2, and ⇥(n). They use the following
construction for their reduction.

Suppose we are given an instance of the numerical three dimensional matching problem containing
the number a

i

, b
i

, c
i

for i 2 [t]. For i, j 2 [t], define rational numbers A
i

, B
j

, and X
ij

such that
4 < A

i

< 5 < B
j

< 6 and 7 < X
ij

< 9. The following are the intervals of the graph used in [21]
(see the original paper for an image):

Interval Occurrences Clique ID

(0, 1) t times I

(0, 3) t2 � t times I

(0, A
i

) 8i 2 [t], t� 1 times I

(0, B
j

) 8j 2 [t] I

(1, 2) t times II

(2, A
i

) for 8i 2 [t] III

(3, B
j

) 8j 2 [t], t� 1 times III

(A
i

, X
i,j

) 8i, j 2 [t] IV

(B
j

, X
i,j

) 8i, j 2 [t] IV

(X
i,j

, 10 + a
i

+ b
j

) 8i, j 2 [t] V

(X
i,j

, 14) 8i, j 2 [t] V

(11� c
k

, 13) 8k 2 [t] VI

(12, 14) t2 � t VII

(13, 14) t times VII

They estabish that it is NP-complete to decide if there is a coloring of cost at most 11t2 � 5t when
there are t colors of weight 0, t2 � t colors of weight 1, t2 colors of weight 2, and all other colors of
weight 3. However they omit the proof, so we include a proof here. We us the clique IDs we added in
the definition of the interval graph.

Proof. If there is a solution to the numerical three dimensional matching problem, then there exists a
coloring of cost at most 11t2 � 5t; see the original paper for the proof of this [21]. They also prove
that if there is a coloring of cost at most 11t2 � 5t that only uses the colors of weight 0, 1, and 2, then
it can be used to construct a solution to the numerical three dimensional matching problem.

Now we show that if the coloring uses a color of weight 3, then it must have a cost strictly greater
than 11t2 � 5t. Note that all the vertices with the same clique ID indeed do form a clique. Consider
the subgraph containing all the vertices of the original graph, but only the edges between vertices
with the same clique ID.

The optimal way to color a subgraph of size k is to use one instance of the k cheapest colors. From
this, we can see that the optimal way to color the subgraph has a cost of 11t2 � 5t.

We can also see that any coloring of this subgraph that uses a color of weight 3 has a cost strictly
larger than 11t2 � 5t. Since there is an available color of weight less than 3, if we swap the color of
weight 3 with an available, cheaper color, the cost must decrease by at least 1. Since the coloring
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after the switch cannot be lower than 11t2 � 5t, it must have been that the coloring before the switch
was strictly larger than 11t2 � 5t.

Since a valid coloring for the original graph is a valid coloring for the subgraph, and the cost of a
coloring of the original graph is the same as a cost of the coloring for the subgraph, we see that the
cost of a coloring of the original graph that uses a color of weight 3 must have a cost strictly larger
than 11t2 � 5t.

We also see that the problem still remains hard when there are t colors of weight 1, t2 � t colors of
weight 2, t2 colors of weight 3, and all other colors of weight 4. This is because the cost of a coloring
using these new colors is just an additive factor n more than the original colors. Thus a coloring that
minimizes the cost using these new colors also minimizes the cost using the original colors, and it is
NP-complete to decide if there exists a coloring of cost 19t2 � 3t.

We will define another interval graph by adding the following intervals. Set ", � to be nonnegative
rational numbers such that " 6= � and min{6�max

j

B
j

, 9�max
ij

X
ij

} > ✏ and � < 1. Add the
following intervals to the original graph:

Interval Occurrences Clique ID

(0, 1 + ") t+ 1 times I

(1 + ", 2 + ") t+ 1 times II

(2 + ", 6� ") t+ 1 times III

(6� ", 9� ") t+ 1 times IV

(9� ", 11 + ") t+ 1 times V

(11 + ", 13� ") t+ 1 times VI

(13� ", 14� ") t+ 1 times VII

(14� ", 14) t+ 1 times VIII

(0, 3 + �)
�
2t

2

�
� t2 + t times I

(3 + �, 6 + �)
�
2t

2

�
� t2 + t times III

(6 + �, 9 + �)
�
2t

2

�
� t2 + t times IV

(9 + �, 14)
�
2t

2

�
� t2 + t times V

(0, 14)
�
2t

3

�
� t2 times I

We will consider the optimal cost chromatic partition problem problem with 1 color of weight 0, 2t
colors of weight 1,

�
2t

2

�
colors of weight 2,

�
2t

3

�
colors of weight 3, and

�
2t

4

�
colors of weight 4. This

is exactly the coloring version of the minimum cost intervention design problem.

We argue it is NP-complete to decide if the coloring cost is 3
�
2t

3

�
+ 2
�
2t

2

�
+ 14t2 + 7t. We reduce

from numerical three dimensional matching. From the original reduction by [21], we see that if there
is a solution to numerical three dimensional matching problem, then there exists a coloring of cost at
most 3

�
2t

3

�
+ 2
�
2t

2

�
+ 14t2 + 7t.

Call the vertices with an " in their description the "-class, and the intervals with a � in their description
the �-class. We see that the "-class intervals can be partitioned into t+ 1 contiguous regions, and the
�-class can be partitioned into

�
2t

2

�
� t2 + t contiguous regions. By the choice of " and �, we also see

that if the coloring does not follow this structure, then it takes more than
�
2t

2

�
� t2 + 2t+ 1 colors to

color all these intervals. Further, there is a “gap” that cannot be filled by one of the original intervals.
From the original hardness proof by [21], we see that if the coloring creates a gap in the original
vertices that can be filled by a member of the "-class or �-class, then it takes more than 2t2 colors
to color the original intervals. We conclude that if the coloring of the "-class and the �-class do not
partition these intervals into contiguous regions, then the coloring must use a color of weight 4.
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Again using the clique argument to show that the original problem is NP-complete, we see that if a
coloring uses a color of weight 4, then the cost of this coloring is strictly more than 3

�
2t

3

�
+ 2
�
2t

2

�
+

14t2 + 7t.

In the original reduction by [21], they prove that if there is a solution to the numerical three dimen-
sional matching problem, the optimal coloring must have t color classes of size 7, t2 � t color classes
of size 5, and t2 color classes of size 3. Introducing these new intervals, we see that the color classes
of size 8 should take the weight 0 color and t of the weight 1 colors, the t color classes of size 7
should take the rest of the weight 1 colors, the t2 � t color classes of size 5 should take t2 � t colors
of weight 2, the

�
2t

2

�
� t2 + t color classes must take the rest of the weight 2 colors, the t2 color

classes of size 3 should take t2 weight 3 colors, and the
�
2t

3

�
� t2 color classes of size 1 should take

the rest of the weight 3 colors. By looking at the coloring of the original intervals, if the total cost
is at most 3

�
2t

3

�
+ 2
�
2t

2

�
+ 14t2 + 7t, we can create a solution to the numerical three dimensional

matching problem.

We can thus conclude that the unweighted minimum cost intervention design problem problem is
NP-hard on interval graphs.
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