
A Supplementary Information

A.1 Dataset and Experiment Details

Datasets are listed in Table S1 below.

Table S1: Datasets

Dataset Data Size/ Type Train data Test data

PDB structures input protein structures 115850 6248
16 GAN ↵-carbon maps (16⇥ 16) from 16-residue fragments 1877174 85000
64 GAN ↵-carbon maps (64⇥ 64) from 64-residue fragments 427659 16329
128 GAN ↵-carbon maps (128⇥ 128) from 128-residue fragments 185104 6000
64 Full atom GAN full peptide backbone maps (256⇥ 256) from 64-residue fragments 427659 16329
64 Torsion GAN �, , and ! angles (3⇥ 64) from 64-residue fragments 427659 16329

Our DCGAN model architecture is shown in Figure 1c. For all our models we used a fixed noise vector
size of 100 units. Many of our models show inherent instability, but usually only after converging to
a good solution for map generation. While we implemented various methods for stabilizing GAN
training [39, 40, 41, 42], we found that in practice for this problem, these were not necessary for
training a good model. Since we have several models in this paper, we include a list of all model
architectures in the attached text file.

For upsampling by the generator, we use strided convolution transpose operations instead of pixel
shuffling [43] or interpolation, as we found this to work better in practice. We set the slope of the
LeakyReLU units to 0.2 and the dropout rate to 0.1 during training. Importantly, we did not normalize
input maps but scaled them down by a constant factor. During training, we enforce that G(z) be
positive by clamping output values above zero and symmetric by setting G(z) G(z)+G(z)T

2 before
passing the generated map to the discriminator. We train our models using the Adam optimizer
(�1 = 0.5,�2 = 0.999) with generator and discriminator learning rates set to 10

�4 and no weight
decay [44]. All models were implemented using PyTorch [45].

For folding the maps using ADMM, we typically run ADMM with ⇢ = 100 and � = 1, and run the
gradient descent inner loop for 100 iterations per dual update step with learning rate 10

�4; we break
when the change in the primal residual is less than 10

�2.

A.2 Corruption robustness of ADMM

In Figure S2, we take maps corresponding to real structures and randomly corrupt a fraction m of
distances with noise sampled from Unif(�c, c), while varying the slack weight ⌘ and the Lagrangian
penalty weight ⇢. The error is calculated by doing least-squares rigid-body alignment of the new
coordinates with respect to the coordinates for the true structure.

We see that for c = 5, 10, the rigid-body alignment error is roughly constant until about 10% of the
pairwise distance measurements are corrupted. Note that the pairwise distances are of order ⇠ 10Å.

A.3 GAN baselines

We compare our method for structure generation to the following baselines:

TorusDBN. The TorusDBN model is an HMM with a 55-dimensional hidden state, with emission
distributions over torsion angles (�, ), amino acid sequence, secondary structure, cis/trans con-
formation (!), and NMR chemical shifts. We sampled �, , and ! angles from the model without
conditioning on sequence or secondary structure [17].

FB5-HMM. The FB5-HMM model is a generative model for ↵-carbons, where the ↵-carbon coordi-
nates are defined by psuedo bond angles and dihedral angles defined for consecutive ↵-carbons. We
sample bond angles and dihedral angles from the model and fold full atom structures using Rosetta
fragment sampling as well as our ↵-carbon trace script [18].

13



Torsion angle GAN. We train a multi-scale DCGAN to generate 64-residue length �, , and !
angles for protein fragments. The model architecture is given in the supplementary material. We
include discriminators for 1, 2, 4, 8, 16, and 64 length scales.

3DGAN – voxel space deep convolutional GAN. Current methods for 3D structure generation
use Cartesian or voxel-space representation of structures. We implement the 3DGAN model [29]
which is a DCGAN with 3D convolutions. We transform full atom peptide backbone coordinates
to voxel-space by translating the center of mass to the origin and then linearly interpolating along
atomic bonds. We augment the data with random rotations about the origin.

Full-atom GAN. Finally, we train our 2D pairwise distance map GAN on full-atom peptide back-
bones (including backbone nitrogen, carbon, and oxygen atoms in addition to ↵-carbons). This
quadruples the size of the input maps. Importantly, for a real structure’s map the ADMM coordinate
recovery step has two optimal solutions– the true coordinates and the reflection of those coordinates
about the origin. For ↵-carbon coordinate recovery, we found that reflection of the coordinates did
not lead to implausible final structures; however, for full atom solution, we check the �, distribution
to determine if the coordinates are likely reflected after coordinate recovery.

A.4 Complexity of the GAN

To test the complexity of the generative model, we asked whether for test native structure x we could
find a corresponding z 2 Rn such that G(z) ⇡ x. To do this, we optimized z using pretrained GANs
with a modified reconstruction loss objective Lz , adding a K-L divergence regularizer term LKL over
the mean and variance of elements of z.

