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The proof of Theorem 1 is based on the results in other theorems. Thus, we postpone its proof to the
end of the supplementary material.

Proof of Theorem 2

Theorem 2. Let Assumption 1 hold and assume problem (P) satisfies the KŁ property associated
with parameter θ ∈ (0, 1]. Then, there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the
sequence {f(xk)}k generated by CR satisfies

1. If θ = 1, then f(xk) ↓ f̄ within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then f(xk) ↓ f̄ super-linearly as f(xk+1)− f̄ ≤ Θ

(
exp

(
−
(

2
3(1−θ)

)k−k0))
;

3. If θ = 1
3 , then f(xk) ↓ f̄ linearly as f(xk+1)− f̄ ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then f(xk) ↓ f̄ sub-linearly as f(xk+1)− f̄ ≤ Θ

(
(k − k0)−

2
1−3θ

)
.

Proof. We first recall the following fundamental result proved in Nesterov and Polyak (2006), which
serves as a convenient reference.

Theorem 5 (Theorem 2, Nesterov and Polyak (2006)). Let Assumption 1 hold. Then, the sequence
{xk}k generated by CR satisfies

1. The set of limit points ω(x0) of {xk}k is nonempty and compact, all of which are second-order
stationary points;

2. The sequence {f(xk)}k decreases to a finite limit f̄ , which is the constant function value evaluated
on the set ω(x0).

From the results of Theorem 5 we conclude that distω(x0)(xk) → 0, f(xk) ↓ f̄ and ω(x0) is
a compact set on which the function value is the constant f̄ . Then, it is clear that for any fixed
ε > 0, λ > 0 and all k ≥ k0 with k0 being sufficiently large, xk ∈ {x : distω(x0)(x) < ε, f̄ <

f(x) < f̄ + λ}. Hence, all the conditions of the KŁ property in Definition 1 are satisfied, and we can
exploit the KŁ inequality in eq. (2).

Denote rk := f(xk)− f̄ . For all k ≥ k0 we obtain that

rk
(i)

≤ C‖∇f(xk)‖
1

1−θ
(ii)

≤ C‖xk − xk−1‖
2

1−θ
(iii)

≤ C(rk−1 − rk)
2

3(1−θ) , (9)

where (i) follows from the KŁ property in eq. (3), (ii) and (iii) follow from the dynamics of CR in
Table 1 and we have absorbed all constants into C. Define δk = rkC

3(1−θ)
3θ−1 , then the above inequality

can be rewritten as

δk−1 − δk ≥ δ
3(1−θ)

2

k , ∀k ≥ k0. (10)

Next, we discuss the convergence rate of δk under different regimes of θ.

Case 1: θ = 1.

In this case, the KŁ property in eq. (2) satisfies ϕ′(t) = c and implies that ‖∇f(xk)‖ ≥ 1
c for some

constant c > 0. On the other hand, by the dynamics of CR in Table 1, we obtain that

f(xk+1) ≤ f(xk)− M

12
‖xk+1 − xk‖3 ≤ f(xk)− M

12
(

2

L+M
)

3
2 ‖∇f(xk)‖ 3

2 . (11)

Combining these two facts yields the conclusion that for all k ≥ k0

f(xk+1) ≤ f(xk)− C

for some constant C > 0. Then, we conclude that f(xk) ↓ −∞, which contradicts the fact that
f(xk) ↓ f̄ > −∞ (since f is bounded below). Hence, we must have f(xk) ≡ f̄ for all sufficiently
large k.

Case 2: θ ∈ ( 1
3 , 1).
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In this case 0 < 3(1−θ)
2 < 1. Since δk → 0 as rk → 0, δ

3(1−θ)
2

k is order-wise larger than δk for all
sufficiently large k. Hence, for all sufficiently large k, eq. (10) reduces to

δk−1 ≥ δ
3(1−θ)

2

k . (12)

It follows that δk ↓ 0 super-linearly as δk ≤ δ
2

3(1−θ)
k−1 . Since δk = rkC

2
1−3θ , we conclude that rk ↓ 0

super-linearly as rk ≤ C1r
2

3(1−θ)
k−1 for some constant C1 > 0. By letting k0 be sufficiently large so

that rk0 is sufficiently small, we obtain that

rk ≤ C1r
2

3(1−θ)
k−1 ≤ Ck−k01 r

( 2
3(1−θ) )k−k0

k0
= Θ

(
exp

(
−
(

2

3(1− θ)

)k−k0))
. (13)

Case 3: θ = 1
3 .

