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Abstract

We study the problem of maximizing deep submodular functions (DSFs) [13, 3]
subject to a matroid constraint. DSFs are an expressive class of submodular
functions that include, as strict subfamilies, the facility location, weighted coverage,
and sums of concave composed with modular functions. We use a strategy similar
to the continuous greedy approach [6], but we show that the multilinear extension
of any DSF has a natural and computationally attainable concave relaxation that we
can optimize using gradient ascent. Our results show a guarantee of max0<δ<1(1−
ε−δ−e−δ2Ω(k)) with a running time ofO(n

2
/ε2) plus time for pipage rounding [6]

to recover a discrete solution, where k is the rank of the matroid constraint. This
bound is often better than the standard 1− 1/e guarantee of the continuous greedy
algorithm, but runs much faster. Our bound also holds even for fully curved (c = 1)
functions where the guarantee of 1 − c/e degenerates to 1 − 1/e where c is the
curvature of f [37]. We perform computational experiments that support our
theoretical results.

1 Introduction

A set function f : 2V → R+ is called submodular [15] if f(A) + f(B) ≥ f(A∪B) + f(A∩B) for
all A,B ⊆ V , where V = [n] is the ground set. An equivalent definition of submodularity states that
f(v|A) ≥ f(v|B) for allA ⊆ B ⊆ V and v ∈ V \B, where f(v|A) ≡ f({v}∪A)−f(A) is the gain
of element v given A. This property of diminishing returns well models concepts such as information,
diversity, and representativeness. Recent studies have shown that submodularity is natural for a large
number of real world machine learning applications such as information gathering [23], probabilistic
models [12], image segmentation [22], string alignment [28], document and speech summarization
[27, 26], active learning [39], genomic assay selection [40] and protein subset selection [25], as well
as many others.

In addition to having a variety of natural applications in machine learning, the optimization properties
of submodular functions appear to be ever more auspicious. On one hand, the submodular minimiza-
tion problem can be exactly solved in polynomial time [29, 11, 15]. Recent studies mostly focus on
improving running times [24, 7]. On the other hand, submodular maximization is harder, and the
optimal solution cannot be found by any polynomial time algorithm. A good approximate solution,
however, is usually acceptable, and a simple greedy algorithm can find a constant factor 1 − 1/e
approximate solution for the monotone non-decreasing1 submodular maximization problem subject
to a k-cardinality constraint [32]. Although submodular maximization is a purely combinatorial
problem, there are also approaches to solve it via continuous relaxation (e.g. multilinear extension).
For example, [6] offers a randomized continuous greedy algorithm that offers the same 1 − 1/e
bound for monotone non-decreasing submodular maximization subject to a more general matroid

1A submodular function is said to be monotone non-decreasing if f(v|A) ≥ 0 for all v ∈ V and A ⊆ V .
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independence constraint. If the function’s curvature c is taken into account, this approach yields
an improved guarantee of no worse than 1 − c/e [37]. Recent studies showed stochastic projected
gradient methods [18, 31] can be useful on maximizing continuous DR-submodular function [35] 2.
The best guarantee is (1− OPT/e− ε) by 1/ε3 iterations in gradient methods [31].

The above results apply to any non-negative monotone submodular function. In practice, solving
a given problem requires applying the algorithm to a specific submodular function, for example,
set cover [16, 20], facility location [38], feature-based [21], graph cut [19] and deep submodular
functions (DSF) [13, 3]. When working with a specific sub-class of functions, we can benefit
from knowing the specific form and its mathematical properties. For example, in the simplest case,
maximizing a modular function (i.e., a function f for which both f and −f are submodular) under a
matroid constraint can be exactly solved by a greedy algorithm. [20] showed benefit for submodular
maximization in the specific case of weighted coverage functions.

In our work, we focus on DSF maximization under a matroid constraint. Introduced in [13, 3], DSFs
are a generalization of set coverage, facility location, and feature-based functions. Importantly, the
class of DSFs is a strict superset of the union of these three, which means that any method designed for
a general DSF can be applied to set coverage, facility location, and feature-based functions but not vice
versa. For example,

√
m(A) is concave over modular; a feature-based function has the form of a sum

of concave composed with modular functions, such as
√
m1(A)+log(1+m2(A)), while a two-layer

DSF has a nested composition of the form
√√

m1(A) + arctan(m2(A))+
[
m3(A) +

√
m4(A)

]1/4

.
In [3], it was shown that the expressivity of DSFs strictly grows with the number of layers.

