
Visualizing the Loss Landscape of Neural Nets

A Comparison of Loss Surfaces

A.1 The Change of Weights Norm during Training

Figure 8 shows the change of weights norm during training in terms of epochs and iterations.

(a) SGD, WD=0, epoch (b) SGD, WD=5e-4, epoch (c) Adam, WD=0, epoch (d) Adam, WD=5e-4, epoch

(e) SGD, WD=0, iter (f) SGD, WD=5e-4, iter (g) Adam, WD=0, iter (h) Adam, WD=5e-4, iter

Figure 8: The change of weights norm during training for VGG-9. When weight decay is disabled,
the weight norm grows steadily during training without constraints. When nonzero weight decay is
adopted, the weight norm decreases rapidly at the beginning and becomes stable until the learning
rate is decayed. Since we use a fixed number of epochs for different batch sizes, the difference in
weight norm change between large-batch and small-batch training is mainly caused by the larger
number of updates when a small batch is used. As shown in the second row, the changes of weight
norm are at the same pace for both small and large batch training in terms of iterations.

A.2 Comparision of Normalization Methods

Here we compare several normalization methods for a given random normal direction d. Let ✓i denote the
weights of layer i and ✓i,j represent the j-th filter in the i-th layer.

• No Normalization In this case, the direction d is added to the weights directly without processing.

• Filter Normalization The direction d is normalized so that the direction for each filter has the same
norm as the corresponding filter in ✓,

di,j
di,j
kdi,jk

k✓i,jk.

This is the approach advocated in this article, and is used extensively for plotting loss surfaces.

• Layer Normalization The direction d is normalized in the layer level so that the direction for each
layer has the same norm as the corresponding layer of ✓,

di
di
kdik
k✓ik.

Figure 9 shows the 1D plots without normalization. One issue with the non-normalized plots is that the x-axis
range must be chosen carefully. Figure 10 shows enlarged plots with [�0.2, 0.2] as the range for the x-axis.
Without normalization, the plots fail to show consistency between flatness and generalization error. Here we
compare filter normalization with layer normalization. We find filter normalization is more accurate than layer
normalization. One failing case for layer normalization is shown in Figure 11, where Figure 11(g) is flatter than
Figure 11(c), but with worse generalization error.

12

(a) SGD, 128, 7.37% (b) SGD, 8192, 11.07% (c) Adam, 128, 7.44% (d) Adam, 8192, 10.91%

(e) SGD, 128, 6.00% (f) SGD, 8192, 10.19% (g) Adam, 128, 7.80% (h) Adam, 8192, 9.52%

Figure 9: 1D loss plots for VGG-9 without normalization. The first row has no weight decay and the
second row uses weight decay 0.0005.

(a) SGD, 128, 7.37% (b) SGD, 8192, 11.07% (c) Adam, 128, 7.44% (d) Adam, 8192, 10.91%

(e) SGD, 128, 6.00% (f) SGD, 8192, 10.19% (g) Adam, 128, 7.80% (h) Adam, 8192, 9.52%

Figure 10: Enlarged Figure 9. The range of the x-axis is [-0.2, 0.2] instead of [-1.0, 1.0]. The first
row has no weight decay and the second row uses weight decay 0.0005. The pairs (a, e) and (c, g)
show that sharpness of minima does not correlate well with test error.

(a) SGD, 128, 7.37% (b) SGD, 8192, 11.07% (c) Adam, 128, 7.44% (d) Adam, 8192, 10.91%

(e) SGD, 128, 6.00% (f) SGD, 8192, 10.19% (g) Adam, 128, 7.80% (h) Adam, 8192, 9.52%

Figure 11: 1D loss plots for VGG-9 with layer normalization. The first row has no weight decay and
the second row uses weight decay 5e-4.

13

A.3 Small-Batch vs Large-Batch for ResNet-56

Similar to the observations made in Section 5, the “sharp vs flat dilemma" also applies to ResNet-56 as shown in
Figure 12. The generalization error for each solution is shown in Table 1. The 1D and 2D visualizations with
filter normalized directions are shown in Figure 13.

Table 1: Test errors for ResNet-56 with different optimizer, batch-size and weight-decay.

SGD Adam
bs=128 bs=4096 bs=128 bs=4096

WD = 0 8.26 13.93 9.55 14.30
WD = 5e-4 5.89 10.59 7.67 12.36

(a) SGD, WD=0 (b) SGD, WD=5e-4 (c) Adam, WD=0 (d) Adam, WD=5e-4

Figure 12: 1D linear interpolation of solutions obtained by small-batch and large-batch methods for
ResNet-56. The blue lines are loss values and the red lines are error.

