
A Fokker-Planck Equation and Backward Kolmogorov Equation

In this section, we introduce the Fokker-Planck Equation and the Backward Kolmogorov equation.
Fokker-Planck equation addresses the evolution of probability density p(x) that associates with the
SDE. We give the following specific definition.
Definition A.1 (Fokker–Planck Equation). Let p(x, t) be the probability density at time t of the
stochastic differential equation and denote p0(x) the initial probability density. Then

@tp(x, t) = L⇤p(x, t), p(x, 0) = p0(x),

where L⇤ is the formal adjoint of L.

Fokker-Planck equation gives us a way to find whether there exists a stationary distribution for the
SDE. It can be shown [30] that for the stochastic differential equation (1.2), its stationary distribution
exists and satisfies

⇡(dx) =
1

Q
e��Fn(x), Q =

Z
e��Fn(x)dx. (A.1)

This is also known as Gibbs measure.

Backward Kolmogorov equation describes the evolution of E[g(X(t))|X(0) = x] with g being a
smooth test function.
Definition A.2 (Backward Kolmogorov Equation). Let X(t) solves the stochastic differential equa-
tion (1.2). Let u(x, t) = E[g(X(t))|X(0) = x], we have

@tu(x, t) = Lu(x, t), u(x, 0) = g(x).

Now consider doing first order Taylor expansion on u(x, t), we have

u(x, t) = u(x, 0) +
@

@t
u(x, t)|t=0 · (t � 0) + O(t2)

= g(x) + tLg(x) + O(t2). (A.2)

B Proof of Corollaries

In this section, we provide the proofs of corollaries for iteration complexity in our main theory
section.

Proof of Corollary 3.4. To ensure the iterate error converge to ✏ precision, we need

⇥e��K⌘  ✏

2
,

C ⌘

�
 ✏

2
.

The second inequality can be easily satisfied with ⌘ = O(✏) and the first inequality implies

K � 1

�⌘
log

✓
2⇥

✏

◆
.

Combining with ⌘ = O(✏) and ⇥ = O(d2/⇢d/2), we obtain the iteration complexity

K = O

✓
d

✏�
· log

✓
1

✏

◆◆
,

which completes the proof.

Proof of Corollary 3.7. To ensure the iterate error of SGLD converging to ✏ precision, we require the
following inequalities to hold

C1

p
��(M

p
� + G)K⌘


n � B

B(n � 1)

�1/4

 ✏

3
, ⇥e��K⌘  ✏

3
,

C ⌘

�
 ✏

3
.
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The third inequality can be easily satisfied with ⌘ = O(✏). For the second inequality, similar as in the
proof of Corollary 3.4, we have

K⌘ � 1

�
log

✓
3⇥

✏

◆
.

Since ✏ < 1, we know that log(1/✏) will not go to zero when ✏ goes to zero. In fact, if we set
⌘ = O(✏) and K = O(d/(�✏) log(1/✏)), the first term in (3.2) scales as

C1

p
��(M

p
� + G)K⌘


n � B

B(n � 1)

�1/4

= O

✓
d3/2K⌘

B1/4

◆
= O

✓
d3/2

B1/4�
log

✓
1

✏

◆◆
.

Therefore, within K = O(d/(✏�) · log(1/✏)) iterations, the iterate error of SGLD scales as

O

✓
d3/2

B1/4�
log

✓
1

✏

◆
+ ✏

◆
.

Proof of Corollary 3.11. Similar to previous proofs, in order to achieve an ✏-precision iterate error
for SVRG-LD, we require

C1�K3/4⌘


L�M2(n � B)

B(n � 1)

✓
9⌘(M2� + G2) +

d

�

◆�1/4

 ✏

3
, ⇥e��K⌘  ✏

3
,

C ⌘

�
 ✏

3
.

By previous proofs we know that the second and third inequalities imply ⌘ = O(✏) and K⌘ =
O(1/� log(3⇥/✏)) respectively. Combining with the first inequality, we have

⌘1/4 = O

✓
B1/4✏

(K⌘)3/4d5/4L1/4

◆

Combining with the first inequality, we have

⌘ = O

✓
min

⇢
B✏4

(K⌘)3d5L
, ✏

�◆

Combining the above requirements yields

K = O

✓
Ld5

B�4✏4
log4

✓
1

✏

◆
+

1

✏

◆
. (B.1)

For gradient complexity, note that for each iteration we need B stochastic gradient evaluations and we
also need in total K/L full gradient calculations. Therefore, the gradient complexity for SVRG-LD is

O(K · B + K/L · n) = eO
✓✓

n

B
+ L

◆
1

✏4
+

✓
n

L
+ B

◆
1

✏

◆
· e eO(d).

If we solve for the best B and L, we obtain B =
p

n✏�3/2, L =
p

n✏3/2. Therefore, we have the
optimal gradient complexity for SVRG-LD as

eO
✓p

n

✏5/2

◆
· e eO(d).

C Proof of Technical Lemmas

In this section, we provide proofs of the technical lemmas used in the proof of our main theory.
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C.1 Proof of Lemma 4.1

Geometric ergodicity of dynamical systems has been studied a lot in the literature [47, 40]. In
particular, Roberts and Tweedie [47] proved that even when the diffusion converges exponentially fast
to its stationary distribution, the Euler-Maruyama discretization in (2.2) may still lose the convergence
properties and examples for Langevin diffusion can be found therein. To further address this problem,
[40] built their analysis of ergodicity for SDEs on a minorization condition and the existence of a
Lyapunov function. In time discretization of dynamics systems, they studied how time-discretization
affects the minorization condition and the Lyapunov structure. For the self-containedness of our
analysis, we present the minorization condition on a compact set C as follows.
Proposition C.1. There exist t0 2 R and ⇠ > 0 such that the Markov process {X(t)} satisfies

P(X(t0) 2 A|X(0) = x) � ⇠⌫(A),

for any A 2 B(Rd), some fixed compact set C 2 B(Rd), and x 2 C, where B(Rd) denotes the Borel
�-algebra on Rd and ⌫ is a probability measure with ⌫(Cc) = 0 and ⌫(C) = 1.