To our knowledge, there have been no studies on the specific problem of DSF maximization. On
the one hand, we can use the generic greedy or continuous greedy algorithms for DSF, since DSF is
monotone submodular, but we should not be surprised if better bounds than 1− 1/e can be achieved
using the structure and properties of a DSF. The major contribution of the present work is to show
that a very natural and computationally easy-to-obtain concave extension of DSFs is a nearly tight
relaxation of the DSF’s multilinear extension. Therefore, given this extension, we can use projected
gradient ascent (Algorithm. 1 [4]) to maximize the concave extension and obtain a fractional solution,
and then use pipage rounding [2, 6] to recover a discrete solution.

Our approach has the following advantages over the continuous greedy algorithm with only oracle
access to the submodular function:

1. Easy concave extension: A natural concave extension of any DSF is easy to obtain, unlike the
multilinear extension which often itself needs to be approximated using sampling.

2. Better guarantee for large k: Our method has a guarantee of max0<δ<1(1− ε− δ− e−δ2Ω(k))),
where k is the rank of the matroid constraint (Corollary 2). A more complete formulation is

max0<δ<1(1− ε)(1− δ)
[
1− |V (1)|e−

δ2wmink

wmax

]
, where wmin/wmax is the ratio of the smallest

to the largest DSF element in the first weight layer of a DSF and |V (1)| is the size of the feature
layer (see Figure 2). Importantly, this bound holds even when the curvature [37] of the DSF
is c = 1 so the 1− c/e bound of [37] is at its worst at 1− 1/e (Lemma 7 in Appendix). We
compare our bound with the traditional 1/2 (for the greedy) and 1 − 1/e (for the continuous
greedy) bounds in Figure 1. We show that our bound is better than the continuous greedy
algorithm (1− 1/e) for large k (> 102 ∼ 104 depending on k and wmin/wmax).

3. Improved running time: Other than the fact that a natural concave extension of a DSF is readily
available, the running time of our method is O(n2ε−2) and is thus better than the O(n7) cost
for the continuous greedy algorithm. Most of the continuous greedy algorithm’s running time is
for estimating the multilinear extension (O(n5) [6]), while in our method, calculating the DSF
concave extension only needs one evaluation of the original function.

1.1 Background and Related work

[13, 3] introduced deep submodular functions where [3] discussed their theoretical properties and
[13] their training in a fashion similar to how deep neural networks may be trained. Particularly
relevant to the present study, [3] showed that while DSFs cannot express all submodular functions,

2Multilinear extension is a special case of continuous DR-submodular.
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Figure 1: Guarantee of propose methods stated in Theorem 3. Solid lines are the proposed guarantees
with respect to the rank of matroid constraint; dash lines are guarantees for the continuous greedy
algorithm and the greedy algorithm. Our guarantee is proportional to 1− ε and in the above figure,
we use ε = 0.01 for illustration. (a) is fixing |V (1)| = 10 and each trace is for different wmin/wmax,
which is the ratio of the smallest feature to the largest feature. (b) is fixing wmin/wmax = 0.1 and each
trace is for different |V (1)|, which is the size of the features layer (see Figure 2).

k-layer DSFs strictly generalize k − 1-layer DSFs. Moreover, the following classes of functions are
all strict subclasses of DSFs [3].

1. Sums of concave composed with non-negative modular functions plus an arbitrary modular
function (SCMM), also called feature-based functions [21], or “decomposable” submodular
functions [36]. These functions take the form f(A) =

∑
i αiφi(mi(A))+m±(A) where αi are

non-negative numbers, φi are monotone non-decreasing concave functions, mi are non-negative
modular functions, and m± is an arbitrary modular function.