In this case 3(1−θ)
2 = 1, and eq. (9) reduces to rk ≤ C(rk−1 − rk), i.e., rk ↓ 0 linearly as

rk ≤ C
1+C rk−1 for some constant C > 0. Thus, we obtain that for all k ≥ k0

rk ≤
(

C

1 + C

)k−k0
rk0 = Θ

(
exp

(
− (k − k0)

))
. (14)

Case 4: θ ∈ (0, 1
3 ).

In this case, 1 < 3(1−θ)
2 < 3

2 and − 1
2 <

3θ−1
2 < 0. Since δk ↓ 0, we conclude that for all k ≥ k0

δ
− 3(1−θ)

2

k−1 < δ
− 3(1−θ)

2

k , δ
3θ−1

2

k−1 < δ
3θ−1

2

k . (15)

Define an auxiliary function φ(t) := 2
1−3θ t

3θ−1
2 so that φ′(t) = −t

3(θ−1)
2 . We next consider two

cases. First, suppose that δ
3(θ−1)

2

k ≤ 2δ
3(θ−1)

2

k−1 . Then for all k ≥ k0

φ(δk)− φ(δk−1) =

∫ δk

δk−1

φ′(t)dt =

∫ δk−1

δk

t
3(θ−1)

2 dt ≥ (δk−1 − δk)δ
3(θ−1)

2

k−1 (16)

(i)

≥ 1

2
(δk−1 − δk)δ

3(θ−1)
2

k

(ii)

≥ 1

2
, (17)

where (i) utilizes the assumption and (ii) uses eq. (10).

Second, suppose that δ
3(θ−1)

2

k ≥ 2δ
3(θ−1)

2

k−1 . Then δ
3θ−1

2

k ≥ 2
3θ−1

3(θ−1) δ
3θ−1

2

k−1 , which further leads to

φ(δk)− φ(δk−1) =
2

1− 3θ
(δ

3θ−1
2

k − δ
3θ−1

2

k−1 ) ≥ 2

1− 3θ
(2

3θ−1
3(θ−1) − 1)δ

3θ−1
2

k−1 (18)

≥ 2

1− 3θ
(2

3θ−1
3(θ−1) − 1)δ

3θ−1
2

k0
. (19)

Combining the above two cases and defining C := min{ 1
2 ,

2
1−3θ (2

3θ−1
3(θ−1) − 1)δ

3θ−1
2

k0
}, we conclude

that for all k ≥ k0

φ(δk)− φ(δk−1) ≥ C, (20)

which further implies that

φ(δk) ≥
k∑

i=k0+1

φ(δi)− φ(δi−1) ≥ C(k − k0). (21)

Substituting the form of φ into the above inequality and simplifying the expression yields δk ≤
( 2
C(1−3θ)(k−k0) )

2
1−3θ . It follows that rk ≤ ( C3

k−k0 )
2

1−3θ for some C3 > 0.
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Proof of Theorem 3

Theorem 3. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then,
the sequence {xk}k generated by CR satisfies

∞∑
k=0

‖xk+1 − xk‖ < +∞. (4)

Proof. Recall the definition that rk := f(xk) − f̄ , where f̄ is the finite limit of {f(xk)}k. Also,
recall that k0 ∈ N is a sufficiently large integer. Then, for all k ≥ k0, the KŁ property implies that

ϕ′(rk) ≥ 1

‖∇f(xk)‖
≥ 2

(L+M)‖xk − xk−1‖2
, (22)

where the last inequality uses the dynamics of CR in Table 1. Note that ϕ(t) = c
θ t
θ is concave for

θ ∈ (0, 1]. Then, by concavity we obtain that

ϕ(rk)− ϕ(rk+1) ≥ ϕ′(rk)(rk − rk+1) ≥ M

6(L+M)