Proposition C.1 does not always hold for a Markov process generated by an arbitrary SDE. However,
for Langevin diffusion (1.2) studied in this paper, Mattingly et al. [40] proved that this minorization
condition actually holds under the dissipative and smooth assumptions (see Corollary 7.4 in Mattingly
et al. [40]). For more explanation on the existence and robustness of the minorization condition under
discretization approximations for Langevin diffusion, we refer interested readers to Corollary 7.5 and
the proof of Theorem 6.2 in Mattingly et al. [40]. Now we are going to prove Lemma 4.1, which
requires the following useful lemmas:
Lemma C.2. Let V (x) = C + kxk22 be a function on Rd, where C > 0 is a constant. Denote
the expectation with Markov process {X(t)} starting at x by Ex[·] = E[·|X(0) = x]. Under
Assumption 3.2, we have

Ex[V (X(t))]  e�2mtV (x) +
b + m + d/�

m
(1 � e�2mt),

for all x 2 Rd.
Lemma C.3. (Theorem 7.3 in Mattingly et al. [40]) Under Assumptions 3.1 and 3.2, let V (x) =
C0 + M/2kxk22 be an essential quadratic function. The numerical approximation (2.1) (GLD) of
Langevin diffusion (1.2) has a unique invariant measure µ and for all test function g such that |g|  V ,
we have

��E[g(Xk)] � E[g(Xµ)]
��  C⇢�d/2(1 + em⌘) exp

✓
� 2mk⌘⇢d

log()

◆
,

where ⇢ 2 (0, 1),C > 0 are absolute constants, and  = 2M(b + m + d)/m.

Proof of Lemma 4.1. The proof is majorly adapted from that of Theorem 7.3 and Corollary 7.5 in
Mattingly et al. [40]. By Assumption 3.1, Fn is M -smooth. Thus we have

Fn(x)  Fn(y) + hrFn(y),x � yi +
M

2
kx � yk22,

for all x,y 2 Rd. By Lemma D.1 and choosing y = 0, this immediately implies that Fn(x) can
always be bounded by a quadratic function V (x), i.e.,

Fn(x)  M

2
V (x) =

M

2
(C0 + kxk22).

Therefore V (x) is an essentially quadratic Lyapunov function such that |Fn(x)|  MV (x)/2 for
x 2 Rd. By Lemma C.2 the Lyapunov function satisfies

Ex0 [V (X(t))]  e�2mtV (x0) +
b + m + d/�

m
(1 � e�2mt).

According to Corollary 7.5 in Mattingly et al. [40], the Markov chain {Xk}k=1,2,...,K satisfies

Ex0 [MV (X1)/2]  e�2m⌘[MV (x0)/2] +
M(b + m + d/�)

2m
. (C.1)
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Recall the GLD update formula defined in (2.1)

Xk+1 = Xk � ⌘rFn(Xk) +
p

2⌘��1 · ✏k.

Define F 0(Xk) = �Fn(Xk) and ⌘0 = ⌘/�, we have

Xk+1 = Xk � ⌘0rF 0(Xk) +
p

2⌘0 · ✏k. (C.2)

This suggests that the result for � 6= 1 is equivalent to rescaling ⌘ to ⌘/� and Fn(·) to �Fn(·).
Therefore, in the following proof, we will assume that � = 1 and then rescale ⌘, Fn(·) at last. Similar
tricks are used in Raginsky et al. [45], Zhang et al. [53]. Under Assumptions 3.1 and 3.2, it is proved
that Euler-Maruyama approximation of Langevin dynamics (1.2) has a unique invariant measure µ
on Rd. Denote Xµ as a random vector which is sampled from measure µ. By Lemma C.3, for all
test function g such that |g|  V , it holds that

��E[g(Xk)] � E[g(Xµ)]
��  C0⇢�d/2(1 + 0em⌘) exp

✓
� 2mk⌘⇢d

log(0)

◆
,

where ⇢, � 2 (0, 1),C > 0 are absolute constants, and 0 = 2M(b + m + d)/m. Take Fn as the test
function and X0 = 0, and by rescaling ⌘ and Fn(·) (dissipative and smoothness parameters), we
have

��E[Fn(Xk)] � E[Fn(Xµ)]
��  C⇢�d/2(1 + em⌘) exp

✓
� 2mk⌘⇢d

log()

◆
,

where  = 2M(b� + m� + d)/m.

C.2 Proof of Lemma 4.2

To prove Lemma 4.2, we lay down the following supporting lemma, of which the derivation is
inspired and adapted from Chen et al. [12].
Lemma C.4. Under Assumptions 3.1 and 3.2, the Markov chain {Xk}K

k=1 generated by Algorithm
1 satisfies

����
1

K

K�1X

k=0

E[Fn(Xk)|X0 = x] � F̄

����  C 

✓
�

⌘K
+
⌘

�

◆
,

where F̄ =
R

Fn(x)⇡(dx) with ⇡ being the Gibbs measure for the Langevin diffusion (1.2).

Proof of Lemma 4.2. By definition we have
��E[Fn(Xµ)] � E[Fn(X⇡)]

�� =
����
Z

Fn(x)µ(dx) �
Z

Fn(x)⇡(dx)

����. (C.3)

For simplicity, we denote the average
R

Fn(x)⇡(dx) as F̄n. Since µ is the ergodic limit of the
Markov chain generated by the GLD process, for a given test function Fn, we have

Z
Fn(x)µ(dx) =

Z
E[Fn(Xk)|X0 = x] · µ(dx).

Since µ and ⇡ are two invariant measures, we consider the case where K ! 1. Take average over
K steps {Xk}K�1

k=0 we have
Z

Fn(x)µ(dx) = lim
K!1

Z
1

K

K�1X

k=0

E[Fn(Xk)|X0 = x] · µ(dx). (C.4)

Submitting (C.4) back into (C.3) yields

��E[Fn(Xµ)] � E[Fn(X⇡)]
�� = lim

K!1

����
Z 

1

K

K�1X

k=0

E[Fn(Xk)|X0 = x] � F̄

�
· µ(dx)

����

 lim
K!1

Z ����
1

K

K�1X

k=0

E[Fn(Xk)|X0 = x] � F̄

���� · µ(dx). (C.5)
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Apply Lemma C.4 with g chosen as Fn we further bound (C.5) by
��E[Fn(Xµ)] � E[Fn(X⇡)]

��  C · lim
K!1

Z ✓
�

⌘K
+
⌘

�

◆
· µ(dx)

= C · lim
K!1

✓
�

⌘K
+
⌘

�

◆

=
C ⌘

�
.