2. Weighted cardinality truncation (WCT) functions. f(A) =
∑
i αi min(|A ∩ Vi|, βi) where Vi

are subsets of V , αi are non-negative numbers, and βi are non-negative integers.
3. Weighted coverage (WC) functions which take the form f(A) =

∑
i αi min(|A ∩ Vi|, 1). See

below.
4. Facility location (FL) functions. f(A) =

∑
i∈V maxj∈A wij where wij is a matrix of non-

negative numbers. It is a subclass of weighted coverage functions [20].
In particular, we have the following chain relationship between these classes of functions: FL ⊂
WC ⊂WCT ⊂ SCMM ⊂ DSF ⊂ All-Submodular-Functions [3]. In the present paper, we address
any function that can be represented as a DSF.

In [20], submodular maximization of the special case of weighted coverage (WC) functions was
studied, using an approach that took a concave relaxation of the multilinear extension of such
functions. Let U be a set andm : 2U → R+ be a non-negative modular function. The ground set V =
{B1, B2, . . . , Bn} is a collection of subsets of U . A weighted coverage function f(S) : 2V → R+ is
defined as f(S) = m(∪Bi∈SBi). An equivalent formula is f(S) =

∑
u∈U m(u) min(1, |S ∩ Cu|)

where Cu = {Bi|u ∈ Bi}, which reveals that the weighted coverage function is actually a simple
example of a one-layer DSF. In [20], Karimi et al. show that the multilinear extension of f has a
natural concave relaxation F̄ (x) =

∑
u∈U m(u) min(1, 1Cu · x) within a 1 − 1/e approximation.

They first optimize the concave relaxation and claim that the solution is also good maximizer for the
multilinear extension by the 1 − 1/e approximation. They further show that their approach yields
solutions that match the 1− 1/e guarantee of the continuous greedy algorithm, while reducing the
computational cost by several orders of magnitude, mostly because they do not need to compute the
multilinear extension.

Our framework in the present paper is a strict generalization of this previous method in the following
ways: (1) The weighted coverage function class is a subclass of DSFs, and Karimi et al.’s proposed
concave extension is a special case of a more general DSF concave extension; (2) We use a similar
algorithmic approach which thus also has the advantage of better running time over the continuous
greedy algorithm; and (3) We offer a still better bound for large k where k is the rank of the matroid.

As an example application, we note that DSFs generalize feature-based functions which are useful
for various summarization tasks [21, 41, 17]. A feature-based function has the form f(A) =∑
u∈U wuφu(mu(A)) where U is a set of features, wu > 0 is a feature weight for u ∈ U , mu(A) =
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∑
x∈X mu(A) is a feature-specific non-negative modular function, and φu(x) is a feature-specific

monotone non-decreasing concave functions. Immediately, we have that the feature base functions
are DSFs. Our proposed methods, therefore, offer a good bound for maximizing such functions if
minu∈U

minv∈V mu(v)
maxv∈V mu(v)k is large, which is fairly common in practice.

2 Background and Problem Setup

We assume every set function f in this paper is normalized (i.e., f(∅) = 0). A function m is modular
if and only if m and −m are both submodular. A normalized modular function m(A) always has
the form of m(A) =

∑
v∈V m(v) = w · 1A, where A ⊆ V , w and 1A are n-dimensional vectors,

w = (m(1),m(2), . . . ,m(n)) and 1A ∈ RV+ is 0 for coordinate i /∈ A and 1 for i ∈ A.

2.1 Matroid and matroid polytopes

A matroidM = (V, I) is a family of subsets of ground set V with the following three properties:
1. ∅ ∈ I.
2. If A ∈ I, then B ∈ I for all B ⊆ A.
3. For all A,B ∈ I, if |A| > |B|, then there exists an element v ∈ A \B, s.t. B ∪ {v} ∈ I.

The sets I ∈ I are the independent sets of the matroid. The third property ensures that the maximal
independent sets always have the same size, equal to the rank rM = k of the matroid. Matroids can
be generalized to the continuous domain via the matroid polytope P = conv(1A : A ∈ I) where
“conv” means the convex hull.

2.2 Deep Submodular Function (DSFs)

Figure 2: A layered DSF with K = 3 layers.