Lz(z) = (kG(z)� xk2) + � LKL(z) (5)

LKL(z) =
1

2

(1 + log(�

2
)� µ

2 � �2
) (6)

where

µ =

1

n

nX

i=1

zi, �

2
=

1

n

nX

i=1

(zi � µ)

2

In practice, we set � = 10 and optimize z with Adam (�1 = 0.5,�2 = 0.999) with learning rate 10�2

for 3000 steps, reducing the learning rate by 3% every 10 steps. Results for recovery of 64-residue
and 128-residue structures are shown in Figure S6. We successfully recover maps with most of the
input structural details; this suggests that GAN latent space encodes maps corresponding to unseen
protein fragments. For the 128-residue maps, occasionally details are lost in the recovered map,
which suggests perhaps we need to increase the complexity of that model.

A.5 Inpainting objective

We used a slightly modified version of the semantic inpainting method described in [36], omitting the
Poisson blending step. This method involves optimizing the input vector z of the GAN to find a fake
image which, when overlayed over the masked region of the input, gives a good inpainting solution.
There are three loss terms optimized for this procedure. The first is a context loss term, which is an `1
reconstruction loss with higher weighting for pixels nearer to the masked region of the input. Given
input x and binary mask M delineating the area to be inpainted, the weighting term W is found by
convolving the mask complement MC with a 2D identity filter of fixed size. For our experiments
with 64-residue and 128-residue maps, we set the filter sizes to 9⇥ 9 and 15⇥ 15, respectively. The
context loss is

Lcontext(z) = k(W ⇤MC
) ⇤ (G(z)� x)k1 (7)

The next loss term is a prior discriminator loss with respect to the generated image used for the
inpainting.

Lprior(z) = log(1�D(G(z))) (8)
Finally, there is the discriminator loss on the final inpainting solution.

Ldisc(z) = log(1�D(M ⇤G(z) +M

C ⇤ x)) (9)

14



The full objective is
min

z

Lcontext(z) + � Lprior(z) + Ldisc(z) (10)

where we set weighting term � = 0.003. We optimize z with Adam (�1 = 0.5,�2 = 0.999) with
learning rate 10

�1 for 2000 steps, reducing the learning rate by 5% every 10 steps. We enforce that
the generator output G(z) be positive and symmetric.

15



B Supplementary Figures

16



Figure S1: Runtimes for coordinate recovery methods (seconds) vs. protein length. Each point is
an average over 64 trials. ADMM (b) and the ↵-carbon trace step (c) scale linearly with problem
size, while Rosetta fragment sampling scaling is approximately quadratic (a). Although SCS is fast
for small problem sizes with linear runtime (d), for protein lengths larger than 115, SCS does not
converge for either real or generated maps [33, 34]. ADMM and SCS convergence tolerances are
10

�3 and 10

�5, respectively

17



Figure S2: ADMM corruption robustness analysis for real protein structures. Mean rigid-body
alignment error of structures increase with log fraction of corruptions logm in pairwise distances for
varying slack weight � and Lagrangian penalty weight ⇢. Noise added to pairwise distance matrices
is ⇠Unif[�c, c]; the dashed line represents the 10% corruption boundary. Plots show mean values for
20 examples.

18



Figure S3: a) Generated pairwise distance maps for 128-residue model, along with corresponding
nearest neighbors (NNs) by `2 distance in training dataset and maps after ADMM coordinate
recovery, subsequent ↵-carbon retrace step, and coordinate recovery by Rosetta fragment sampling.
b) Distribution of `2 map errors after coordinate recovery for generated maps (n = 500). c)
Distribution of ↵-carbon rigid body alignment errors between folding methods for generated maps
(n = 500).

19



Figure S4: Linear interpolation in latent vector space of the generator corresponds to smooth
interpolation of generated 64-residue maps.

Figure S5: Example of structure interpolation using the generator. a) Linear interpolation between
generated maps. b) Corresponding structures folded by Rosetta. c) DSSP secondary structure
assignments of interpolated structures [46, 47]. d) �, distribution of all interpolated structures.

20



Real and recovered 64-residue maps L2 map error
(5.08 ± 1.7 Å)

Real and recovered 128-residue maps
L2 map error
(6.64 ± 1.4 Å)

Figure S6: Recovery of maps for 64-residue (top) and 128-residue (bottom) models by optimization
of generator input vector z using reconstruction loss with K-L distance regularization term. Mean
`2 error for recovered maps are 5.07± 1.7 Å and 6.64± 1.4 Å for the 64- and 128-residue models,
respectively (n = 512).

Figure S7: Ramachandran plot (�, distribution) for real proteins, baselines, and interpolated
structures (n = 100). Full atom GAN generated structures excluded due to unnatural chain breaks.

21



Figure S8: Examples of real 64-residue fragments from the training set (a) versus 3DGAN generated
64-residue fragments (b). Input structures are represented with full-atom peptide backbones in voxel
space (1 cubic angstrom per voxel).

Figure S9: Examples of inpainting for 20 missing residues on 128-residue maps. (From left to right)
Original uncorrupted input data; masked input data corresponding to deletion of all pairwise distances
for 20 consecutive residues; fake sample generated by model to fill in masked region; final inpainted
solution.