C.3 Proof of Lemma 4.4

Lemma 4.4 gives the upper bound of function value gap between the GLD iterates and the SGLD
iterates. To bound the difference between Fn(XK) and Fn(YK), we need the following lemmas.
Lemma C.5. Under Assumptions 3.1 and 3.2, for any x 2 Rd, it holds that

E
����rFn(x) � 1

B

X

i2Ik

rfi(x)

����
2

2

 4(n � B)(Mkxk2 + G)2

B(n � 1)
,

where B = |Ik| is the mini-batch size and G = maxi=1,...,n{krfi(x⇤)k2} + bM/m.

The following lemma describes the L2 bound for discrete processes Xk (GLD), Yk (SGLD) and Zk

(SVRG-LD). Note that for SGLD, similar result is also presented in Raginsky et al. [45].
Lemma C.6. Under Assumptions 3.1 and 3.2, for sufficiently small step size ⌘, suppose the initial
points of Algorithms 1, 2 and 3 are chosen at 0, then the L2 bound of the GLD process (2.1), SGLD
process (2.2) and SVRG-LD process (2.3) can be uniformly bounded by

max{E[kXkk22],E[kYkk22],E[kZkk22]}  � where � := 2

✓
1 +

1

m

◆✓
b + 2G2 +

d

�

◆
,

for any k = 0, 1, . . . , K, where G = maxi=1,...,n{krfi(x⇤)k2} + bM/m.

The following lemma gives out the upper bound for the exponential L2 bound of Xk.
Lemma C.7. Under Assumptions 3.1 and 3.2, for sufficiently small step size ⌘ < 1 and the inverse
temperature satisfying � � max{2/(m � M2⌘), 4⌘}, it holds that

logE[exp(kXkk22)]  kX0k22 +
2�(b + G2) + 2d

� � 4⌘
k⌘.

Lemma C.8. [44, 45] For any two probability density functions µ, ⌫ with bounded second moments,
let g : Rd ! R be a C1 function such that

krg(x)k2  C1kxk2 + C2, 8x 2 Rd

for some constants C1, C2 � 0. Then
����
Z

Rd

g(x)dµ �
Z

Rd

g(x)d⌫

����  (C1� + C2)W2(µ, ⌫),

where W2 is the 2-Wasserstein distance and �2 = max
� R

Rd kxk22µ(dx),
R
Rd kxk22⌫(dx)

 
.

Lemma C.9. (Corollary 2.3 in Bolley and Villani [5]) Let ⌫ be a probability measure on Rd. Assume
that there exist x0 and a constant ↵ > 0 such that

R
exp(↵kx � x0k22)d⌫(x) < 1. Then for any

probability measure µ on Rd, it satisfies

W2(µ, ⌫)  C⌫
�p

DKL(µ||⌫) +
�
DKL(µ||⌫)/2

�1/4�
,

where C⌫ is defined as

C⌫ = inf
x02Rd,↵>0

s
1

↵

✓
3

2
+ log

Z
exp(↵kx � x0k22)d⌫(x)

◆
.

17



Proof of Lemma 4.4. Let PK , QK denote the probability measures for GLD iterate XK and SGLD
iterate YK respectively. Applying Lemma C.8 to probability measures PK and QK yields

��E[Fn(YK)] � E[Fn(XK)]
��  (C1

p
� + C2)W2(QK , PK), (C.6)

where C1, C2 > 0 are absolute constants and � = 2(1 + 1/m)(b + 2G2 + d/�) is the upper bound
for both E[kXkk22] and E[kYkk22] according to Lemma C.6. We further bound the W2 distance via
the KL-divergence by Lemma C.9 as follows

W2(QK , PK)  ⇤(
p

DKL(QK ||PK) + 4
p

DKL(QK ||PK)), (C.7)

where ⇤ =
p

3/2 + logEPK [exp(kXKk22)]. Applying Lemma C.7 we obtain ⇤ =
p

(6 + 2�)K⌘.
Therefore, we only need to bound the KL-divergence between density functions PK and QK . To this
end, we introduce a continuous-time Markov process {D(t)}t�0 to bridge the gap between diffusion
{X(t)}t�0 and its numerical approximation {Xk}k=0,1,...,K . Define

dD(t) = b(D(t))dt +
p

2��1dB(t), (C.8)

where b(D(t)) = �
P1

k=0 rF (X(⌘k))1{t 2
⇥
⌘k, ⌘(k + 1)

�
}. Integrating (C.8) on interval⇥

⌘k, ⌘(k + 1)
�

yields

D(⌘(k + 1)) = D(⌘k) � ⌘rF (D(⌘k)) +
p

2⌘��1 · ✏k,

where ✏k ⇠ N(0, Id⇥d). This implies that the distribution of random vector (X1, . . . , XK) is
equivalent to that of (D(⌘), . . . , D(⌘K)). Similarly, for Yk we define

dfM(t) = c(fM(t))dt +
p

2��1dB(t),

where the drift coefficient is defined as c(fM(t)) = �
P1

k=0 gk(fM(⌘k))1{t 2 [⌘k, ⌘(k + 1))}
and gk(x) = 1/B

P
i2Ik

rfi(x) is a mini-batch of the full gradient with Ik being a random subset
of {1, 2, . . . , n} of size B. Now we have that the distribution of random vector (Y1, . . . , YK) is
equivalent to that of (fM(⌘), . . . , fM(⌘K)). However, the process fM(t) is not Markov due to the
randomness of the stochastic gradient gk. Therefore, we define the following Markov process which
has the same one-time marginals as

dM(t) = h(M(t))dt +
p

2��1dB(t), (C.9)

where h(·) = �E[gk(fM(⌘k))1{t 2 [⌘k, ⌘(k + 1))}|fM(t) = ·] is the conditional expectation of
the left end point of the interval which fM(t) lies in. Let Pt denote the distribution of D(t) and
Qt denote the distribution of M(t). By (C.8) and (C.9), the Radon-Nikodym derivative of Pt with
respective to Qt is given by the following Girsanov formula [38]

dPt

dQt

(M) = exp

⇢r
�

2

Z
t

0
(h(M(s)) � b(M(s)))>(dM(s) � h(M(s))ds)

� �

4

Z
t

0
kh(M(s)) � b(M(s))k22ds

�
.