A DSF [13, 3] f is a natural generalization of
feature-based functions and can be defined on
a directed graph (Figure 2). The graph has
K + 1 layers, where the first layer V = V (0)

is the function’s ground set, and additional lay-
ers V (1), V (2), V (3), . . . , V (K) are sets of “fea-
tures”, “meta features”, “meta-meta features”,
etc. The size of V (i) is di = |V (i)| for i =
0, 1, 2, . . . ,K. Note that the size of the final
layer V (K) is always 1 because a DSF maps a
set to a real number. For any i = 1, 2, . . . ,K, two successive layers V (i−1) and V (i) are con-
nected by a matrix w(i) ∈ Rd

i×di−1

+ . Therefore, matrix w(i) is indexed by (vi, vi−1) for vi ∈ V (i)

and vi−1 ∈ V (i−1). w(i)
vi (vi−1) is an element from row vi and column vi−1. We may think of

w
(i)
vi : 2V

(i−1) → R+ as a modular function defined on subset of V (i−1). Further, let φvi : R+ → R+

be a non-negative, non-decreasing concave function. Thus, each element vi ∈ V (i) has a mod-
ular function w(i)

vi and concave function φvi for i = 1, 2, . . . ,K. In this setting, a K-layer DSF
f : 2V → R+ can be expressed, for any A ⊆ V , as follows:

f(A) = f̄(A) +m±(A), where (1)

f̄(A) = φ
vK

 ∑
vK−1∈V (k−1)

w
(K)

vK
(v
k−1

)φ
vK−1

. . . ∑
v2∈V (2)

w
(3)

v3 (v
2
)φ
v2

 ∑
v1∈V (1)

w
(2)

v2 (v
1
)φ
v1

∑
a∈A

w
(1)

v1 (a)




. (2)

2.2.1 Concave functions φvi and continuity

In a DSF, φvi is a normalized (i.e., φvi(0) = 0) monotone non-decreasing concave function defined
on [0,+∞). Via concavity, this implies that the function must also be continuous on (0,+∞). The
only point that need not be continuous is x = 0, i.e., we may have limx→0+ φvi(x) > 0 = φvi(0).
When used in a DSF, however, the set of possible input values to φvi(x) is countable. Let β > 0
be the smallest strictly positive possible input to φvi(x). We define another φ0,vi : R+ → R+ s.t.
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φ0,vi(x) ≡ φvi(x) for x ≥ β and φ0,vi(x) ≡ φvi (β)

β x for 0 ≤ x < β. φ0,vi is normalized, monotone
non-decreasing concave, and is continuous on [0,+∞). Moreover, replacing φvi(x) with φ0,vi(x)
leaves the DSF’s valuation uncharged for any set. Therefore, w.l.o.g. we assume that all concave
functions are also right-continuous at x = 0.

2.2.2 Final modular term m±

Recall that f(A) = f̄(A) +m±(A), where f̄(A) has the form of nested concave over modular and
is always monotone non-decreasing, and m±(A) is a simple modular functions but can be negative.
Although [13, 3] claim that the final modular function is sometimes useful in applications, this final
function will change the optimization properties of f , since f̄ is monotone non-decreasing but f is
non-monotone. In this work, we focus on the monotone non-decreasing DSF case where m± ≥ 0.3.

2.3 DSF maximization

The problem we consider is DSF maximization, i.e.,
Problem 1: max

A∈M
f(A) (3)

where f is a DSF function andM is a matroid independence constraint. In this work, we focusing on
solving this problem with the knowledge that f is DSF.

3 Continuous extension of submodular functions

Although a submodular function is discrete, providing one value to each A ⊆ V , it is often useful to
view such functions continuously. The bridge between the discrete and continuous worlds is made by
a continuous extension of a submodular function, which is some function from the hypercube [0, 1]n

to R that agrees with f on the hypercube vertices [14]. This includes the Lovász extension [29],
which is the convex closure of the function, and also the multilinear extension [6], which is an
approximation of the concave closure. In general, most continuous methods [6, 20] follow a similar
strategy: they first find a continuous extension of f , then optimize it to obtain a fractional solution,
and finally finish up by rounding the continuous solution back to a discrete final solution set.

In our framework, we use an extension that is tailor-made for a DSF.