‖xk+1 − xk‖3

‖xk − xk−1‖2
, (23)

where the last inequality uses eq. (22) and the dynamics of CR in Table 1. Rearranging the above
inequality, taking cubic root and summing over k = k0, . . . , n yield that (all constants are absorbed
in C)

n∑
k=k0

‖xk+1 − xk‖ ≤ C
n∑

k=k0

(ϕ(rk)− ϕ(rk+1))
1
3 ‖xk − xk−1‖

2
3 (24)

(i)

≤ C

[
n∑

k=k0

(ϕ(rk)− ϕ(rk+1))

] 1
3
[

n∑
k=k0

‖xk − xk−1‖

] 2
3

(25)

(ii)

≤ C [ϕ(rk0)]
1
3

[
n∑

k=k0

‖xk+1 − xk‖+ ‖xk0 − xk0−1‖

] 2
3

, (26)

where (i) applies the Hölder’s inequality and (ii) uses the fact that ϕ ≥ 0. Clearly, we must have
limn→∞

∑n
k=k0

‖xk+1 − xk‖ < +∞, because otherwise the above inequality cannot hold for all n
sufficiently large. We then conclude that

∞∑
k=k0

‖xk+1 − xk‖ < +∞,

and the desired result follows because k0 is a fixed number.

Proof of Theorem 4

Theorem 4. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then,
there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the sequence {xk}k generated by CR
satisfies

1. If θ = 1, then xk → x̄ within finite number of iterations;
2. If θ ∈ ( 1

3 , 1), then xk → x̄ super-linearly as ‖xk+1 − x̄‖ ≤ Θ
(

exp
(
−
(

2θ
3(1−θ) + 2

3

)k−k0))
;

3. If θ = 1
3 , then xk → x̄ linearly as ‖xk+1 − x̄‖ ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then xk → x̄ sub-linearly as ‖xk+1 − x̄‖ ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

Proof. We prove the theorem case by case.
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Case 1: θ = 1.

We have shown in case 1 of Theorem 2 that f(xk) ↓ f̄ within finite number of iterations, i.e.,
f(xk+1) − f(xk) = 0 for all k ≥ k0. Based on this observation, the dynamics of CR in Table 1
further implies that for all k ≥ k0

0 = f(xk+1)− f(xk) ≤ −M
12
‖xk+1 − xk‖3 ≤ 0. (27)

Hence, we conclude that xk+1 = xk for all k ≥ k0, i.e., xk converges within finite number of
iterations. Since Theorem 3 shows that xk converges to some x̄, the desired conclusion follows.

Case 2: θ ∈ ( 1
3 , 1).

Denote ∆k :=
∑∞
i=k ‖xi+1 − xi‖. Note that Theorem 3 shows that xk → x̄. Thus, we have

‖xk − x̄‖ ≤ ∆k. Next, we derive the convergence rate of ∆k.

By Theorem 3, limn→∞
∑n
i=k ‖xi+1 − xi‖ exists for all k. Then, we can let n→∞ in eq. (26) and

obtain that for all k ≥ k0

∆k ≤ C[ϕ(rk)]
1
3 ∆

2
3

k−1 ≤ Cr
θ
3

k ∆
2
3

k−1

(i)

≤ C(∆k−1 −∆k)
2θ

3(1−θ) ∆
2
3

k−1 ≤ C∆
2θ

3(1−θ) + 2
3

k−1 , (28)

where C denotes a universal constant that may vary from line to line, and (i) uses the KŁ property
and the dynamics of CR, i.e., rk ≤ C‖∇f(xk)‖

1
1−θ ≤ C‖xk − xk−1‖

2
1−θ . Note that in this case we

have 2θ
3(1−θ) + 2

3 > 1, and hence the above inequality implies that ∆k converges to zero super-linearly
as

∆k ≤ Ck−k0∆
( 2θ
3(1−θ) + 2

3 )k−k0

k0
= Θ

(
exp

(
−
(

2θ

3(1− θ)
+

2

3

)k−k0))
. (29)

Since ‖xk − x̄‖ ≤ ∆k, it follows that ‖xk − x̄‖ converges to zero super-linearly as desired.