Since Markov processes {D(t)}t�0 and {M(t)}t�0 are constructed based on Markov chains Xk

and Yk, by data-processing inequality the K-L divergence between PK and QK can be bounded by

DKL(QK ||PK)  DKL(Q⌘K ||P⌘K)

= �E


log

✓
dP⌘K

dQ⌘K

(M)

◆�

=
�

4

Z
⌘K

0
E
⇥
kh(M(r)) � b(M(r))k22

⇤
dr, (C.10)

where in the last equality we used the fact that dB(t) follows Gaussian distribution independently
for any t � 0. By definition, we know that both h(M(r)) and b(M(r)) are step functions when
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r 2 [⌘k, ⌘(k + 1)) for any k. This observation directly yields
Z
⌘K

0
E
⇥
kh(M(r)) � b(M(r))k22

⇤
dr 

K�1X

k=0

Z
⌘(k+1)

⌘k

E
⇥
kgk(fM(⌘k)) �rFn(fM(⌘k))k22

⇤
dr

= ⌘
K�1X

k=0

E
⇥
kgk(Yk) �rFn(Yk)k22

⇤
,

where the first inequality is due to Jensen’s inequality and the convexity of function k · k2, and the
last equality is due to the equivalence in distribution. By Lemmas C.5 and C.6, we further have

Z
⌘K

0
E
⇥
kh(M(r)) � b(M(r))k22

⇤
dr  4⌘K(n � B)(M� + G)2

B(n � 1)
. (C.11)

Submitting (C.10) and (C.11) into (C.7), we have

W2(QK , PK)  ⇤

 s
�⌘K(n � B)(M� + G)2

B(n � 1)
+ 4

s
�⌘K(n � B)(M� + G)2

B(n � 1)

!

 ⇤

s
�⌘K

p
n � B(M� + G)2p

B(n � 1)
. (C.12)

Combining (C.6) with (C.12), we obtain the expected function value gap between SGLD and GLD:

|E[F (Yk)] � E[F (Xk)]|  C1�
p

K⌘


�⌘K

p
n � B(M

p
� + G)2p

B(n � 1)

�1/2

,

where we adopt the fact that K⌘ > 1 and assume that C1 � C2.

C.4 Proof of Lemma 4.5

Similar to the proof of Lemma 4.4, to bound the difference between Fn(XK) and Fn(ZK), we need
the following lemmas.
Lemma C.10. Under Assumptions 3.1 and 3.2, for each iteration k = sL + ` in Algorithm 3, it
holds that

Ekerk �rFn(Zk)k22  M2(n � B)

B(n � 1)
E
��Zk � eZ(s)

��2
2
,

where erk = 1/B
P

ik2Ik

�
rfik(Zk) �rfik( eZ(s)) + rFn( eZ(s)

�
and B = |Ik| is the mini-batch

size.

Proof of Lemma 4.5. Denote QZ

K
as the probability density functions for ZK . For the simplicity of

notation, we omit the index Z in the remaining part of this proof when no confusion arises. Similar
as in the proof of Lemma 4.4, we first apply Lemma C.8 to probability measures PK for XK and
QZ

K
for ZK , and obtain the following upper bound of function value gap

|E[Fn(ZK)] � E[Fn(XK)]|  (C1

p
� + C2)W2(Q

Z

K
, PK), (C.13)

where C1, C2 > 0 are absolute constants and � = 2(1 + 1/m)(b + 2G2 + d/�) is the upper bound
for both E[kXkk22] and E[kZkk22] according to Lemma C.6. Further by Lemma C.9, the W2 distance
can be bounded by

W2(Q
Z

K
, PK)  ⇤(

q
DKL(QZ

K
||PK) + 4

q
DKL(QZ

K
||PK)), (C.14)

where ⇤ =
q

3/2 + logEPK [ekXKk2
2 ]. Applying Lemma C.7 we obtain ⇤ =

p
(6 + 2�)K⌘.

Therefore, we need to bound the KL-divergence between density functions PK and QZ

K
. Similar to

the proof of Lemma 4.4, we define a continuous-time Markov process associated with Zk as follows

dfN(t) = p(fN(t))dt +
p

2��1dB(t),
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where p(fN(t)) = �
P1

k=0
erk 1{t 2 [⌘k, ⌘(k + 1))} and erk is the semi-stochastic gradient at k-th

iteration of SVRG-LD. We have that the distribution of random vector (Z1, . . . , ZK) is equivalent
to that of (fN(⌘), . . . , fN(⌘K)). However, fN(t) is not Markov due to the randomness of erk. We
define the following Markov process which has the same one-time marginals as fN(t)

dN(t) = q(N(t))dt +
p

2��1dB(t), (C.15)

where q(·) = �E[erk 1{t 2 [⌘k, ⌘(k + 1))}|p(fN(t)) = ·]. Let QZ
t

denote the distribution of N(t).
By (C.8) and (C.15), the Radon-Nikodym derivative of Pt with respective to QZ

t
is given by the

Girsanov formula [38]
dPt

dQZ
t

(N) = exp

⇢r
�

2

Z
t

0
(q(N(r)) � b(N(r)))>(dN(r) � h(N(r))dr)

� �

4

Z
t

0
kq(N(r)) � b(N(r))k22dr

�
.