3.1 A DSF’s Natural Concave Extension

DSF functions have the form of nested sum of concave of modular (Equation (2)). [3] shows that
there exists a natural concave extension of f by replacing the discrete variables with real values in
the nested form F (x) = F̄ (x) +m± · x where

F̄ (x) = φ
vK

 ∑
vK−1∈V (k−1)

w
(K)

vK
(v
k−1

)φ
vK−1

. . . ∑
v2∈V (2)

w
(3)

v3 (v
2
)φ
v2

 ∑
v1∈V (1)

w
(2)

v2 (v
1
)φ
v1

(
w

(1)

v1 · x
)

. (4)

Thus, f(A) in Equation (1) has f(A) = F (1A) for all A ⊆ V . In fact, we have the following:
Corollary 1 ([3]). The DSF concave extension F (x) : [0, 1]n → R is an extension of a DSF f(x)
and is concave.

In [3], it is claimed that the extension is potentially useful for maximizing DSFs, possibly in a
constrained fashion, followed by appropriate rounding methods, but the authors leave this as an open
question. In the present work, we address this claim and answer this question in the affirmative.
Before presenting our algorithm, we first discuss the relationship between DSF’s natural concave
extension and multilinear extension.

3.2 Multilinear extension

The concave closure of a submodular function f is defined as minp∈4n(x)

∑
S⊆V pSf(S), where

4n(x) =
{
p ∈ R2n :

∑
S⊆V pS = 1, pS ≥ 0∀S ⊆ V, &

∑
S⊆V pS1S = x

}
. The concave clo-

sure is NP-hard even to evaluate [14]; hence, the multilinear extension is often used. We first specify
the following definition:

3Note, if m± is non-negative, it can merge into f̄(A) which is equivalent to m± = 0

5



Definition 1. For a given n-dimensional vector x ∈ [0, 1]n, define Dx to be a distribution over sets
A, s.t. Pr(A) = Πv∈AxvΠv∈V \A(1− xv).

If we sample a random set A from Dx, then the event v ∈ A is independent from u ∈ A if v 6= u and
Pr(v ∈ A) = xv . With these definitions, we may define the multlinear extension as:
Definition 2 (Multilinear Extension). Lf (x) = EA∼Dxf(A).

Calinescu et al. [6] showed that we may solve the following continuous problem instead of solving
Problem 1 directly.

Problem 2: max
x∈P
Lf (x) (5)

where P is a matroid polytope forM.

Unfortunately, two problems remain with the multilinear extension Lf (x). First, calculating the
exact value is not feasible in general, and even estimating it needs O(n5) time [6]. Second, it
is not concave. Therefore finding the global maximizer of Problem 2 is in general not feasible.
However, Calinescu et al. [6] developed a continuous greedy algorithm that finds x̂ s.t. Lf (x̂) ≥
(1− 1/e)Lf (x∗) where x∗ ∈ argmaxx∈P Lf (x). It is not hard to show that Lf (x∗) ≥ f(A∗) where
A∗ ∈ argmaxA∈M f(A), since Lf (1A∗) = f(A∗). Therefore, Lf (x̂) ≥ (1− 1/e)f(A∗). Next, we
show how they round x̂.

Rounding Rounding is a methodology that returns a discrete set from a fractional vector. “Pipage
rounding” was first designed by Ageev et al. [2] and modified by Calinecu et al. [6] for submodular
modular maximization, using a convex property of the multilinear extension. It maintains the quality
of the solution in expectation, i.e., EÂ∼PIPAGE ROUNDING(x̂)f(Â) ≥ Lf (x̂), while satisfying the matroid
constraint, thus finishing the proof sketch of the 1− 1/e bounds for the continuous greedy algorithm.
Another rounding technique is swap rounding [9] which can be seen as a replacement of pipage
rounding with better running time O(nk2). In the special case of the matroid constraint, e.g., a simple
partition matroid [8, 10]4, a simple rounding technique [5] is equivalent to pipage rounding with
much easier implementation and linear running time. In our work, we can use any proper rounding
techniques.

In this work, we show that given any DSF, it is not necessary to compute the multilinear extension at
all. This is based on the following theorem:
Theorem 1. For all f ∈ DSF, its DSF concave extension F , and for all x ∈ [0, 1]n, we have

(1− δ)
[
1− |V (1)|e−

δ2∆(x)
2

]
F (x) ≤ Lf (x) ≤ F (x) where ∆(x) = minv1∈V (1)

w
(1)

v1 ·x
maxv∈V wv1 (v)

Proof. See Appendix A.