(a) SGD, 128, 8.26% (b) SGD, 4096, 13.93% (c) Adam, 128, 9.55% (d) Adam, 4096, 14.30%

(e) SGD, 128, 5.89% (f) SGD, 4096, 10.59% (g) Adam, 128, 7.67% (h) Adam, 4096, 12.36%

(i) SGD, 128, 8.26% (j) SGD, 4096, 13.93% (k) Adam, 128, 9.55% (l) Adam, 4096, 14.30%

(m) SGD, 128, 5.89% (n) SGD, 4096, 10.59% (o) Adam, 128, 7.67% (p) Adam, 4096, 12.36%

Figure 13: 1D and 2D visualization of ResNet-56 trained with different optimizer, batch size, and
weight decay. The first and third row uses zero weight decay and the second and fourth row uses 5e-4
weight decay.

14

A.4 Repeatability of the Loss Surface Visualization

Do different random directions produce dramatically different plots? We plot the 1D loss surface of VGG-9 with
10 random filter-normalized directions. As shown in Figure 14, the plots are very close in shape. We also repeat
the 2D loss surface plots multiple times for ResNet-56-noshort, which has worse generalization error. As shown
in Figure 15, there are apparent changes in the loss surface for different plots, however, the qualitative choatic
behaviour is quite consistent across plots.

(a) SGD, 128, 7.37% (b) SGD, 8192, 11.07% (c) Adam, 128, 7.44% (d) Adam, 8192, 10.91%

(e) SGD, 128, 6.00% (f) SGD, 8192, 10.19% (g) Adam, 128, 7.80% (h) Adam, 8192, 9.52%

Figure 14: Repeatability of the surface plots for VGG-9 with filter normalization. The shape of
minima obtained using 10 different random filter-normalized directions.

Figure 15: Repeatability of the 2D surface plots for ResNet-56-noshort. The model is trained with
batch size 128, initial learning rate 0.1 and weight decay 5e-4. The final training loss is 0.192, the
training error is 6.49 and the test error is 13.31.

A.5 Implementation Details

Computing resources for generating the figures Our PyTorch code can be executed in a multiple GPU
workstation as well as an HPC with hundreds of GPUs using mpi4py. The computation time depends on the
model’s inference speed on the training set, the resolution of the plots, and the number of GPUs. The resolution
for the 1D plots in Figure 3 is 401⇥401. The default resolutions used for the 2D contours in Figure 3 and
Figure 5 is 51⇥ 51. We use higher resolutions (251⇥ 251) for the ResNet-56-noshort used in Figure 1 to show
more details. For reference, a 2D contour plot of ResNet-56 with a (relatively low) resolution of 51⇥ 51 will
take about 1 hour on a workstation with 4 GPUs (Titan X Pascal or 1080 Ti).

Batch Normalization parameters In the 1D linear interpolation methods, the Batch Normalization (BN)
parameters including the “running mean” and “running variance” need to be considered as part of ✓. If these
parameters are not considered, then it is not possible to reproduce the exact loss values for both minimizers.
In the filter-normalized visualization, the random direction perturbs all weights except batch norm parameters.
Note that the filter normalization process removes the effect of weight scaling, and so the batch normalization
can be ignored.

The VGG-9 architecture and parameters for Adam VGG-9 is a cropped version of VGG-16, which
keeps the first 7 Conv layers in VGG-16 with 2 FC layers. A BN layer is added after each conv layer and the first
FC layer. We find VGG-9 is an efficient network with better performance comparing to VGG-16 on CIFAR-10.
We use the default values for �1, �2 and ✏ in Adam with the same learning rate schedule as used in SGD.

15

A.6 Training Curves for VGG-9 and ResNets

The loss curves for training VGG-9 used in Section 5 are shown in Figure 16. Figure 17 shows the loss curves
and error curves of architectures used in Section 6 and Table 2 shows the final error and loss values. The default
setting for training is using SGD with Nesterov momentum, batch-size 128, and 0.0005 weight decay for 300
epochs. The default learning rate was initialized at 0.1, and decreased by a factor of 10 at epochs 150, 225
and 275.

(a) SGD, loss values (b) SGD, errors (c) Adam, loss values (d) Adam, errors

Figure 16: Training loss/error curves for VGG-9 with different optimization methods. Dashed lines
are for testing, solid for training.

(a) ResNet-CIFAR (b) ResNet-CIFAR (c) ResNet-CIFAR-noshort (d) ResNet-CIFAR-noshort

Figure 17: Convergence curves for different architectures.

Table 2: Loss values and errors for different architectures trained on CIFAR-10.

init LR Training Loss Training Error Test Error

ResNet-20 0.1 0.017 0.286 7.37
ResNet-20-noshort 0.1 0.025 0.560 8.18
ResNet-56 0.1 0.004 0.052 5.89
ResNet-56-noshort 0.1 0.192 6.494 13.31
ResNet-56-noshort 0.01 0.024 0.704 10.83
ResNet-110 0.1 0.002 0.042 5.79
ResNet-110-noshort 0.01 0.258 8.732 16.44

16

B Visualizing Optimization Paths

Finally, we explore methods for visualizing the trajectories of different optimizers. For this application, random
directions are ineffective. We will provide a theoretical explanation for why random directions fail, and explore
methods for effectively plotting trajectories on top of loss function contours.

