Supplementary Materials

The proof of Theorem 1 is based on the results in other theorems. Thus, we postpone its proof to the end of the supplementary material.

Proof of Theorem 2

Theorem 2. Let Assumption 1 hold and assume problem (P) satisfies the KL property associated with parameter $\theta \in (0, 1]$. Then, there exists a sufficiently large $k_0 \in \mathbb{N}$ such that for all $k \ge k_0$ the sequence $\{f(\mathbf{x}_k)\}_k$ generated by CR satisfies

1. If $\theta = 1$, then $f(\mathbf{x}_k) \downarrow \bar{f}$ within finite number of iterations; 2. If $\theta \in (\frac{1}{3}, 1)$, then $f(\mathbf{x}_k) \downarrow \bar{f}$ super-linearly as $f(\mathbf{x}_{k+1}) - \bar{f} \leq \Theta\left(\exp\left(-\left(\frac{2}{3(1-\theta)}\right)^{k-k_0}\right)\right)$; 3. If $\theta = \frac{1}{3}$, then $f(\mathbf{x}_k) \downarrow \bar{f}$ linearly as $f(\mathbf{x}_{k+1}) - \bar{f} \leq \Theta\left(\exp\left(-(k-k_0)\right)\right)$; 4. If $\theta \in (0, \frac{1}{3})$, then $f(\mathbf{x}_k) \downarrow \bar{f}$ sub-linearly as $f(\mathbf{x}_{k+1}) - \bar{f} \leq \Theta\left((k-k_0)^{-\frac{2}{1-3\theta}}\right)$.

Proof. We first recall the following fundamental result proved in Nesterov and Polyak (2006), which serves as a convenient reference.

Theorem 5 (Theorem 2, Nesterov and Polyak (2006)). Let Assumption 1 hold. Then, the sequence $\{\mathbf{x}_k\}_k$ generated by CR satisfies

- 1. The set of limit points $\omega(\mathbf{x}_0)$ of $\{\mathbf{x}_k\}_k$ is nonempty and compact, all of which are second-order stationary points;
- 2. The sequence $\{f(\mathbf{x}_k)\}_k$ decreases to a finite limit \overline{f} , which is the constant function value evaluated on the set $\omega(\mathbf{x}_0)$.

From the results of Theorem 5 we conclude that $\operatorname{dist}_{\omega(\mathbf{x}_0)}(\mathbf{x}_k) \to 0$, $f(\mathbf{x}_k) \downarrow \overline{f}$ and $\omega(\mathbf{x}_0)$ is a compact set on which the function value is the constant \overline{f} . Then, it is clear that for any fixed $\epsilon > 0, \lambda > 0$ and all $k \ge k_0$ with k_0 being sufficiently large, $\mathbf{x}_k \in {\mathbf{x} : \operatorname{dist}_{\omega(\mathbf{x}_0)}(\mathbf{x}) < \varepsilon, \overline{f} < f(\mathbf{x}) < \overline{f} + \lambda}$. Hence, all the conditions of the KŁ property in Definition 1 are satisfied, and we can exploit the KŁ inequality in eq. (2).

Denote $r_k := f(\mathbf{x}_k) - \overline{f}$. For all $k \ge k_0$ we obtain that

$$r_{k} \stackrel{(i)}{\leq} C \|\nabla f(\mathbf{x}_{k})\|^{\frac{1}{1-\theta}} \stackrel{(ii)}{\leq} C \|\mathbf{x}_{k} - \mathbf{x}_{k-1}\|^{\frac{2}{1-\theta}} \stackrel{(iii)}{\leq} C(r_{k-1} - r_{k})^{\frac{2}{3(1-\theta)}},$$
(9)

where (i) follows from the KŁ property in eq. (3), (ii) and (iii) follow from the dynamics of CR in Table 1 and we have absorbed all constants into C. Define $\delta_k = r_k C^{\frac{3(1-\theta)}{3\theta-1}}$, then the above inequality can be rewritten as

$$\delta_{k-1} - \delta_k \ge \delta_k^{\frac{3(1-\theta)}{2}}, \quad \forall k \ge k_0.$$
(10)

Next, we discuss the convergence rate of δ_k under different regimes of θ .

Case 1: $\theta = 1$ **.**

In this case, the KŁ property in eq. (2) satisfies $\varphi'(t) = c$ and implies that $\|\nabla f(\mathbf{x}_k)\| \ge \frac{1}{c}$ for some constant c > 0. On the other hand, by the dynamics of CR in Table 1, we obtain that

$$f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - \frac{M}{12} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^3 \le f(\mathbf{x}_k) - \frac{M}{12} (\frac{2}{L+M})^{\frac{3}{2}} \|\nabla f(\mathbf{x}_k)\|^{\frac{3}{2}}.$$
 (11)

Combining these two facts yields the conclusion that for all $k \ge k_0$

$$f(\mathbf{x}_{k+1}) \le f(\mathbf{x}_k) - C$$

for some constant C > 0. Then, we conclude that $f(\mathbf{x}_k) \downarrow -\infty$, which contradicts the fact that $f(\mathbf{x}_k) \downarrow \bar{f} > -\infty$ (since f is bounded below). Hence, we must have $f(\mathbf{x}_k) \equiv \bar{f}$ for all sufficiently large k.