22



Figure S10: a) Examples of 20-residue inpainting solutions for 128-residue structures folded using
ADMM (PDB ID listed under structure). Sheet-like (top) and helix-like (bottom) solutions given. b)
Discovery of multiple solutions by randomly initializing latent vector before optimization (10-residue
inpainting for 64-residue structures) c) GAN inpainting allows for modeling of longer or shorter
segments (64-residue structures): inpainting native 10 residue segment with 15 residue solution (left);
inpainting native 15 residue segment with 10 residue solution (right). Native structures are colored
green and reconstructed structures are colored yellow. The omitted regions of each native structure
are colored blue, and the inpainted solutions are colored red

23



LLLLLLLLLL LELLLLLLLL

HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH

LLLLEEEEEE

HHHHHHHHHH HHHHHHHHHH HHHHHHHHHH

EEELLLLLLL HHHHHHHHLLLLEELLEELL

LLLLLLLEEL LLLLLLEEELLLLLLEEELL

1pmx HHHHHHHHHH

n=2048
Mean rigid body alignment error (Å)

Lo
g 

sc
al

ed
 R

os
et

ta
 s

co
re Gen – Rosetta map error

1tg0 LLEEEEEEEL

n=2048
Mean rigid body alignment error (Å)

Lo
g 

sc
al

ed
 R

os
et

ta
 s

co
re

Gen – Rosetta map error

2lr8 HHHHHHHHHH

n=1718

Mean rigid body alignment error (Å)

Lo
g 

sc
al

ed
 R

os
et

ta
 s

co
re

Gen – Rosetta map error

3cwi EEEELLEELL

n=5865
Mean rigid body alignment error (Å)

Lo
g 

sc
al

ed
 R

os
et

ta
 s

co
re

Gen – Rosetta map error

2mm2 LLLLEEEELL

n=3368
Mean rigid body alignment error (Å)

Lo
g 

sc
al

ed
 R

os
et

ta
 s

co
re Gen – Rosetta map error

Figure S11: Distribution of inpainting solutions for 64-residue structures. Inpainted maps are
folded using Rosetta. Left: Log scaled backbone Rosetta score ((log(Rosetta score + 500)) vs. rigid
body error with respect to native structure; points colored by L2 map error between generated map
and recovered map after folding. Right: Inpainting solutions corresponding to blue, green, and red
points indicated, along with DSSP secondary structure assignments for inpainted region (H – helix, E
– sheet, L – loop) [46, 47].

24



EELLLLLLLL LLLELLLLLLEEEEEELLLL

LLLLLHHHHH HHHHHHHLLL LLLLLLLLHH

n=1104

LLLLLLLLLE HHHHHHLLLL LLLLLELLLL

HHHHHHHHHH HHHHHHHHHL LLHHHHHHHH

LLLEELLLLL HHHHLLLLLLEEEEEELLLL

5ix5 LLLLLLLLHH

Mean rigid body alignment error (Å)

Lo
g 

sc
al

ed
 R

os
et

ta
 s

co
re

Gen – Rosetta map error

2ame HEEEELLLLL

n=2751
Mean rigid body alignment error (Å)

Lo
g	
sc
al
ed

	R
os
e,

a	
sc
or
e	

Gen – Rosetta map error

1n9s EEEEEELLLL

n=3692
Mean rigid body alignment error (Å)

Lo
g	
sc
al
ed

	R
os
e,

a	
sc
or
e	 Gen – Rosetta map error

2oyi HHHHHHHHLL

n=3158

Mean rigid body alignment error (Å)

Lo
g 

sc
al

ed
 R

os
et

ta
 s

co
re Gen – Rosetta map error

n=2048

4ydx LEEEEELLLL

Mean rigid body alignment error (Å)

Lo
g 

sc
al

ed
 R

os
et

ta
 s

co
re

Gen – Rosetta map error

Figure S12: Distribution of inpainting solutions for more 64-residue structures. Inpainted maps
are folded using Rosetta. Left: Log scaled backbone Rosetta score ((log(Rosetta score + 500)) vs.
rigid body error with respect to native structure; points colored by L2 map error between generated
map and recovered map after folding. Right: Inpainting solutions corresponding to blue, green, and
red points indicated, along with DSSP secondary structure assignments for inpainted region (H –
helix, E – sheet, L – loop) [46, 47].

25



Figure S13: Examples of non-native and incorrect inpainting solutions for selected 128-residue and
64-residue structures, respectively, folded using ADMM (PDB ID listed under structure). Native
structures are colored green and reconstructed structures are colored yellow. The omitted regions of
each native structure are colored blue, and the inpainted solutions are colored red.

26


	Introduction
	Background
	Protein structure and design
	Generative models
	Related Work

	Methods
	Dataset and map generation
	Folding generated maps
	ADMM


	Experiments
	Generating protein structures
	Results

	Inpainting for protein design
	Baselines and metrics
	Inpainting results


	Conclusion
	Supplementary Information
	Dataset and Experiment Details
	Corruption robustness of ADMM
	GAN baselines
	Complexity of the GAN
	Inpainting objective

	Supplementary Figures