Since Markov processes {D(t)}t�0 and {N(t)}t�0 are constructed based on Xk and Zk, by data-
processing inequality the K-L divergence between PK and QZ

K
in (C.14) can be bounded by

DKL(QZ

K
||PK)  DKL(QZ

⌘K
||P⌘K)

= �E


log

✓
dP⌘K

dQZ

⌘K

(N)

◆�

=
�

4

Z
⌘K

0
E
⇥
kq(N(r)) � b(N(r))k22

⇤
dr. (C.16)

where in the last equality we used the fact that dB(t) follows Gaussian distribution independently
for any t � 0. By definition, we know that both q(N(r)) and b(N(r)) are step functions when
r 2 [⌘k, ⌘(k + 1)) for any k. This observation directly yields
Z
⌘K

0
E
⇥
kq(N(r)) � b(N(r))k22

⇤
dr 

K�1X

k=0

Z
⌘(k+1)

⌘k

E
⇥erk(fN(⌘k)) �rFn(fN(⌘k))k22

⇤
dr

= ⌘
K�1X

k=0

E
⇥
kerk(Zk) �rFn(Zk)k22

⇤
,

where the first inequality is due to Jensen’s inequality and the convexity of function k · k22, and the
last equality is due to the equivalence in distribution. Combine the above results we obtain

DKL(QZ

K
||PK)  �⌘

4

K�1X

k=0

E[kerk �rFn(Zk)k22]

 �⌘

4

K/LX

s=0

L�1X

`=0

E[kersL+` �rFn(ZsL+`)k22], (C.17)

where the second inequality follows the fact that k = sL+`  (s+1)L for some ` = 0, 1, . . . , L�1.
Applying Lemma C.10, the inner summation in (C.17) yields

L�1X

`=0

E[kersL+` �rFn(ZsL+`)k22] 
L�1X

`=0

M2(n � B)

B(n � 1)
E
��ZsL+` � eZ(s)

��2
2
. (C.18)

Note that we have
E
��ZsL+` � eZ(s)

��2
2

= E
����
`�1X

u=0

⌘
�
rfisL+u(ZsL+u) �rfisL+u( eZ(s)) + rFn( eZ(s))

�
�

`�1X

u=0

r
2⌘

�
✏sL+`

����
2

2

 `
`�1X

u=0

E
⇥
2⌘2
��rfisL+u(ZsL+u) �rfisL+u( eZ(s)) + rFn( eZ(s))

��2
2

⇤
+

`�1X

u=0

4⌘d

�

 4`⌘

✓
9`⌘(M2�2 + G2) +

d

�

◆
, (C.19)
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where the first inequality holds due to the triangle inequality for the first summation term, the second
one follows from Lemma D.1 and Lemma C.6. Submit (C.19) back into (C.18) we have

L�1X

`=0

E[kersL+` �rFn(ZsL+`)k22] 
4⌘M2(n � B)

B(n � 1)

L�1X

`=0

✓
9`2⌘(M2�2 + G2) +

`d

�

◆

 4⌘M2(n � B)

B(n � 1)

✓
3L3⌘(M2� + G2) +

dL2

2�

◆
, (C.20)

Since (C.20) does not depend on the outer loop index i, submitting it into (C.17) yields

�⌘

4

K�1X

k=0

E[kerk �rFn(Zk)k22] 
⌘2KLM2(n � B)(3L⌘�(M2� + G2) + d/2)

B(n � 1)
. (C.21)

Combining (C.13), (C.14) (C.17) and (C.21), we obtain

��E[Fn(ZK)] � E[Fn(XK)]
��  C1�

p
K⌘


⌘2KLM2(n � B)(3L⌘�(M2� + G2) + d/2)

B(n � 1)

�1/4

.

where we use the fact that K⌘ > 1, ⌘ < 1 and assume that C1 � C2.

D Proof of Auxiliary Lemmas

In this section, we prove additional lemmas used in Appendix C.

D.1 Proof of Lemma C.2

Proof. Applying Itô’s Lemma yields

dV (X(t)) = �2hX(t),rFn(X(t))idt +
2d

�
dt + 2

r
2

�
hX(t), dB(t)i. (D.1)

Multiplying e2mt to both sides of the above equation, where m > 0 is the dissipative constant, we
obtain

2me2mtV (X(t))dt + e2mtdV (X(t)) = 2me2mtV (X(t))dt � 2e2mthX(t),rFn(X(t))idt

+
2d

�
e2mtdt +

r
8

�
e2mthX(t), dB(t)i.

We integrate the above equation from time 0 to t and have

V (X(t)) = e�2mtV (X0) + 2m

Z
t

0
e2m(s�t)V (X(s))ds � 2

Z
t

0
e2m(s�t)hX(s),rFn(X(s))ids

+
2d

�

Z
t

0
e2m(s�t)ds + 2

r
2

�

Z
t

0
e2m(s�t)hX(s), dB(s)i. (D.2)

Note that by Assumption 3.2, we have

�2

Z
t

0
e2m(s�t)hX(s),rFn(X(s))ids  �2

Z
t

0
e2m(s�t)

�
mkX(s)k22 � b

�
ds

= �2m

Z
t

0
e2m(s�t)V (X(s))ds +

b + m

m
(1 � e�2mt).

(D.3)

Combining (D.2) and (D.3), and taking expectation over X(t) with initial point x, we get

Ex[V (X(t))]  e�2mtV (x) +
b + m

m
(1 � e�2mt) +

d

m�
(1 � e�2mt)

= e�2mtV (x) +
b + m + d/�

m
(1 � e�2mt),

where we employed the fact that dB(s) follows Gaussian distribution with zero mean and is indepen-
dent with X(s).
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D.2 Proof of Lemma C.3

Here we provide a sketch of proof to refine the parameters in the results of Mattingly et al. [40]. For
detailed proof, we refer interested readers to Theorem 7.3 in Mattingly et al. [40].