Case 2: $\theta \in (\frac{1}{3}, 1)$.

In this case $0 < \frac{3(1-\theta)}{2} < 1$. Since $\delta_k \to 0$ as $r_k \to 0$, $\delta_k^{\frac{3(1-\theta)}{2}}$ is order-wise larger than δ_k for all sufficiently large k. Hence, for all sufficiently large k, eq. (10) reduces to

$$\delta_{k-1} \ge \delta_k^{\frac{3(1-\theta)}{2}}.$$
(12)

It follows that $\delta_k \downarrow 0$ super-linearly as $\delta_k \leq \delta_{k-1}^{\frac{2}{3(1-\theta)}}$. Since $\delta_k = r_k C^{\frac{2}{1-3\theta}}$, we conclude that $r_k \downarrow 0$ super-linearly as $r_k \leq C_1 r_{k-1}^{\frac{2}{3(1-\theta)}}$ for some constant $C_1 > 0$. By letting k_0 be sufficiently large so that r_{k_0} is sufficiently small, we obtain that

$$r_k \le C_1 r_{k-1}^{\frac{2}{3(1-\theta)}} \le C_1^{k-k_0} r_{k_0}^{(\frac{2}{3(1-\theta)})^{k-k_0}} = \Theta\left(\exp\left(-\left(\frac{2}{3(1-\theta)}\right)^{k-k_0}\right)\right).$$
(13)

Case 3: $\theta = \frac{1}{3}$.

In this case $\frac{3(1-\theta)}{2} = 1$, and eq. (9) reduces to $r_k \leq C(r_{k-1} - r_k)$, i.e., $r_k \downarrow 0$ linearly as $r_k \leq \frac{C}{1+C}r_{k-1}$ for some constant C > 0. Thus, we obtain that for all $k \geq k_0$

$$r_k \le \left(\frac{C}{1+C}\right)^{k-k_0} r_{k_0} = \Theta\left(\exp\left(-(k-k_0)\right)\right).$$
(14)

Case 4: $\theta \in (0, \frac{1}{3})$.

In this case, $1 < \frac{3(1-\theta)}{2} < \frac{3}{2}$ and $-\frac{1}{2} < \frac{3\theta-1}{2} < 0$. Since $\delta_k \downarrow 0$, we conclude that for all $k \ge k_0$

$$\delta_{k-1}^{-\frac{3(1-\theta)}{2}} < \delta_k^{-\frac{3(1-\theta)}{2}}, \quad \delta_{k-1}^{\frac{3\theta-1}{2}} < \delta_k^{\frac{3\theta-1}{2}}.$$
(15)

Define an auxiliary function $\phi(t) := \frac{2}{1-3\theta}t^{\frac{3\theta-1}{2}}$ so that $\phi'(t) = -t^{\frac{3(\theta-1)}{2}}$. We next consider two cases. First, suppose that $\delta_k^{\frac{3(\theta-1)}{2}} \le 2\delta_{k-1}^{\frac{3(\theta-1)}{2}}$. Then for all $k \ge k_0$

$$\phi(\delta_k) - \phi(\delta_{k-1}) = \int_{\delta_{k-1}}^{\delta_k} \phi'(t) dt = \int_{\delta_k}^{\delta_{k-1}} t^{\frac{3(\theta-1)}{2}} dt \ge (\delta_{k-1} - \delta_k) \delta_{k-1}^{\frac{3(\theta-1)}{2}}$$
(16)

$$\stackrel{(i)}{\geq} \frac{1}{2} (\delta_{k-1} - \delta_k) \delta_k^{\frac{3(\theta-1)}{2}} \stackrel{(ii)}{\geq} \frac{1}{2}, \tag{17}$$

where (i) utilizes the assumption and (ii) uses eq. (10).

Second, suppose that $\delta_k^{\frac{3(\theta-1)}{2}} \ge 2\delta_{k-1}^{\frac{3(\theta-1)}{2}}$. Then $\delta_k^{\frac{3\theta-1}{2}} \ge 2^{\frac{3\theta-1}{3(\theta-1)}}\delta_{k-1}^{\frac{3\theta-1}{2}}$, which further leads to

$$\phi(\delta_k) - \phi(\delta_{k-1}) = \frac{2}{1 - 3\theta} \left(\delta_k^{\frac{3\theta - 1}{2}} - \delta_{k-1}^{\frac{3\theta - 1}{2}} \right) \ge \frac{2}{1 - 3\theta} \left(2^{\frac{3\theta - 1}{3(\theta - 1)}} - 1 \right) \delta_{k-1}^{\frac{3\theta - 1}{2}}$$
(18)

$$\geq \frac{2}{1-3\theta} \left(2^{\frac{3\theta-1}{3(\theta-1)}} - 1\right) \delta_{k_0}^{\frac{3\theta-1}{2}}.$$
(19)