Several authors have observed that random direction fail to capture the variation in optimization trajectories,
including [10, 29, 28, 27]. Several failed visualizations are depicted in Figure 18. In Figure 18(a), we see
the iterates of SGD projected onto the plane defined by two random directions. Almost none of the motion is
captured (notice the super-zoomed-in axes and the seemingly random walk). This problem was noticed by [13],
who then visualized trajectories using one direction that points from initialization to solution, and one random
direction. This approach is shown in Figure 18(b). As seen in Figure 18(c), the random axis captures almost no
variation, leading to the (misleading) appearance of a straight line path.

(a) Two random directions (b) Random direction for y-axis (c) Enlarged version (b)

Figure 18: Ineffective visualizations of optimizer trajectories. These visualizations suffer from the
orthogonality of random directions in high dimensions.

B.1 Why Random Directions Fail: Low Dimensional Optimization Trajectories

It is well-known that two random vectors in a high dimensional space will be nearly orthogonal with high
probability. In fact, the expected cosine similarity between Gaussian random vectors in n dimensions is roughlyp

2/(⇡n) ([12], Lemma 5).

This is problematic when optimization trajectories lie in extremely low dimensional spaces. In this case, a
randomly chosen vector will lie orthogonal to the low-rank space containing the optimization path, and a
projection onto a random direction will capture almost no variation. Figure 18(b) suggests that optimization
trajectories are low dimensional because the random direction captures orders of magnitude less variation than
the vector that points along the optimization path. Below, we use PCA directions to directly validate this low
dimensionality, and also to produce effective visualizations.

B.2 Effective Trajectory Plotting using PCA Directions

To capture variation in trajectories, we need to use non-random (and carefully chosen) directions. Here, we
suggest an approach based on PCA that allows us to measure how much variation we’ve captured; we also
provide plots of these trajectories along the contours of the loss surface.

Let ✓i denote model parameters at epoch i and the final estimate as ✓n. Given n training epochs, we can
apply PCA to the matrix M = [✓0 � ✓n; · · · ; ✓n�1 � ✓n], and then select the two most explanatory directions.
Optimizer trajectories (blue dots) and loss surfaces along PCA directions are shown in Figure 19. Epochs where
the learning rate was decreased are shown as red dots. On each axis, we measure the amount of variation in the
descent path captured by that PCA direction.

We see some interesting behavior in these plots. At early stages of training, the paths tend to move perpendicular
to the contours of the loss surface, i.e., along the gradient directions as one would expect from non-stochastic
gradient descent. The stochasticity becomes fairly pronounced in several plots during the later stages of training.
This is particularly true of the plots that use weight decay and small batches (which leads to more gradient noise,
and a more radical departure from deterministic gradient directions). When weight decay and small batches
are used, we see the path turn nearly parallel to the contours and “orbit” the solution when the stepsize is large.
When the stepsize is dropped (at the red dot), the effective noise in the system decreases, and we see a kink in
the path as the trajectory falls into the nearest local minimizer.

Finally, we can directly observe that the descent path is very low dimensional: between 40% and 90% of the
variation in the descent paths lies in a space of only 2 dimensions. The optimization trajectories in Figure 19
appear to be dominated by movement in the direction of a nearby attractor. This low dimensionality is compatible

17

with the observations in Section 6, where we observed that non-chaotic landscapes are dominated by wide,
nearly convex minimizers.

(a) SGD,WD=5e-4 (b) Adam, WD=5e-4

(c) SGD, WD=0 (d) Adam,WD=0

Figure 19: Projected learning trajectories use normalized PCA directions for VGG-9. The left plot in
each subfigure uses batch size 128, and the right one uses batch size 8192.

18

	Introduction
	Contributions

	Theoretical Background
	The Basics of Loss Function Visualization
	Proposed Visualization: Filter-Wise Normalization
	The Sharp vs Flat Dilemma
	What Makes Neural Networks Trainable? Insights on the (Non)Convexity Structure of Loss Surfaces
	Conclusion
	Comparison of Loss Surfaces
	The Change of Weights Norm during Training
	Comparision of Normalization Methods
	Small-Batch vs Large-Batch for ResNet-56
	Repeatability of the Loss Surface Visualization
	Implementation Details
	Training Curves for VGG-9 and ResNets

	Visualizing Optimization Paths
	Why Random Directions Fail: Low Dimensional Optimization Trajectories
	Effective Trajectory Plotting using PCA Directions