Cases 3 & 4.

We first derive another estimate on ∆k that generally holds for both cases 3 and 4, and then separately
consider cases 3 and 4, respectively.

Fix γ ∈ (0, 1) and consider k ≥ k0. Suppose that ‖xk+1 − xk‖ ≥ γ‖xk − xk−1‖, then eq. (23) can
be rewritten as

‖xk+1 − xk‖ ≤
C

γ2
(ϕ(rk)− ϕ(rk+1)) (30)

for some constant C > 0. Otherwise, we have ‖xk+1 − xk‖ ≤ γ‖xk − xk−1‖. Combing these two
inequalities yields that

‖xk+1 − xk‖ ≤ γ‖xk − xk−1‖+
C

γ2
(ϕ(rk)− ϕ(rk+1)). (31)

Summing the above inequality over k = k0, . . . , n yields that

n∑
k=k0

‖xk+1 − xk‖ ≤ γ
n∑

k=k0

‖xk − xk−1‖+
C

γ2
(ϕ(rk0)− ϕ(rn+1)) (32)

≤ γ

[
n∑

k=k0

‖xk+1 − xk‖+ ‖xk0 − xk0−1‖

]
+
C

γ2
ϕ(rk0). (33)

Rearranging the above inequality yields that

n∑
k=k0

‖xk+1 − xk‖ ≤
γ

1− γ
‖xk0 − xk0−1‖+

C

γ2(1− γ)
ϕ(rk0). (34)
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Recall ∆k :=
∑∞
i=k ‖xi+1 − xi‖ < +∞. Letting n→∞ in the above inequality yields that for all

sufficiently large k

∆k ≤
γ

1− γ
(∆k−1 −∆k) +

C

γ2(1− γ)θ
rθk (35)

(i)

≤ γ

1− γ
(∆k−1 −∆k) +

C

γ2(1− γ)θ
‖xk − xk−1‖

2θ
1−θ (36)

≤ γ

1− γ
(∆k−1 −∆k) +

C

γ2(1− γ)θ
(∆k−1 −∆k)

2θ
1−θ , (37)

where (i) uses the KŁ property and the dynamics of CR, i.e., rk ≤ C‖∇f(xk)‖
1

1−θ ≤ C‖xk −
xk−1‖

2
1−θ .

Case 3: θ = 1
3 . In this case, 2θ

1−θ = 1 and eq. (37) implies that ∆k ≤ C(∆k−1 − ∆k) for all
sufficiently large k, i.e., ∆k converges to zero linearly as ∆k ≤ ( C

1+C )k−k0∆k0 . The desired result
follows since ‖xk − x̄‖ ≤ ∆k.

Case 4: θ ∈ (0, 1
3 ). In this case, 0 < 2θ

1−θ < 1 and eq. (37) can be asymptotically rewritten as

∆k ≤ C
γ2(1−γ)θ (∆k−1 −∆k)

2θ
1−θ . This further implies that

∆
1−θ
2θ

k ≤ C(∆k−1 −∆k) (38)

for some constant C > 0. Define h(t) = t−
1−θ
2θ and fix β > 1. Suppose first that h(∆k) ≤

βh(∆k−1). Then the above inequality implies that

1 ≤ C∆k−1 −∆k

∆
1−θ
2θ

k

= C(∆k−1 −∆k)h(∆k) ≤ Cβ(∆k−1 −∆k)h(∆k−1) (39)

≤ Cβ
∫ ∆k−1

∆k

h(t)dt = Cβ
2θ

3θ − 1
(∆

3θ−1
2θ

k−1 −∆
3θ−1
2θ

k ). (40)

Set µ := 1−3θ
2Cβθ > 0, ν := 3θ−1

2θ < 0. Then the above inequality can be rewritten as

∆ν
k −∆ν

k−1 ≥ µ. (41)

Now suppose h(∆k) > βh(∆k−1), which implies that ∆k < q∆k−1 with q = β−
2θ

1−θ ∈ (0, 1).
Then, we conclude that ∆ν

k ≥ qν∆ν
k−1 and hence ∆ν

k −∆ν
k−1 ≥ (qν − 1)∆ν

k−1. Since qν − 1 > 0
and ∆ν

k−1 → +∞, there must exist µ̄ > 0 such that (qν − 1)∆ν
k−1 ≥ µ̄ for all sufficiently large k.