Combining the above two cases and defining $C := \min\{\frac{1}{2}, \frac{2}{1-3\theta}(2^{\frac{3\theta-1}{3(\theta-1)}}-1)\delta_{k_0}^{\frac{3\theta-1}{2}}\}$, we conclude that for all $k \ge k_0$

$$\phi(\delta_k) - \phi(\delta_{k-1}) \ge C,\tag{20}$$

which further implies that

$$\phi(\delta_k) \ge \sum_{i=k_0+1}^k \phi(\delta_i) - \phi(\delta_{i-1}) \ge C(k-k_0).$$
(21)

Substituting the form of ϕ into the above inequality and simplifying the expression yields $\delta_k \leq (\frac{2}{C(1-3\theta)(k-k_0)})^{\frac{2}{1-3\theta}}$. It follows that $r_k \leq (\frac{C_3}{k-k_0})^{\frac{2}{1-3\theta}}$ for some $C_3 > 0$.

Proof of Theorem 3

Theorem 3. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then, the sequence $\{\mathbf{x}_k\}_k$ generated by CR satisfies

$$\sum_{k=0}^{\infty} \|\mathbf{x}_{k+1} - \mathbf{x}_k\| < +\infty.$$
(4)

Proof. Recall the definition that $r_k := f(\mathbf{x}_k) - \overline{f}$, where \overline{f} is the finite limit of $\{f(\mathbf{x}_k)\}_k$. Also, recall that $k_0 \in \mathbb{N}$ is a sufficiently large integer. Then, for all $k \ge k_0$, the KŁ property implies that

$$\varphi'(r_k) \ge \frac{1}{\|\nabla f(\mathbf{x}_k)\|} \ge \frac{2}{(L+M)\|\mathbf{x}_k - \mathbf{x}_{k-1}\|^2},$$
(22)

where the last inequality uses the dynamics of CR in Table 1. Note that $\varphi(t) = \frac{c}{\theta}t^{\theta}$ is concave for $\theta \in (0, 1]$. Then, by concavity we obtain that

$$\varphi(r_k) - \varphi(r_{k+1}) \ge \varphi'(r_k)(r_k - r_{k+1}) \ge \frac{M}{6(L+M)} \frac{\|\mathbf{x}_{k+1} - \mathbf{x}_k\|^3}{\|\mathbf{x}_k - \mathbf{x}_{k-1}\|^2},$$
(23)

where the last inequality uses eq. (22) and the dynamics of CR in Table 1. Rearranging the above inequality, taking cubic root and summing over $k = k_0, \ldots, n$ yield that (all constants are absorbed in C)

$$\sum_{k=k_0}^n \|\mathbf{x}_{k+1} - \mathbf{x}_k\| \le C \sum_{k=k_0}^n (\varphi(r_k) - \varphi(r_{k+1}))^{\frac{1}{3}} \|\mathbf{x}_k - \mathbf{x}_{k-1}\|^{\frac{2}{3}}$$
(24)

$$\stackrel{(i)}{\leq} C \left[\sum_{k=k_0}^n (\varphi(r_k) - \varphi(r_{k+1})) \right]^{\frac{1}{3}} \left[\sum_{k=k_0}^n \|\mathbf{x}_k - \mathbf{x}_{k-1}\| \right]^{\frac{2}{3}}$$
(25)

$$\stackrel{(ii)}{\leq} C\left[\varphi(r_{k_0})\right]^{\frac{1}{3}} \left[\sum_{k=k_0}^n \|\mathbf{x}_{k+1} - \mathbf{x}_k\| + \|\mathbf{x}_{k_0} - \mathbf{x}_{k_0-1}\|\right]^{\frac{2}{3}}, \quad (26)$$

where (i) applies the Hölder's inequality and (ii) uses the fact that $\varphi \ge 0$. Clearly, we must have $\lim_{n\to\infty} \sum_{k=k_0}^{n} \|\mathbf{x}_{k+1} - \mathbf{x}_k\| < +\infty$, because otherwise the above inequality cannot hold for all n sufficiently large. We then conclude that

$$\sum_{k=k_0}^{\infty} \|\mathbf{x}_{k+1} - \mathbf{x}_k\| < +\infty,$$

and the desired result follows because k_0 is a fixed number.

