Supplementary Materials

The proof of Theorem I]is based on the results in other theorems. Thus, we postpone its proof to the
end of the supplementary material.

Proof of Theorem

Theorem 2. Let Assumptionhold and assume problem (P) satisfies the KL property associated
with parameter 6 € (0, 1]. Then, there exists a sufficiently large ko € W such that for all k > kg the
sequence { f (xy,)}, generated by CR satisfies

1. If0 = 1, then f(x) | f within finite number of iterations;

2. If0 € (3,1), then f(xy) | f super-linearly as f(xj41) — f < G(exp ( _ <ﬁ)k_ko));
3. If0 = %, then f(xi) | [ linearly as f(xj41) — f < @(exp (= (k- ko)));

4. If0 € (0, %), then f(xi) | f sub-linearly as f(xip41) — f < @((k - ko)_ﬁ)

Proof. We first recall the following fundamental result proved in Nesterov and Polyak! (2006), which
serves as a convenient reference.

Theorem 5 (Theorem 2, Nesterov and Polyak| (2006)). Let Assumption[I|hold. Then, the sequence
{x1} i generated by CR satisfies

1. The set of limit points w(xg) of {X }« is nonempty and compact, all of which are second-order
stationary points; B

2. The sequence { f (xy,) }r, decreases to a finite limit f, which is the constant function value evaluated
on the set w(xg).

From the results of Theorem |5| we conclude that diste,(x,)(xk) — 0, f(x) | f and w(xo) is

a compact set on which the function value is the constant f. Then, it is clear that for any fixed
€ > 0,\ > 0andall k > ko with ko being sufficiently large, x € {x : distyx,) (%) < &, f <
f(x) < f+ A}. Hence, all the conditions of the KE property in Deﬁnition are satisfied, and we can
exploit the KE inequality in eq. (2).

Denote 7, := f(x) — f. For all k > ko we obtain that

(1) (i1) (#44)
re < CIVFG) ™0 < Cllxi = x| 77 < Clrgmy =) 07, ©)
where (i) follows from the KL property in eq. (E]) (i1) and (iii) follow from the dynamics of CR in

. 3(1-9) . .
Tableand we have absorbed all constants into C'. Define §;, = riC 3¢-1 , then the above inequality
can be rewritten as

3(1—9

Ohot =0 208, 7, k> ko (10)
Next, we discuss the convergence rate of §; under different regimes of 6.
Casel: 0 =1.

In this case, the KE property in eq. (2) satisfies ¢() = ¢ and implies that ||V f(x)|| > L for some
constant ¢ > 0. On the other hand, by the dynamics of CR in Table[I] we obtain that

Mo
12" L+ M

Combining these two facts yields the conclusion that for all k£ > kg

f(Xp41) < f(xx) = C

for some constant C' > 0. Then, we conclude that f(xj) | —oo, which contradicts the fact that
f(xx) 4 f > —oc (since f is bounded below). Hence, we must have f(x;) = f for all sufficiently
large k.

Case2: 0 € (3,1).

M 3 3
J(Xr1) < f(xx) — ﬁ||Xk+1 —xx|® < f(xx) )2V f (%) |2 (11)
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3(1 0)
In this case 0 < 3(12 9 < 1. Since 0 — 0asr, — 0, 6 is order-wise larger than Jy, for all
sufficiently large k. Hence, for all sufficiently large k, eq. (10) reduces to

3(1—6)
Sp—1 >0, = . (12)
It follows that d, J. O super—hnearly as 0y <0, "(1 . Since 6, = r,C = , we conclude that r; | 0

super- lmearly asri < Clr?’“ 3079 for some constant C; > 0. By letting ko be sufficiently large so
that ry, is sufficiently small we obtain that

o i ho 2\

Case3: 0 = 1.