In Theorem 1, the term ∆(x) is fairly complex to interpret, but help can be gained by considering a
lower bound of ∆(x) offered by the following lemma:

Lemma 1. ∆(x) ≥ ‖x‖1wmin

wmax
, where wmax = maxv1∈V (1) maxv∈V wv1(v) and wmin =

minv1∈V (1) minv∈V wv1(v). If x is on the extreme point of a matroid polytope, then ∆(x) ≥ kwmin

wmax

where k is the rank of the matroid.

By applying Lemma 1 to Theorem 1 and ∆(x) = Ω(k) and noticing |V (1)|e−δ2Ω(k) ≥
e−δ

2Ω(k)+log(|V (1)|) = e−δ
2Ω(k), we have the following results.

Proposition 1. maxδ(1− δ)
[
1− e−δ2Ω(k)

]
F (x) ≤ Lf (x) ≤ F (x)

In Figure 1, we show that the coefficient of the lower bound converges to close to 1 as k → +∞.

Theorem 1 is one of the major results of the present work. It gives a concave relaxation (i.e., the
natural concave extension of a DSF) of the non-concave multilinear extension Lf . In this sense,
we claim that multilinear extension Lf is closed to the DSF’s natural concave extension F . Not
surprisingly, maximizing a concave function is much easier than maximizing the multilinear extension
for a variety of reasons.

4I = {A ⊆ V ||A ∪ Vi| ≤ 1 ∀i} where {Vi}s are a partition of V .
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Lemma 2. Any concave problem solver that finds a solution x̂ such that F (x̂) ≥ (1− ε)F (x∗F ) will

satisfy Lf (x̂) ≥ (1− ε)(1− δ)
[
1− |V (1)|e−

δ2∆(x̂)
2

]
L(x∗L), where x∗F and x∗L are the maximizer

of the corresponding function subject to the matroid polytope membership.

Proof. See Appendix B

4 Projected Gradient Ascent

Following the general framework of [6, 20], we first find a fractional solution of the concave extension
and then employ pipage rounding to obtain a feasible set. This approach offers the aforementioned
guarantee for any member of the DSF family, regardless of its curvature.

4.1 Supergradient

For a concave function F : P → R, where P ⊆ Rn is a compact convex set, the set of supergradients
of f is defined as

∂f(x) = {g ∈ Rn|f(y)− f(x) ≤ g · (y − x)∀y ∈ P} (6)

Given the formula of DSF concave extension F (x), it is easy to compute supergradient as follows:

g(x)e = φ′vK (·)
∑

vK−1∈V (k−1)

. . .
∑

v2∈V (2)

∑
v1∈V (1)

φ′vK−1(·) . . . φ′v2(·)φ′v1(·)w(K)

vK
(vk−1) . . . w

(2)

v2 (v1)w
(1)

v1 (e)

(7)Algorithm 1: Projected Gradient Ascent [4]
input :DSF concave extension F , matroid polytope P ,

learning rate η, maximum number of iterations T
Let x(0) ← argminx∈P ‖x‖

2
2

for t = 1, 2, . . . , T do
compute a supergradient g(x(t−1)) ∈ ∂F (x(t−1)) ;

x(t) ← argminx∈P
∥∥x− (x(t−1) + ηg(x(t−1))

)∥∥2

2
;

// This is done by projecting x(t−1) + ηg(x(t−1) to P
end
return 1

T

∑T
t=1 x

(t)

where e ∈ [n] is a coordinate, φ′v1(·)
is the derivative of the concave func-
tion φv1(x) at its current evaluation
if it is differentiable, or is any super-
gradient of φv1(x) if it is not differ-
entiable. In fact, the way to calcu-
late the supergradient of a DSF is
exactly the same as what the back-
propagation algorithm needs in deep
neural network (DNN) training, and
this was used in [13] to train DSFs.
This is also one of the reasons for the
name deep submodular functions. Therefore, all of the toolkits available for DNN training, with
provisions for automatic symbolic differentiation (e.g., PyTorch [33] and TensorFlow [1] ) can be
used to maximize a DSF. Since they are optimized for fast GPU computing, they can offer great
practical and computational advantages over traditional submodular maximization procedures.