Proof. Denote  = 2M(b + m + d)/m according to Lemma C.2 where b, m are the dissipative
parameters. We also define � = ⇢d with some constant 0 < ⇢ < 1. Let {Xl⌧}l=0,1,... be a sub-
sampled chain from {Xk}k=0,1,... at sample rate ⌧ > 0. By the proof of Theorem 2.5 in Mattingly
et al. [40], we obtain the following result

��E[g(Xl⌧ )] � E[g(Xµ)]
��  [V̄ + 1](1 � �)↵l⌧ +

p
2V (x0)�

l⌧↵l⌧/2 1p
�

, (D.4)

where Xµ follows the invariant distribution of Markov process {Xk}k=0,1,..., V̄ = 2 supx2C V (x)
is a bounded constant, � 2 (e�2m⌘, 1) is a constant, and ↵ 2 (0, 1) is chosen small enough such that
�↵/2  1. In particular, we choose ↵ 2 (0, 1) such that �↵/2  (1 � �)↵, which yields

↵  log(1/�)

log(
p
/(1 � �))

 log(1/�)

log(
p
)

,

where the last inequality is due to 1 � � < 1. Submitting the choice of ↵ into (D.4) we have

��E[g(Xl⌧ )] � E[g(Xµ)]
��  2

p
2p
�

[V̄ + 1]V (x0)(1 � �)l⌧ log(1/�)/ log(
p
)

=
2
p

2p
�

[V̄ + 1]V (x0)e
l⌧ log(r), (D.5)

where r = (1 � �)log(1/�)/ log(
p
) is defined as the contraction parameter. Note that by Taylor’s

expansion we have

log r = log(1 � (1 � r)) = �(1 � r) � (1 � r)2

2
� (1 � r)3

3
� . . .  �(1 � r), (D.6)

when |1 � r|  1. By definition r = (1 � �)log(1/�)/ log(
p
) and � = ⇢d where ⇢ 2 (0, 1) is a

constant. Since it is more interesting to deal with the situation where dimension parameter d is large
enough and not negligible, we can always assume that |�| = ⇢d is sufficiently small such that for any
0 < ⇣ < 1

(1 � �)⇣ = 1 � ⇣�+ ⇣(⇣ � 1)/2�2 + . . . +

✓
⇣

n

◆
(��)n + . . .  1 � ⇣� (D.7)

by Taylor’s expansion. Submitting (D.6) and (D.7) into (D.5) yields

��E[g(Xl⌧ )] � E[g(Xµ)]
��  2

p
2p
�

[V̄ + 1]V (x0) exp

✓
� 2ml⌧⌘⇢d

log()

◆
, (D.8)

where we chose � = e�m⌘. Next we need to prove that the unsampled chain is also exponential
ergodic. Let k = l⌧ + j with j = 0, 1, . . . , ⌧ � 1. We immediately get

��E[g(Xl⌧+j)] � E[g(Xµ)]
��  2

p
2p
�

[V̄ + 1]E[V (Xj)] exp

✓
� 2ml⌧⌘⇢d

log()

◆
.

Since the GLD approximation (2.1) of Langevin is ergodic when sampled at rate ⌧ = 1, we have
k = l⌧ = l and j = 0. Note that by Lemma A.2 in Mattingly et al. [40], we have C = {x : V (x) 
/e�m⌘}, which implies that V̄ = em⌘ . Thus we obtain

��E[g(Xk)] � E[g(Xµ)]
��  C⇢�d/2(em⌘ + 1) exp

✓
� 2mk⌘⇢d

log()

◆
,

where we used the fact that x0 = 0 and C > 0 is an absolute constant.
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D.3 Proof of Lemma C.4

To prove Lemma C.4, we choose the test function in Poisson equation (1.3) as g = Fn. Given the
Poisson equation, suppose we choose g as Fn, the distance between the time average of the GLD
process and the expectation of Fn over the Gibbs measure can be expressed by

1

K

KX

k=1

Fn(Xk) � F̄ =
1

K

KX

k=1

L (Xk). (D.9)

Note that by [41, 51], we know the Poisson equation (1.3) defined by the generator of Langevin
dynamics has a unique solution  under Assumptions 3.1 and 3.2. According to Theorem 3.2 in
[23], the p-th order derivatives of  can be bounded by some polynomial growth function with
sophisticated coefficients (p = 0, 1, 2). To simplify the presentation, we hence follow the convention
in the line of literature [12, 51] and assume that E

⇥
krp (Xk)k

⇤
can be further upper bounded by a

constant C for all {Xk}k�0 and p = (0, 1, 2), which is determined by the Langevin diffusion and
its Poisson equation. In fact, Erdogdu et al. [23] showed that the upper bound of derivatives (up to
fourth order) of  only requires the dissipative and smooth assumptions. We refer interested readers
to [23] for more details on deriving the C for Langevin diffusion. We show that the case p = 0 can
be easily verified as follows. By Assumption 3.1, using a similar argument as in the proof of Lemma
4.1, we bound Fn(x) by a quadratic function V (x)

Fn(x)  M

2
V (x) =

M

2
(C0 + kxk22).

Applying Assumption 3.2 and Theorem 13 in Vollmer et al. [51] we have

| (x)|  C1(1 + kxk22)  C2V (x). (D.10)

Note that by Assumptions 3.1 and 3.2 we can verify that a quadratic V (x) and p⇤ = 2 satisfy
Assumption 12 in [51] and therefore we obtain that for all p  p⇤, we have

sup
k

EV p(Xk)  1. (D.11)

Combining (D.10) and (D.11) we show that  (Xk) is bounded in expectation.

Proof. For the simplicity of notation, we first assume that � = 1 and then show the result for arbitrary
� by a scaling technique. Note that for the continuous-time Markov process {D(t)}t�0 defined in
(C.8), the distribution of random vector (X1, . . . , XK) is equivalent to that of (D(⌘), . . . , D(⌘K)).
Let  be the solution of Poisson equation L = g �

R
g(x)⇡(dx). Since we have E[ (Xk)|X0 =

x] = E[ (D(⌘k))|D0 = x]. We denote E[ (D(⌘k))|D0 = x] by Ex[ (D(⌘k))]. By applying
(A.2), we compute the Taylor expansion of Ex[ (D(⌘k))] at D(⌘(k � 1)):

Ex[ (D(⌘k))] = Ex[ (D(⌘(k � 1)))] + ⌘Ex[L (D(⌘(k � 1)))] + O(⌘2).