3(1—9)

In this case = 1, and eq. (EI) reduces to 1, < C(rg—1 — rg), i.e., 7 J O linearly as

Th_1 for some constant C' > 0. Thus, we obtain that for all k& > k

C k—ko
T < <1—|—C> rk0:®<exp(—(k—ko)))~ (14)

Tk S 1+C

Cased: 6 € (0, 3).

In this case, 1 < 3(1 9) <3 3 and — < % < 0. Since ¢, | 0, we conclude that for all & > kg

_3(1-6) _3(1-0) 30—1 30—1

0, 12 <0, %, 0.3 <67 . (15)
Define an auxiliary function ¢(t) := 125> so that ¢/(t) = —t*“7” . We next consider two
3(0—1) 3(0—1)
cases. First, suppose that 5, > <26, 7 . Then forall k > kg
Ok , Ok—1 3(3_ 3(6—1)
000~ o) = [ gde= [T = G- 005 0
Op—1 Ok
(@) 1 (9 1) (4) 1
> —(6 — 0k)0 > 17
> 2( k—1— Ok)0y, Z 5 (17)
where (i) utilizes the assumption and (ii) uses eq. (I0).
3(0—1) 3(0—1) 360—1 30—1
Second, suppose that 6, 2 >26, 2 .Thend, 2 > 95517 % , which further leads to
2 360—1 30—1 2 30—1 30—1
¢(0k) — ¢(0k—1) = m(% =60 )2 T 39(23“’*“ —1)6, 2% (18)
> 257D — 1)5,.% (19)
“1-30 o ko
39—
Combining the above two cases and defining C' := min{3, 25 (231 S0 — 1)d, 2 }, we conclude
that for all k£ > kg
¢(6k) — ¢(0p—1) = C, (20)
which further implies that
k
> 6(6:) — d(6i-1) = Ck — ko). @1
i=ko+1

Substituting the form of ¢ into the above inequality and simplifying the expression yields d; <
2 2
=30 _ It follows that rj, < (k(j‘;’m)lfse for some C3 > 0.

(76'(17302)%71@0))
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Proof of Theorem

Theorem 3. Let Assumption|l|hold and assume that problem (P) satisfies the KL property. Then,
the sequence {Xy, }1. generated by CR satisfies

Z ||Xk+1 - Xk” < +00. 4)
k=0

Proof. Recall the definition that rj, := f(x;) — f, where f is the finite limit of {f(xz)}x. Also,
recall that kg € IN is a sufficiently large integer. Then, for all £ > kg, the KL property implies that
) > 1 S 2
r )
7S VGl = T Ml — %

(22)
where the last inequality uses the dynamics of CR in Table Note that ¢(t) = gte is concave for
6 € (0,1]. Then, by concavity we obtain that

M xpg — %]
L4+ M) |lxx —xp1]?’

where the last inequality uses eq. and the dynamics of CR in Table|l] Rearranging the above

o(rr) = p(rrg1) > @' (re) (rk = Thy1) > o (23)

inequality, taking cubic root and summing over k = ko, ..., n yield that (all constants are absorbed
in C)
D Iiss = xull < C D7 (0lrw) = @(ricen))® i — xia[1* (24)
k=ko k=ko
1 2
(l) n 3 n 3
<C| > (olr) - w(mm))] [Z l[xx — xwl] (25)
k=ko k=ko
(i4) P 3
< Clori)l® | Y Iksr = xull + %o = xpo-all| » (26)
k=ko

where (i) applies the Holder’s inequality and (ii) uses the fact that ¢ > 0. Clearly, we must have
lim;, 00 Zzzko IXx+1 — Xk || < 400, because otherwise the above inequality cannot hold for all n
sufficiently large. We then conclude that

o0
S i — xill < +o0,
k):k[)

and the desired result follows because kg is a fixed number.