4.2 Projected gradient Ascent

We utilize the following theorem from [4, 7] (modified for the concave, rather than convex, case) to
establish our bounds for DSF-based submodular maximization.
Theorem 2. [[4, 7]] For any concave function F : Rn+ → R, let R2 = supx∈P ‖x‖

2
2 and B2 =

supx∈P ‖g(x)‖22, Algorithm 1 with learning rate η =
√

R
BT will obtain a fractional solution x̂ s.t.

F (x̂) ≥ maxx∈P F (x)−RB
√

2
T .

Applying Theorem 2 to Algorithm 1 and using our propose concave function F (x), we have the
following result:
Lemma 3. For any 0 < ε < 1, Algorithm 1 will obtain a fractional x̂ s.t. f(x̂) ≥ (1 −
ε) maxx∈P f(x) with running time T = O(n2ε−2).

Proof. See Appendix C.

Thus, we have a approximate solution to the concave maximization problem and using this, in concert
with Lemma 2, we arrive at the following which offers a guarantee of our proposed method.
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Figure 3: (a) DSF structure (b) performance comparison, solution value vs. k, (c) running time vs. k.

Theorem 3. Algorithm 1 with pipage rounding will give X̂ such that Ef(X̂) ≥ max0<δ<1(1 −

ε)(1− δ)
[
1− |V (1)|e−

δ2wmink

wmax

]
maxX⊆M f(X) with running time T = O(n2ε−2)

In Figure 1, we have a comparison of this bound with the traditional 1/2 and 1− 1/e bounds. We find
our proposed bound approaches 1 when k → +∞ and beats other bounds for large k (> 104 ∼ 106,
depending on wmin/wmax).

Corollary 2. Algorithm 1 with with pipage rounding will give X̂ such thatEf(X̂) ≥ max0<δ<1(1−
ε− δ − e−δ2Ω(k)) maxX⊆M f(X) with running time T = O(n2ε−2)

5 Experiments

In this section, we perform a number of synthetic dataset experiments in order to demonstrate proof
of concept and also to offer empirical evidence supporting our bounds above. While the results of the
paper are primarily theoretical, the results of this section show that our methods can yield practical
benefit and also demonstrate the potential of the above methods for large-scale DSF-constrained
maximization.

Figure 3 shows the structure of the DSF f : 2V → R+ to be maximized. It is a three-layer
DSF having ground set V = V (0) with |V | = n. We partition the ground set V into blocks
V1 ∪ V2 ∪ V3 s.t. |V1| = |V2| = |V3| = t, where t = |V |/3. In the next layer V (1), the inner
part of f consists of two concave-composed-with-modular functions, f1,1(A) = min(|X ∩ [V1 ∪
V3]|+ α|X ∩ V2|, t) and f1,2(A) = α|X ∩ [V1 ∪ V3]|+ |X ∩ V2| where α = 0.1 is a parameter. In
the subsequent layer V (2), every node is concave over the weighted sum of f1,1(A) and f1,2(A),

i.e., f2,i(A) =

√
w

(2)
i (1)f1,1(A) + w

(2)
i (2)f1,2(A) for i ∈ V (2), where w(2)

i is a 2-dimensional
uniformly at random vector from [0, 1]2. Finally, for the last layer V (3), the entire function f(A) =∑
i∈V (2) w(3)(i)f2,i(A), where w(3) is a |V (2)|−dimensional vector again uniformly at random from

[0, 1]. The matroid constraint is a partition matroid s.t. X is independent if |X ∩ {v1,i, v2,i} | ≤ 1

for i = 1, 2, . . . , t, where we label V1 = {v1,i}ti=1 and V1 = {v2,i}ti=1. The rank of this matroid is
therefore k = 2t. We repeat the experiment on 30 random DSFs. For each DSF, we maximize it by
each algorithm and take the average function value, respectively. Figure 3(b) shows the performance
of our method compared to the combinatorial greedy algorithm using the lazy evaluation trick [30].
We see that our method offers a solution that is consistently better than the standard greedy for all
k. Regarding running time, we find that while our method is slower than lazy greedy for small k, it
becomes faster than lazy greedy for large k (Figure 3c). For a fair comparison, both algorithms were
implemented in Python and run on a single CPU. We anticipate that our method will run even faster
on parallel GPU machines, which can be accomplished easily using any modern DNN toolkit (e.g.,
PyTorch [33] or TensorFlow [1]).
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