Note that the remainder also depends on the second order derivative of the Poisson equation and are
bounded by constant C . Take average over k = 1, . . . , K and rearrange the equation we have

1

⌘K

�
Ex[ (D(⌘K))] �  (x)

�
+ O(⌘) =

1

K

KX

k=1

Ex[L (D(⌘(k � 1)))]. (D.12)

Submit the Poisson equation (D.9) into the above equation (D.12) we have

1

K

K�1X

k=0

Ex[Fn(Xk)] � F̄ =
1

K

KX

k=1

Ex[L (Xk�1)] =
1

K

KX

k=1

Ex[L (D(⌘(k � 1)))]

=
1

⌘K

�
Ex[ (D(⌘K))] �  (x)

�
+ O(⌘)

=
1

⌘K

�
Ex[ (XK)] �  (x)

�
+ O(⌘),

where the second and the fourth equation hold due to the fact that the distribution of {Xk} is the
same as the distribution of {D(⌘k)}. We have assumed that  (Xk) and its first and second order
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derivatives are bounded by constant C in expectation over the randomness of Xk. Therefore, we
are able to obtain the following conclusion

����
1

K

K�1X

k=0

Ex[Fn(Xk)] � F̄

����  C 

✓
1

⌘K
+ ⌘

◆
.

This completes the proof for the case � = 1. In order to apply our analysis to the case where � can
take any arbitrary constant value, we conduct the same scaling argument as in (C.2).

����
1

K

K�1X

k=0

Ex[Fn(Xk)] � F̄

����  C 

✓
1

⌘0K
+ ⌘0

◆
= C 

✓
�

⌘K
+
⌘

�

◆
.

This completes the proof.

D.4 Proof of Lemma C.5

We first lay down the following lemma on the bounds of gradient of fi.
Lemma D.1. For any x 2 Rd, it holds that

krfi(x)k2  Mkxk2 + G

for constant G = maxi=1,...,n{krfi(x⇤)k2} + bM/m.

Proof of Lemma C.5. Let ui(x) = rF (x) �rfi(x), consider

E
����

1

B

X

i2Ik

ui(x)

����
2

2

=
1

B2
E
X

i 6=i02Ik

ui(x)>ui0(x) +
1

B
Ekui(x)k22

=
B � 1

Bn(n � 1)

X

i 6=i0

ui(x)>ui0(x) +
1

B
Ekui(x)k22

=
B � 1

Bn(n � 1)

X

i,i0

ui(x)>ui0(x) � B � 1

B(n � 1)
Ekui(x)k22 +

1

B
Ekui(x)k22

=
n � B

B(n � 1)
Ekui(x)k22, (D.13)

where the last equality is due to the fact that 1/n
P

n

i=1 ui(x) = 0. By Lemma D.1 we have
krfi(x)k2  Mkxk2 + G, therefore we have krF (x)k2  Mkxk2 + G and consequently,
kui(x)k2  2(Mkxk2 + G). Thus (D.13) can be further bounded as:

E
����

1

B

X

i2Ik

ui(x)

����
2

2

 n � B

B(n � 1)
4(Mkxk2 + G)2.

This completes the proof.

D.5 Proof of Lemma C.6

In this section, we provide the proof of L2 bound of GLD and SVRG-LD iterates Xk and Zk.
Note that a similar result of SGLD has been proved in Raginsky et al. [45] and thus we omit the
corresponding proof for the simplicity of presentation.

Proof of Lemma C.6. Part I: We first prove the the upper bound for GLD. By the definition in (2.1),
we have

E[kXk+1k22] = E[kXk � ⌘rFn(Xk)k22] +

r
8⌘

�
E[hXk � ⌘rFn(Xk), ✏ki] +

2⌘

�
E[k✏kk22]

= E[kXk � ⌘rFn(Xk)k22] +
2⌘d

�
,
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where the second equality follows from that ✏k is independent on Xk. Now we bound the first term
E[kXk � ⌘rFn(Xk)k22] = E[kXkk22] � 2⌘E[hXk,rFn(Xk)i] + ⌘2E[krFn(Xk)k22]

 E[kXkk22] + 2⌘(b � mE[kXkk22]) + 2⌘2(M2E[kXkk22] + G2)

= (1 � 2⌘m + 2⌘2M2)E[kXkk22] + 2⌘b + 2⌘2G2,

where the inequality follows from Assumption 3.2, Lemma D.1 and triangle inequality. Substitute
the above bound back and we will have

E[kXk+1k22]  (1 � 2⌘m + 2⌘2M2)E[kXkk22] + 2⌘b + 2⌘2G2 +
2⌘d

�
. (D.14)

For sufficient small ⌘ that satisfies ⌘  min
�
1, m/(2M2)

 
, there are only two cases we need to

take into account:
If 1 � 2⌘m + 2⌘2M2  0, then from (D.14) we have

E[kXk+1k22]  2⌘b + 2⌘2G2 +
2⌘d

�
 kX0k22 + 2

✓
b + G2 +

d

�

◆
. (D.15)

If 0 < 1 � 2⌘m + 2⌘2M2  1, then iterate (D.14) and we have

E[kXkk22]  (1 � 2⌘m + 2⌘2M2)kkX0k22 +
⌘b + ⌘2G2 + ⌘d

�

⌘m � ⌘2M2
 kX0k22 +

2

m

✓
b + G2 +

d

�

◆
.

(D.16)
Combine (D.15) and (D.16) and we have

E[kXkk22]  kX0k22 +

✓
2 +

2

m

◆✓
b + G2 +

d

�

◆
= 2

✓
1 +

1

m

◆✓
b + G2 +

d

�

◆
,

where the equation holds by choosing X0 = 0.

Part II: Now we prove the L2 bound for SVRG-LD, i.e., E[kZkk22], by mathematical induction.
Since erk = 1/B

P
ik2Ik

�
rfik(Zk) �rfik( eZ(s)) + rFn( eZ(s))

�
, we have

E[kZk+1k22] = E[kZk � ⌘ erkk22] +

r
8⌘

�
E[hZk � ⌘ erk, ✏ki] +

2⌘

�
E[k✏kk22]

= E[kZk � ⌘ erkk22] +
2⌘d

�
, (D.17)

where the second equality follows from the fact that ✏k is independent of Zk and standard Gaussian.
We prove it by induction. First, consider the case when k = 1. Since we choose the initial point at
Z0 = 0, we immediately have

E[kZ1k22] = E[kZ0 � ⌘ er0k22] +

r
8⌘

�
E[hZ0 � ⌘ er0, ✏0i] +

2⌘

�
E[k✏0k22]