Proof of Theorem 4]

Theorem 4. Let Assumption|l|hold and assume that problem (P) satisfies the KL property. Then,
there exists a sufficiently large ko € IN such that for all k > kg the sequence {xy }i. generated by CR
satisfies

1. If0 = 1, then x;; — X within finite number of iterations;
2. If6 € (3,1), then xi, — X super-linearly as ||xj11 — X|| < @(exp ( - (3(127% + %)kfko)>;

3. If0 = %, then xj, — X linearly as ||xj11 — X|| < @(exp (= (k- ko)));

4. If6 € (0, 3), then xj, — X sub-linearly as ||xp4+1 — X|| < 9<(k - /4:0)7%).
Proof. We prove the theorem case by case.
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Casel: 0 = 1.

We have shown in case 1 of Theorem [2| that f(x;) | f within finite number of iterations, i.e.,
f(xg41) — f(xx) = 0 forall £ > ky. Based on this observation, the dynamics of CR in Table
further implies that for all £ > kg

M
0= f(xre1) = fOxr) < =5 [xpen = xi* 0. (27)
Hence, we conclude that x;+1 = xj, for all £ > ko, i.e., x; converges within finite number of
iterations. Since TheoremE] shows that x;, converges to some X, the desired conclusion follows.
Case2: 0 € (3,1).

Denote Ay, := Y 7, ||xi;41 — x;||. Note that Theorem [3| shows that x;, — X. Thus, we have
lxx — %x|| < Ag. Next, we derive the convergence rate of Ag.

By Theorem limy, o0 Doy [[Xi+1 — X exists for all k. Then, we can let n — oo in eq. and
obtain that for all k£ > kg

12 o 2 (9 2 2 _20 2
Ap < Clo(rp)]3Af_, < 07’5 A < C(Apoy — Ap)TEDAS | < OA,;‘S;”“, (28)

where C' denotes a universal constant that may vary from line to line, and (i) uses the KL property
and the dynamics of CR, i.e., 1, < C||Vf(x)||T? < C||xx — Xr—1]| 77 . Note that in this case we
have % + % > 1, and hence the above inequality implies that Ay, converges to zero super-linearly

as
ko A (TEERy+B)E R 20 AN
Ay < CFhop 0D T3 = — z ) )
< C ko @(exp( <3(19)+3> (29)

Since ||xx — X|| < Ay, it follows that ||x; — X|| converges to zero super-linearly as desired.
Cases 3 & 4.

We first derive another estimate on Ay, that generally holds for both cases 3 and 4, and then separately
consider cases 3 and 4, respectively.

Fix v € (0, 1) and consider k > kq. Suppose that ||xx.1 — Xg|| > 7|[xx — xx_1||, then eq. can
be rewritten as

C
s =%l < 25 (0 () = lresn) (30)

for some constant C' > 0. Otherwise, we have ||xx+1 — Xi|| < v||xx — X—1||. Combing these two
inequalities yields that

C

[%k1 = Xkl < vllxk — xp-1 + ?(W(Tk) — (rE+1))- @31
Summing the above inequality over k = ko, . .., n yields that

n n C
Z l[%p+1 — xpll <y Z 1% = k1]l + 5 ((rk,) = ©(rns1)) (32)

k=k k=k v

0 0
- c
<YLY Ik = Xkl + 1%k, — Xkoall | + ﬁw(%) (33)
k=kq

Rearranging the above inequality yields that

Xk+1 = Xkl| < —— XKy = Xko—1ll + 57—9(7k)- (34)
k;() L—y o (L=
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Recall Ay, := Y72 %41 — X;|| < 400. Letting n — oo in the above inequality yields that for all
sufficiently large &

2 ¢ 0
Ap < ——(Dpo1 — D)+
k< 1_7( k1 k)+’y2(1_7)97"k 35)
< (B = 80+ gl — x| 66)
= 1_7 k—1 k 2(1—)8 X — Xk—1
C 20
Sl ’Y(Ak 1—Ak) W(Akfl_Ak)lfea (37)

where (i) uses the KE property and the dynamics of CR, i.e., r < CHVf(xk)Hﬁ < C||xr —
_2

Xk—1 || 1-6,

Case 3: 0 = 1. In this case, 2%, = 1 and eq. implies that A, < C(Ap_; — Ay) for all

sufficiently large k, i.e., Ay, converges to zero linearly as Ay, < ( CC)k ko Ay,,. The desired result

T+
follows since ||x; — X|| < Ag.