Thus, we conclude that ∆ν
k −∆ν

k−1 ≥ µ̄. Combining two cases, we obtain that for all sufficiently
large k,

∆ν
k −∆ν

k−1 ≥ min{µ, µ̄}. (42)

Telescoping the above inequality over k = k0, . . . , k yields that

∆k ≤ [∆ν
k0 + min{µ, µ̄}(k − k0)]

1
ν ≤

(
C

k − k0

) 2θ
1−3θ

, (43)

where C is a certain positive constant. The desired result then follows from the fact that ‖xk − x̄‖ ≤
∆k.

Proof of Proposition 1

Proposition 1. Denote Ω as the set of second-order stationary points of f . Let Assumption 1
hold and assume that f satisfies the KŁ property. Then, there exist κ, ε, λ > 0 such that for all
x ∈ {z ∈ Rd : distΩ(z) < ε, fΩ < f(z) < fΩ + λ}, the following property holds.

(KŁ -error bound) distΩ(x) ≤ κ‖∇f(x)‖
θ

1−θ . (8)
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Proof. The proof idea follows from that in Yue et al. (2018). Consider any x ∈ Ωc ∩ {x ∈ Rd :
distΩ(x) < ε, fΩ < f(x) < fΩ + λ}, and consider the following differential equation

u(0) = x,
•

u(t) = −∇f(u(t)), ∀t > 0. (44)

As ∇f is continuously differentiable, it is Lipschitz on every compact set. Thus, by the Picard-
Lindelöf theorem (Hartman, 2002, Theorem II.1.1), there exists ν > 0 such that eq. (44) has a unique
solution ux(t) over the interval [0, ν]. Define ∆(t) := f(ux(t)) − fΩ. Note that ∆(t) > 0 for
t ∈ [0, ν], as otherwise there exists t̂ ∈ [0, ν] such that ux(t̂) ∈ Ω and hence ux ≡ ux(t̂) ∈ Ω is the
unique solution to eq. (44). This contradicts the fact that u(0) ∈ Ωc.

Using eq. (44) and the chain rule, we obtain that for all t ∈ [0, ν]

•

∆(t) = 〈∇f(ux(t)),
•

ux(t)〉 = −‖∇f(ux(t))‖‖
•

ux(t)‖. (45)

Applying the KŁ property in eq. (3) to the above equation yields that

•

∆(t) ≤ −
(

∆(t)

C

)1−θ

‖
•

ux(t)‖, (46)

where C > 0 is a certain universal constant. Since ∆(t) > 0, eq. (46) can be rewritten as

‖
•

ux(t)‖ ≤ −C
1−θ

θ
(∆(t)θ)′. (47)

Based on the above inequality, for any 0 ≤ a < b < ν we obtain that

‖ux(b)− ux(a)‖ = ‖
∫ b

a

•

ux(t)dt‖ ≤
∫ b

a

‖
•

ux(t)‖dt

≤ −
∫ b

a

C1−θ

θ
[∆(t)θ]′dt =

C1−θ

θ
[∆(a)θ −∆(b)θ]. (48)

In particular, setting a = 0 in eq. (48) and noting that ux(0) = x, we further obtain that

‖ux(b)− x‖ ≤ C1−θ

θ
(f(x)− fΩ)θ. (49)

Next, we show that ν = +∞. Suppose ν < +∞, then (Hartman, 2002, Corollary II.3.2) shows that
‖ux(t)‖ → +∞ as t→ ν. However, eq. (49) implies that

‖ux(t)‖ ≤ ‖x‖+ ‖ux(t)− x‖ ≤ ‖x‖+
C1−θ

θ
(f(x)− fΩ)θ < +∞,

which leads to a contradiction. Thus, ν = +∞.

Since
•

∆(t) ≤ 0, ∆(t) is non-increasing. Hence, the nonnegative sequence {∆(t)} has a limit.
Then, eq. (48) further implies that {ux(t)} is a Cauchy sequence and hence has a limit ux(∞).