Proof of Theorem 4

Theorem 4. Let Assumption 1 hold and assume that problem (P) satisfies the KŁ property. Then, there exists a sufficiently large $k_0 \in \mathbb{N}$ such that for all $k \ge k_0$ the sequence $\{\mathbf{x}_k\}_k$ generated by CR satisfies

1. If $\theta = 1$, then $\mathbf{x}_k \to \bar{\mathbf{x}}$ within finite number of iterations; 2. If $\theta \in (\frac{1}{3}, 1)$, then $\mathbf{x}_k \to \bar{\mathbf{x}}$ super-linearly as $\|\mathbf{x}_{k+1} - \bar{\mathbf{x}}\| \le \Theta \Big(\exp \Big(- \Big(\frac{2\theta}{3(1-\theta)} + \frac{2}{3} \Big)^{k-k_0} \Big) \Big)$; 3. If $\theta = \frac{1}{3}$, then $\mathbf{x}_k \to \bar{\mathbf{x}}$ linearly as $\|\mathbf{x}_{k+1} - \bar{\mathbf{x}}\| \le \Theta \Big(\exp \big(- (k-k_0) \big) \Big)$; 4. If $\theta \in (0, \frac{1}{3})$, then $\mathbf{x}_k \to \bar{\mathbf{x}}$ sub-linearly as $\|\mathbf{x}_{k+1} - \bar{\mathbf{x}}\| \le \Theta \Big((k-k_0)^{-\frac{2\theta}{1-3\theta}} \Big)$.

Proof. We prove the theorem case by case.

Case 1: $\theta = 1$ **.**

We have shown in case 1 of Theorem 2 that $f(\mathbf{x}_k) \downarrow \overline{f}$ within finite number of iterations, i.e., $f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) = 0$ for all $k \ge k_0$. Based on this observation, the dynamics of CR in Table 1 further implies that for all $k \ge k_0$

$$0 = f(\mathbf{x}_{k+1}) - f(\mathbf{x}_k) \le -\frac{M}{12} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^3 \le 0.$$
(27)

Hence, we conclude that $\mathbf{x}_{k+1} = \mathbf{x}_k$ for all $k \ge k_0$, i.e., \mathbf{x}_k converges within finite number of iterations. Since Theorem 3 shows that \mathbf{x}_k converges to some $\bar{\mathbf{x}}$, the desired conclusion follows.

Case 2: $\theta \in (\frac{1}{3}, 1)$.

Denote $\Delta_k := \sum_{i=k}^{\infty} \|\mathbf{x}_{i+1} - \mathbf{x}_i\|$. Note that Theorem 3 shows that $\mathbf{x}_k \to \bar{\mathbf{x}}$. Thus, we have $\|\mathbf{x}_k - \bar{\mathbf{x}}\| \le \Delta_k$. Next, we derive the convergence rate of Δ_k .

By Theorem 3, $\lim_{n\to\infty} \sum_{i=k}^{n} \|\mathbf{x}_{i+1} - \mathbf{x}_i\|$ exists for all k. Then, we can let $n \to \infty$ in eq. (26) and obtain that for all $k \ge k_0$

$$\Delta_k \le C[\varphi(r_k)]^{\frac{1}{3}} \Delta_{k-1}^{\frac{2}{3}} \le Cr_k^{\frac{\theta}{3}} \Delta_{k-1}^{\frac{2}{3}} \le C(\Delta_{k-1} - \Delta_k)^{\frac{2\theta}{3(1-\theta)}} \Delta_{k-1}^{\frac{2}{3}} \le C\Delta_{k-1}^{\frac{2\theta}{3(1-\theta)} + \frac{2}{3}}, \quad (28)$$

where C denotes a universal constant that may vary from line to line, and (i) uses the KŁ property and the dynamics of CR, i.e., $r_k \leq C \|\nabla f(\mathbf{x}_k)\|^{\frac{1}{1-\theta}} \leq C \|\mathbf{x}_k - \mathbf{x}_{k-1}\|^{\frac{2}{1-\theta}}$. Note that in this case we have $\frac{2\theta}{3(1-\theta)} + \frac{2}{3} > 1$, and hence the above inequality implies that Δ_k converges to zero super-linearly as

$$\Delta_k \le C^{k-k_0} \Delta_{k_0}^{\left(\frac{2\theta}{3(1-\theta)} + \frac{2}{3}\right)^{k-k_0}} = \Theta\left(\exp\left(-\left(\frac{2\theta}{3(1-\theta)} + \frac{2}{3}\right)^{k-k_0}\right)\right).$$
(29)

Since $\|\mathbf{x}_k - \bar{\mathbf{x}}\| \leq \Delta_k$, it follows that $\|\mathbf{x}_k - \bar{\mathbf{x}}\|$ converges to zero super-linearly as desired.

Cases 3 & 4.

We first derive another estimate on Δ_k that generally holds for both cases 3 and 4, and then separately consider cases 3 and 4, respectively.