1
A < W(Ak—l — Ag) % . This further implies that

Case 4: 0 € (0, 3) In this case, 0 < %90 < 1 and eq. can be asymptotically rewritten as

AF <Ot — Ay) (38)

for some constant C' > 0. Define h(t) = t=*5% and fix 3 > 1. Suppose first that h(Ag) <
Bh(Ak—_1). Then the above inequality implies that

Ay, A
1< 228 — O(AL1 — A)h(AR) < CB(Aj—1 — Ap)h(Ag_1) (39)
Ak29
Ap_1 9 30—1 30—1
< OB A h(t)dt = (A7 = A7), (40)
k

Set p 1= 2022 >0,v:= 39 L < 0. Then the above inequality can be rewritten as
Af —Af > e (41)

Now suppose h(Aj) > Bh(Ak_1), which implies that A, < qu 1 with ¢ = B_% € (0,1).
Then, we conclude that Ay > ¢¥AY_| and hence Ay — AY | > (¢ —1)AY_;.Since¢” —1 >0
and A} _; — 400, there must exist zi > 0 such that (q —1)AY_, > [ for all sufficiently large k.
Thus, we conclude that A}, — A}_; > i. Combining two cases, we obtain that for all sufficiently
large k,

AY — AY_y > min{u, i), “2)
Telescoping the above inequality over k = ko, . .., k yields that
1 C 1—36
A< (A, +minfu - kol < (1 50) @)

where C is a certain positive constant. The desired result then follows from the fact that ||x; — X|| <
Ag.

Proof of Proposition

Proposition 1. Denote ) as the set of second-order stationary points of f. Let Assumption
hold and assume that f satisfies the KL property. Then, there exist k,e, X > 0 such that for all
x € {z € R? : dista(z) < ¢, fa < f(2) < fo + A}, the following property holds.

(KL -error bound)  distq(x) < /{||Vf(x)Hf%9. (8)
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Proof. The proof idea follows from that in Yue et al. (2018). Consider any x € Q¢ N {x € R? :
disto(x) < e, fa < f(x) < fa + A}, and consider the following differential equation

u(0) =x, u(t)=-Vf(ut), Vt>D0. (44)

As V f is continuously differentiable, it is Lipschitz on every compact set. Thus, by the Picard-
Lindelof theorem (Hartman, [2002, Theorem II.1.1), there exists v > 0 such that eq. @I) has a unique
solution ux(t) over the interval [0, v]. Define A(t) := f(ux(t)) — fo. Note that A(t) > 0 for
t € [0,v], as otherwise there exists € [0, 1] such that u, (f) € € and hence uy = u,(f) € Qs the
unique solution to eq. (44). This contradicts the fact that u(0) € Q.

Using eq. and the chain rule, we obtain that for all ¢ € [0, V]

A(t) = (V£ (ux(t)), ux(t)) = ~[[V.f (ux(®)) [ |ux(2)]]- (45)
Applying the KE property in eq. (3) to the above equation yields that
- AN
A<= (58) ol (6)
where C' > 0 is a certain universal constant. Since A(t) > 0, eq. can be rewritten as
. 0179 p
lax (Bl < =—5— (A7) (47)

Based on the above inequality, for any 0 < a < b < v we obtain that

b b
) ~ usla)]| = || [ e(t)dt] < [ iu(t)

bor? 0/ ct? 0 0
<- [ Saea=Son@ - ae @
In particular, setting a = 0 in eq. and noting that u, (0) = x, we further obtain that
1-6
[[ux (b) — x| < (f(x) = fa)’. (49)

Next, we show that v = 4-00. Suppose v < 400, then (Hartman| |[2002, Corollary I1.3.2) shows that
|[ux(t)]] = +o0 as t — v. However, eq. implies that

1-6
0

[ (O < [l + [ () — x| < Ix[] + (f(x) = fa)” < +o0,

which leads to a contradiction. Thus, v = +o0.
Since A(t) < 0, A(t) is non-increasing. Hence, the nonnegative sequence {A(¢)} has a limit.