Suppose ∇f(ux(∞)) 6= 0. Then we obtain that limt→∞
•

∆(t) = −‖∇f(ux(∞))‖2 < 0, which
contradicts the fact that limt→∞∆(t) exists. Thus, ∇f(ux(∞)) = 0, and this further implies that
ux(∞) ∈ Ω, f(ux(∞)) = fΩ by the KŁ property in eq. (3). We then conclude that

distΩ(x) ≤ ‖x− ux(∞)‖ = lim
t→∞

‖x− ux(t)‖ ≤ C1−θ

θ
(f(x)− fΩ)θ. (50)

Combining the above inequality with the KŁ property in eq. (3), we obtain the desired KŁ error
bound.

Proof of Proposition 2

Proposition 2. Denote Ω as the set of second-order stationary points of f . Let Assumption 1 hold
and assume that problem (P) satisfies the KŁ property. Then, there exists a sufficiently large k0 ∈ N
such that for all k ≥ k0 the sequence {distΩ(xk)}k generated by CR satisfies
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1. If θ = 1, then distΩ(xk)→ 0 within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then distΩ(xk)→ 0 super-linearly as distΩ(xk) ≤ Θ

(
exp

(
−
(

2θ
1−θ
)k−k0))

;

3. If θ = 1
3 , then distΩ(xk)→ 0 linearly as distΩ(xk) ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then distΩ(xk)→ 0 sub-linearly as distΩ(xk) ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

Proof. We prove the theorem case by case.

Case 1: θ = 1.

We have proved in Theorem 4 that xk → x̄ ∈ Ω within finite number of iterations. Since distΩ(xk) ≤
‖xk − x̄‖, we conclude that distΩ(xk) converges to zero within finite number of iterations.

Case 2: θ ∈ ( 1
3 , 1).

By the KŁ error bound in Proposition 1, we obtain that

distΩ(xk+1) ≤ C‖∇f(xk+1)‖
θ

1−θ ≤ C‖xk+1 − xk‖
2θ

1−θ , (51)

where the last inequality uses the dynamics of CR in Table 1. On the other hand, (Yue et al., 2018,
Lemma 1) shows that

‖xk+1 − xk‖ ≤ CdistΩ(xk). (52)

Combining eq. (51) and eq. (52) yields that

distΩ(xk+1) ≤ CdistΩ(xk)
2θ

1−θ . (53)

Note that in this case we have 2θ
1−θ > 1. Thus, distΩ(xk) converges to zero super-linearly as desired.

Cases 3 & 4: θ ∈ (0, 1
3 ].

Note that distΩ(xk) ≤ ‖xk − x̄‖. The desired results follow from Cases 3 & 4 in Theorem 4.

Proof of Theorem 1

Theorem 1. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property associated
with parameter θ ∈ (0, 1]. Then, there exists a sufficiently large k0 ∈ N such that for all k ≥ k0 the
sequence {µ(xk)}k generated by CR satisfies

1. If θ = 1, then µ(xk)→ 0 within finite number of iterations;

2. If θ ∈ ( 1
3 , 1), then µ(xk)→ 0 super-linearly as µ(xk) ≤ Θ

(
exp

(
−
(

2θ
1−θ
)k−k0))

;

3. If θ = 1
3 , then µ(xk)→ 0 linearly as µ(xk) ≤ Θ

(
exp

(
− (k − k0)

))
;

4. If θ ∈ (0, 1
3 ), then µ(xk)→ 0 sub-linearly as µ(xk) ≤ Θ

(
(k − k0)−

2θ
1−3θ

)
.

Proof. By the dynamics of CR in Table 1, we obtain that

‖∇f(xk+1)‖ ≤ L+M

2
‖xk+1 − xk‖2, (54)

−λmin(∇2f(xk+1)) ≤ 2L+M

2
‖xk+1 − xk‖. (55)

The above two inequalities imply that µ(xk) ≤ ‖xk+1 − xk‖. Also, (Yue et al., 2018, Lemma 1)
shows that ‖xk+1 − xk‖ ≤ CdistΩ(xk). Then, the desired convergence result for µ(xk) follows
from Proposition 2.
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