Fix $\gamma \in (0,1)$ and consider $k \ge k_0$. Suppose that $\|\mathbf{x}_{k+1} - \mathbf{x}_k\| \ge \gamma \|\mathbf{x}_k - \mathbf{x}_{k-1}\|$, then eq. (23) can be rewritten as

$$\|\mathbf{x}_{k+1} - \mathbf{x}_k\| \le \frac{C}{\gamma^2} (\varphi(r_k) - \varphi(r_{k+1}))$$
(30)

for some constant C > 0. Otherwise, we have $\|\mathbf{x}_{k+1} - \mathbf{x}_k\| \le \gamma \|\mathbf{x}_k - \mathbf{x}_{k-1}\|$. Combing these two inequalities yields that

$$\|\mathbf{x}_{k+1} - \mathbf{x}_k\| \le \gamma \|\mathbf{x}_k - \mathbf{x}_{k-1}\| + \frac{C}{\gamma^2} (\varphi(r_k) - \varphi(r_{k+1})).$$
(31)

Summing the above inequality over $k = k_0, \ldots, n$ yields that

$$\sum_{k=k_0}^{n} \|\mathbf{x}_{k+1} - \mathbf{x}_k\| \le \gamma \sum_{k=k_0}^{n} \|\mathbf{x}_k - \mathbf{x}_{k-1}\| + \frac{C}{\gamma^2} (\varphi(r_{k_0}) - \varphi(r_{n+1}))$$
(32)

$$\leq \gamma \left[\sum_{k=k_0}^{n} \|\mathbf{x}_{k+1} - \mathbf{x}_{k}\| + \|\mathbf{x}_{k_0} - \mathbf{x}_{k_0-1}\| \right] + \frac{C}{\gamma^2} \varphi(r_{k_0}).$$
(33)

Rearranging the above inequality yields that

$$\sum_{k=k_0}^n \|\mathbf{x}_{k+1} - \mathbf{x}_k\| \le \frac{\gamma}{1-\gamma} \|\mathbf{x}_{k_0} - \mathbf{x}_{k_0-1}\| + \frac{C}{\gamma^2(1-\gamma)} \varphi(r_{k_0}).$$
(34)

Recall $\Delta_k := \sum_{i=k}^{\infty} \|\mathbf{x}_{i+1} - \mathbf{x}_i\| < +\infty$. Letting $n \to \infty$ in the above inequality yields that for all sufficiently large k

$$\Delta_k \le \frac{\gamma}{1-\gamma} (\Delta_{k-1} - \Delta_k) + \frac{C}{\gamma^2 (1-\gamma)\theta} r_k^\theta$$
(35)

$$\stackrel{(i)}{\leq} \frac{\gamma}{1-\gamma} (\Delta_{k-1} - \Delta_k) + \frac{C}{\gamma^2 (1-\gamma)\theta} \|\mathbf{x}_k - \mathbf{x}_{k-1}\|^{\frac{2\theta}{1-\theta}}$$
(36)

$$\leq \frac{\gamma}{1-\gamma} (\Delta_{k-1} - \Delta_k) + \frac{C}{\gamma^2 (1-\gamma)\theta} (\Delta_{k-1} - \Delta_k)^{\frac{2\theta}{1-\theta}},\tag{37}$$

where (i) uses the KŁ property and the dynamics of CR, i.e., $r_k \leq C \|\nabla f(\mathbf{x}_k)\|^{\frac{1}{1-\theta}} \leq C \|\mathbf{x}_k - \mathbf{x}_{k-1}\|^{\frac{2}{1-\theta}}$.

Case 3: $\theta = \frac{1}{3}$. In this case, $\frac{2\theta}{1-\theta} = 1$ and eq. (37) implies that $\Delta_k \leq C(\Delta_{k-1} - \Delta_k)$ for all sufficiently large k, i.e., Δ_k converges to zero linearly as $\Delta_k \leq (\frac{C}{1+C})^{k-k_0} \Delta_{k_0}$. The desired result follows since $\|\mathbf{x}_k - \bar{\mathbf{x}}\| \leq \Delta_k$.

Case 4: $\theta \in (0, \frac{1}{3})$. In this case, $0 < \frac{2\theta}{1-\theta} < 1$ and eq. (37) can be asymptotically rewritten as $\Delta_k \leq \frac{C}{\gamma^2(1-\gamma)\theta} (\Delta_{k-1} - \Delta_k)^{\frac{2\theta}{1-\theta}}$. This further implies that

$$\Delta_k^{\frac{1-\theta}{2\theta}} \le C(\Delta_{k-1} - \Delta_k) \tag{38}$$

for some constant C > 0. Define $h(t) = t^{-\frac{1-\theta}{2\theta}}$ and fix $\beta > 1$. Suppose first that $h(\Delta_k) \le \beta h(\Delta_{k-1})$. Then the above inequality implies that

$$1 \le C \frac{\Delta_{k-1} - \Delta_k}{\Delta_k^{\frac{1-\theta}{2\theta}}} = C(\Delta_{k-1} - \Delta_k)h(\Delta_k) \le C\beta(\Delta_{k-1} - \Delta_k)h(\Delta_{k-1})$$
(39)

$$\leq C\beta \int_{\Delta_k}^{\Delta_{k-1}} h(t)dt = C\beta \frac{2\theta}{3\theta - 1} (\Delta_{k-1}^{\frac{3\theta - 1}{2\theta}} - \Delta_k^{\frac{3\theta - 1}{2\theta}}).$$