Then, eq. further implies that {ux(¢)} is a Cauchy sequence and hence has a limit uy(co).

Suppose V f(ux(o0)) # 0. Then we obtain that lim; o, A(t) = —||V f(ux(c0))||?> < 0, which
contradicts the fact that lim;_, o, A(t) exists. Thus, V f(ux(c0)) = 0, and this further implies that
uy (00) € Q, f(ux(c0)) = fq by the KL property in eq. (3). We then conclude that

1-6

disto(x) < x — ue(o0)]| = Jim [x = ux(t)| < =5 (F() = fa)"" (50)
Combining the above inequality with the KE property in eq. (3), we obtain the desired KE error
bound. O

Proof of Proposition 2]

Proposition 2. Denote ) as the set of second-order stationary points of f. Let Assumption|l|hold
and assume that problem (P) satisfies the KL property. Then, there exists a sufficiently large ko € IN
such that for all k > kg the sequence {distq(xy )}, generated by CR satisfies
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1. If0 = 1, then distg(xg) — 0 within finite number of iterations;

2. If0 € (%, 1), then distq(xy) — 0 super-linearly as disto(xy) < @(exp ( — (%)kiko));
3. If0 = 3, then distq(xy) — 0 linearly as distg(xy) < @(exp (= (k- ko)));

4. If0 € (0, 1), then distq(xx) — 0 sub-linearly as distq(x) < @((k’ - ko)f%).

Proof. We prove the theorem case by case.

Case1: 6 = 1.

We have proved in Theoremd]that x;, — % € Q2 within finite number of iterations. Since distq (xx) <
||lxx — x||, we conclude that dist(xx) converges to zero within finite number of iterations.

Case2: 0 € (3,1).
By the KL error bound in Proposition [T} we obtain that

dista (xg11) < C||Vf(xp11)| 77 < Cllxasr — x5 77, (51)

where the last inequality uses the dynamics of CR in Table E} On the other hand, (Yue et al., 2018|
Lemma 1) shows that

ka;+1 — ch” < Cdistg(xk). (52)
Combining eq. (51)) and eq. (52) yields that

disto (xp41) < Cdiste (xp) 70 . (53)

20

Note that in this case we have 1= > 1. Thus, disto(xy) converges to zero super-linearly as desired.

Cases 3 & 4: 0 € (0, 1.
Note that disto (xj) < [|[xx — X||. The desired results follow from Cases 3 & 4 in Theorem [4]

Proof of Theorem (1]

Theorem 1. Let Assumptionhold and assume that problem (P) satisfies the KL property associated
with parameter 6 € (0, 1]. Then, there exists a sufficiently large ko € W such that for all k > kg the
sequence {ji(xy,)}; generated by CR satisfies

1. If0 = 1, then u(xy) — 0 within finite number of iterations;

2. If0 € (3, 1), then p(xi) — O super-linearly as p(xy,) < @(exp ( - (%)k_ko)>;
3. If0 = %, then pu(xi) — 0 linearly as p(x;) < @(exp (= (k- ko)));

4. If0 € (0, %), then pu(xi) — 0 sub-linearly as p(xy) < @((kj - ko)_%)

Proof. By the dynamics of CR in Table[I] we obtain that

L;M”Xk-&-l —x]?, (54)
2L+ M
2
The above two inequalities imply that p(xy) < ||[Xk+1 — Xi||. Also, (Yue et al.,[2018, Lemma 1)

shows that ||xx+1 — x| < Cdistq(xx). Then, the desired convergence result for p(xy) follows
from Proposition 2}

IV (k) <

“Amin (V2 f(xp11)) < X1 — X5 (55)

O
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