$$\tag{40}$$

Set $\mu := \frac{1-3\theta}{2C\beta\theta} > 0, \nu := \frac{3\theta-1}{2\theta} < 0$. Then the above inequality can be rewritten as

$$\Delta_k^{\nu} - \Delta_{k-1}^{\nu} \ge \mu. \tag{41}$$

Now suppose $h(\Delta_k) > \beta h(\Delta_{k-1})$, which implies that $\Delta_k < q \Delta_{k-1}$ with $q = \beta^{-\frac{2\theta}{1-\theta}} \in (0,1)$. Then, we conclude that $\Delta_k^{\nu} \ge q^{\nu} \Delta_{k-1}^{\nu}$ and hence $\Delta_k^{\nu} - \Delta_{k-1}^{\nu} \ge (q^{\nu} - 1) \Delta_{k-1}^{\nu}$. Since $q^{\nu} - 1 > 0$ and $\Delta_{k-1}^{\nu} \to +\infty$, there must exist $\bar{\mu} > 0$ such that $(q^{\nu} - 1) \Delta_{k-1}^{\nu} \ge \bar{\mu}$ for all sufficiently large k. Thus, we conclude that $\Delta_k^{\nu} - \Delta_{k-1}^{\nu} \ge \bar{\mu}$. Combining two cases, we obtain that for all sufficiently large k,

$$\Delta_k^{\nu} - \Delta_{k-1}^{\nu} \ge \min\{\mu, \bar{\mu}\}. \tag{42}$$

Telescoping the above inequality over $k = k_0, \ldots, k$ yields that

$$\Delta_k \le \left[\Delta_{k_0}^{\nu} + \min\{\mu, \bar{\mu}\}(k - k_0)\right]^{\frac{1}{\nu}} \le \left(\frac{C}{k - k_0}\right)^{\frac{2\theta}{1 - 3\theta}},\tag{43}$$

where C is a certain positive constant. The desired result then follows from the fact that $\|\mathbf{x}_k - \bar{\mathbf{x}}\| \leq \Delta_k$.

Proof of Proposition 1

Proposition 1. Denote Ω as the set of second-order stationary points of f. Let Assumption 1 hold and assume that f satisfies the KL property. Then, there exist $\kappa, \varepsilon, \lambda > 0$ such that for all $\mathbf{x} \in \{\mathbf{z} \in \mathbb{R}^d : \operatorname{dist}_{\Omega}(\mathbf{z}) < \varepsilon, f_{\Omega} < f(\mathbf{z}) < f_{\Omega} + \lambda\}$, the following property holds.

(*KL*-error bound) dist_Ω(**x**)
$$\leq \kappa \|\nabla f(\mathbf{x})\|^{\frac{\theta}{1-\theta}}$$
. (8)

Proof. The proof idea follows from that in Yue et al. (2018). Consider any $\mathbf{x} \in \Omega^c \cap {\mathbf{x} \in \mathbb{R}^d : \text{dist}_{\Omega}(\mathbf{x}) < \varepsilon, f_{\Omega} < f(\mathbf{x}) < f_{\Omega} + \lambda}$, and consider the following differential equation

$$\mathbf{u}(0) = \mathbf{x}, \quad \dot{\mathbf{u}}(t) = -\nabla f(\mathbf{u}(t)), \quad \forall t > 0.$$
(44)

As ∇f is continuously differentiable, it is Lipschitz on every compact set. Thus, by the Picard-Lindelöf theorem (Hartman, 2002, Theorem II.1.1), there exists $\nu > 0$ such that eq. (44) has a unique solution $\mathbf{u}_{\mathbf{x}}(t)$ over the interval $[0, \nu]$. Define $\Delta(t) := f(\mathbf{u}_{\mathbf{x}}(t)) - f_{\Omega}$. Note that $\Delta(t) > 0$ for $t \in [0, \nu]$, as otherwise there exists $\hat{t} \in [0, \nu]$ such that $\mathbf{u}_{\mathbf{x}}(\hat{t}) \in \Omega$ and hence $\mathbf{u}_{\mathbf{x}} \equiv \mathbf{u}_{\mathbf{x}}(\hat{t}) \in \Omega$ is the unique solution to eq. (44). This contradicts the fact that $\mathbf{u}(0) \in \Omega^c$.

Using eq. (44) and the chain rule, we obtain that for all $t \in [0, \nu]$

$$\Delta(t) = \langle \nabla f(\mathbf{u}_{\mathbf{x}}(t)), \dot{\mathbf{u}}_{\mathbf{x}}(t) \rangle = -\|\nabla f(\mathbf{u}_{\mathbf{x}}(t))\|\|\dot{\mathbf{u}}_{\mathbf{x}}(t)\|.$$
(45)

Applying the KŁ property in eq. (3) to the above equation yields that

$$\dot{\Delta}(t) \le -\left(\frac{\Delta(t)}{C}\right)^{1-\theta} \|\dot{\mathbf{u}}_{\mathbf{x}}(t)\|,\tag{46}$$

where C > 0 is a certain universal constant. Since $\Delta(t) > 0$, eq. (46) can be rewritten as

$$\|\dot{\mathbf{u}}_{\mathbf{x}}(t)\| \le -\frac{C^{1-\theta}}{\theta} (\Delta(t)^{\theta})'.$$
(47)

Based on the above inequality, for any $0 \le a < b < \nu$ we obtain that

$$\|\mathbf{u}_{\mathbf{x}}(b) - \mathbf{u}_{\mathbf{x}}(a)\| = \|\int_{a}^{b} \dot{\mathbf{u}}_{\mathbf{x}}(t)dt\| \leq \int_{a}^{b} \|\dot{\mathbf{u}}_{\mathbf{x}}(t)\|dt$$
$$\leq -\int_{a}^{b} \frac{C^{1-\theta}}{\theta} [\Delta(t)^{\theta}]'dt = \frac{C^{1-\theta}}{\theta} [\Delta(a)^{\theta} - \Delta(b)^{\theta}].$$
(48)

In particular, setting a = 0 in eq. (48) and noting that $\mathbf{u}_{\mathbf{x}}(0) = \mathbf{x}$, we further obtain that

$$\|\mathbf{u}_{\mathbf{x}}(b) - \mathbf{x}\| \le \frac{C^{1-\theta}}{\theta} (f(\mathbf{x}) - f_{\Omega})^{\theta}.$$
(49)

Next, we show that $\nu = +\infty$. Suppose $\nu < +\infty$, then (Hartman, 2002, Corollary II.3.2) shows that $\|\mathbf{u}_{\mathbf{x}}(t)\| \to +\infty$ as $t \to \nu$. However, eq. (49) implies that

$$\|\mathbf{u}_{\mathbf{x}}(t)\| \le \|\mathbf{x}\| + \|\mathbf{u}_{\mathbf{x}}(t) - \mathbf{x}\| \le \|\mathbf{x}\| + \frac{C^{1-\theta}}{\theta} (f(\mathbf{x}) - f_{\Omega})^{\theta} < +\infty,$$

which leads to a contradiction. Thus, $\nu = +\infty$.

Since $\dot{\Delta}(t) \leq 0$, $\Delta(t)$ is non-increasing. Hence, the nonnegative sequence $\{\Delta(t)\}$ has a limit. Then, eq. (48) further implies that $\{\mathbf{u}_{\mathbf{x}}(t)\}$ is a Cauchy sequence and hence has a limit $\mathbf{u}_{\mathbf{x}}(\infty)$. Suppose $\nabla f(\mathbf{u}_{\mathbf{x}}(\infty)) \neq \mathbf{0}$. Then we obtain that $\lim_{t\to\infty} \dot{\Delta}(t) = -\|\nabla f(\mathbf{u}_{\mathbf{x}}(\infty))\|^2 < 0$, which contradicts the fact that $\lim_{t\to\infty} \Delta(t)$ exists. Thus, $\nabla f(\mathbf{u}_{\mathbf{x}}(\infty)) = \mathbf{0}$, and this further implies that $\mathbf{u}_{\mathbf{x}}(\infty) \in \Omega$, $f(\mathbf{u}_{\mathbf{x}}(\infty)) = f_{\Omega}$ by the KŁ property in eq. (3). We then conclude that

$$\operatorname{dist}_{\Omega}(\mathbf{x}) \le \|\mathbf{x} - \mathbf{u}_{\mathbf{x}}(\infty)\| = \lim_{t \to \infty} \|\mathbf{x} - \mathbf{u}_{\mathbf{x}}(t)\| \le \frac{C^{1-\theta}}{\theta} (f(\mathbf{x}) - f_{\Omega})^{\theta}.$$
 (50)

Combining the above inequality with the KŁ property in eq. (3), we obtain the desired KŁ error bound. $\hfill \Box$

Proof of Proposition 2

Proposition 2. Denote Ω as the set of second-order stationary points of f. Let Assumption 1 hold and assume that problem (P) satisfies the KL property. Then, there exists a sufficiently large $k_0 \in \mathbb{N}$ such that for all $k \ge k_0$ the sequence $\{\text{dist}_{\Omega}(\mathbf{x}_k)\}_k$ generated by CR satisfies 1. If $\theta = 1$, then $\operatorname{dist}_{\Omega}(\mathbf{x}_{k}) \to 0$ within finite number of iterations; 2. If $\theta \in (\frac{1}{3}, 1)$, then $\operatorname{dist}_{\Omega}(\mathbf{x}_{k}) \to 0$ super-linearly as $\operatorname{dist}_{\Omega}(\mathbf{x}_{k}) \leq \Theta\left(\exp\left(-\left(\frac{2\theta}{1-\theta}\right)^{k-k_{0}}\right)\right)$; 3. If $\theta = \frac{1}{3}$, then $\operatorname{dist}_{\Omega}(\mathbf{x}_{k}) \to 0$ linearly as $\operatorname{dist}_{\Omega}(\mathbf{x}_{k}) \leq \Theta\left(\exp\left(-(k-k_{0})\right)\right)$; 4. If $\theta \in (0, \frac{1}{3})$, then $\operatorname{dist}_{\Omega}(\mathbf{x}_{k}) \to 0$ sub-linearly as $\operatorname{dist}_{\Omega}(\mathbf{x}_{k}) \leq \Theta\left((k-k_{0})^{-\frac{2\theta}{1-3\theta}}\right)$.

Proof. We prove the theorem case by case.

Case 1: $\theta = 1$ **.**

We have proved in Theorem 4 that $\mathbf{x}_k \to \bar{\mathbf{x}} \in \Omega$ within finite number of iterations. Since $\operatorname{dist}_{\Omega}(\mathbf{x}_k) \leq \|\mathbf{x}_k - \bar{\mathbf{x}}\|$, we conclude that $\operatorname{dist}_{\Omega}(\mathbf{x}_k)$ converges to zero within finite number of iterations.

Case 2:
$$\theta \in (\frac{1}{3}, 1)$$
.

By the KŁ error bound in Proposition 1, we obtain that

$$\operatorname{dist}_{\Omega}(\mathbf{x}_{k+1}) \le C \|\nabla f(\mathbf{x}_{k+1})\|^{\frac{\theta}{1-\theta}} \le C \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^{\frac{2\theta}{1-\theta}},$$
(51)

where the last inequality uses the dynamics of CR in Table 1. On the other hand, (Yue et al., 2018, Lemma 1) shows that

$$\|\mathbf{x}_{k+1} - \mathbf{x}_k\| \le C \operatorname{dist}_{\Omega}(\mathbf{x}_k).$$
(52)

Combining eq. (51) and eq. (52) yields that

$$\operatorname{dist}_{\Omega}(\mathbf{x}_{k+1}) \le C \operatorname{dist}_{\Omega}(\mathbf{x}_{k})^{\frac{2\theta}{1-\theta}}.$$
(53)

Note that in this case we have $\frac{2\theta}{1-\theta} > 1$. Thus, $\operatorname{dist}_{\Omega}(\mathbf{x}_k)$ converges to zero super-linearly as desired. **Cases 3 & 4:** $\theta \in (0, \frac{1}{3}]$.

Note that $\operatorname{dist}_{\Omega}(\mathbf{x}_k) \leq \|\mathbf{x}_k - \bar{\mathbf{x}}\|$. The desired results follow from Cases 3 & 4 in Theorem 4.

Proof of Theorem 1

Theorem 1. Let Assumption 1 hold and assume that problem (P) satisfies the KL property associated with parameter $\theta \in (0, 1]$. Then, there exists a sufficiently large $k_0 \in \mathbb{N}$ such that for all $k \ge k_0$ the sequence $\{\mu(\mathbf{x}_k)\}_k$ generated by CR satisfies

1. If $\theta = 1$, then $\mu(\mathbf{x}_k) \to 0$ within finite number of iterations; 2. If $\theta \in (\frac{1}{3}, 1)$, then $\mu(\mathbf{x}_k) \to 0$ super-linearly as $\mu(\mathbf{x}_k) \leq \Theta\left(\exp\left(-\left(\frac{2\theta}{1-\theta}\right)^{k-k_0}\right)\right)$; 3. If $\theta = \frac{1}{3}$, then $\mu(\mathbf{x}_k) \to 0$ linearly as $\mu(\mathbf{x}_k) \leq \Theta\left(\exp\left(-(k-k_0)\right)\right)$; 4. If $\theta \in (0, \frac{1}{3})$, then $\mu(\mathbf{x}_k) \to 0$ sub-linearly as $\mu(\mathbf{x}_k) \leq \Theta\left((k-k_0)^{-\frac{2\theta}{1-3\theta}}\right)$.

Proof. By the dynamics of CR in Table 1, we obtain that

$$\|\nabla f(\mathbf{x}_{k+1})\| \le \frac{L+M}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|^2,$$
 (54)

$$-\lambda_{\min}(\nabla^2 f(\mathbf{x}_{k+1})) \le \frac{2L+M}{2} \|\mathbf{x}_{k+1} - \mathbf{x}_k\|.$$
(55)

The above two inequalities imply that $\mu(\mathbf{x}_k) \leq ||\mathbf{x}_{k+1} - \mathbf{x}_k||$. Also, (Yue et al., 2018, Lemma 1) shows that $||\mathbf{x}_{k+1} - \mathbf{x}_k|| \leq C \operatorname{dist}_{\Omega}(\mathbf{x}_k)$. Then, the desired convergence result for $\mu(\mathbf{x}_k)$ follows from Proposition 2.