= ⌘2E[krFn(Z0)k22] +
2⌘d

�

 ⌘2G2 +
2⌘d

�
,

where the second equality holds due to the fact that er0 = rFn(Z0) and the inequality follows
from Lemma D.1. For sufficiently small ⌘ we can see that the conclusion of Lemma C.6 holds for
E[kZ1k22], i.e., E[kZ1k22]  �, where � = 2(1 + 1/m)(b + 2G2 + d/�). Now assume that the
conclusion holds for all iteration from 1 to k, then for the (k + 1)-th iteration, by (D.17) we have,

E[kZk+1k22] = E[kZk � ⌘ erkk22] +
2⌘d

�
, (D.18)

For the first term on the R.H.S of (D.18) we have

E[kZk � ⌘ erkk22] = E[kZk � ⌘rFn(Zk)k22] + 2⌘EhZk � ⌘rFn(Zk),rFn(Zk) � erki
+ ⌘2E[krFn(Zk) � erkk22]

= E[kZk � ⌘rFn(Zk)k22]| {z }
T1

+ ⌘2E[krFn(Zk) � erkk22]| {z }
T2

, (D.19)
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where the second equality holds due to the fact that E[erk] = rFn(Zk). For term T1, we can further
bound it by

E[kZk � ⌘rFn(Zk)k22] = E[kZkk22] � 2⌘E[hZk,rFn(Zk)i] + ⌘2E[krFn(Zk)k22]
 E[kZkk22] + 2⌘(b � mE[kZkk22]) + 2⌘2(M2E[kZkk22] + G2)

= (1 � 2⌘m + 2⌘2M2)E[kZkk22] + 2⌘b + 2⌘2G2,

where the inequality follows from Lemma D.1 and triangle inequality. For term T2, by Lemma C.10
we have

EkrFn(Zk) � erkk22  M2(n � B)

B(n � 1)
E
��Zk � eZ(s)

��2
2
 2M2(n � B)

B(n � 1)

⇣
E
��Zk

��2
2

+ E
�� eZ(s)

��2
2

⌘
.

Submit the above bound back into (D.17) we have

E[kZk+1k22] 
✓

1 � 2⌘m + 2⌘2M2
⇣
1 +

n � B

B(n � 1)

⌘◆
E[kZkk22]

+
2⌘2M2(n � B)

B(n � 1)
E
�� eZ(s)

��2
2

+ 2⌘b + 2⌘2G2 +
2⌘d

�
. (D.20)

Note that by assumption we have E
��Zj

��2
2
 � for all j = 1, . . . , k where � = 2

�
1 + 1/m

��
b +

2G2 + d/�
�
, thus (D.20) can be further bounded as:

E[kZk+1k22] 
✓

1 � 2⌘m + 2⌘2M2
⇣
1 +

2(n � B)

B(n � 1)

⌘◆

| {z }
C�

� + 2⌘b + 2⌘2G2 +
2⌘d

�
. (D.21)

For sufficient small ⌘ that satisfies

⌘  min

 
1,

m

2M2
�
1 + 2(n � B)/(B(n � 1))

�
!

,

there are only two cases we need to take into account:
If C�  0, then from (D.21) we have

E[kZk+1k22]  2⌘b + 2⌘2G2 +
2⌘d

�
 2

✓
b + G2 +

d

�

◆
. (D.22)

If 0 < C�  1, then iterate (D.21) and we have

E[kZk+1k22]  Ck+1
�

kZ0k22 +
⌘b + ⌘2G2 + ⌘d

�

⌘m � ⌘2M2
⇣
1 + 2(n�B)

B(n�1)

⌘  2

m

✓
b + G2 +

d

�

◆
. (D.23)

Combining (D.22) and (D.23), we have

E[kZk+1k22]  2

✓
1 +

1

m

◆✓
b + 2G2 +

d

�

◆
.

Thus we show that when E[kZjk22], j = 1, . . . , k are bounded, E[kZk+1k22] is also bounded. By
mathematical induction we complete the proof.

D.6 Proof of Lemma C.7

Proof. We have the following equation according to the update of GLD in (2.1),

E[exp
�
kXk+1k22)] = E exp

✓���Xk � ⌘rFn(Xk) +

r
2⌘

�
✏k

���
2

2

◆

= E exp

✓
kXk � ⌘rFn(Xk)k22 +

r
8⌘

�
hXk � ⌘rFn(Xk), ✏ki +

2⌘

�
k✏kk22

◆
.

(D.24)
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Let H(x) = exp(kxk22), we have E[H(Xk+1)] = EXk [E[H(Xk+1)|Xk]]. Thus we can first
compute the conditional expectation on the R.H.S of (D.24) given Xk, then compute the expectation
with respect to Xk. Note that ✏k follows standard multivariate normal distribution, i.e., ✏k ⇠
N(0, Id⇥d). Then it can be shown that

E


exp

✓r
8⌘

�
hXk � ⌘rFn(Xk), ✏ki +

2⌘

�
k✏kk22

◆����Xk

�

=
1

�
1 � 4⌘/�

�d/2
exp

✓
4⌘

� � 4⌘
kXk � ⌘rFn(Xk)k22

◆

holds as long as � > 4⌘. Plugging the above equation into (D.24), we have

E[H(Xk+1)] =
1

�
1 � 4⌘/�

�d/2
EXk


exp

✓
�

� � 4⌘
kXk � ⌘rFn(Xk)k22

◆�
. (D.25)

Note that by Assumption 3.2 and Lemma D.1 we have

EXk exp

✓
�
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kXk � ⌘rFn(X)k22
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= EXk exp
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�
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.

Consider sufficiently small ⌘ such that ⌘ < m/M2. Then for � satisfying � � max{2/(m �
M2⌘), 4⌘}, we have �(1 � 2⌘m + 2⌘2M2)/(� � 4⌘)  1. Therefore, the above expectation can be
upper bounded by

EXk exp

✓
�
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kXk � ⌘rFn(X)k22

◆
 exp

✓
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Substituting the above inequality into (D.25), it follows that
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where we used the fact that log(1/(1 � x))  x/(1 � x) for 0 < x < 1 and that
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Then we are able to show by induction that

E[H(Xk)]  exp

✓
2k⌘(�b + ⌘�G2 + d)

� � 4⌘

◆
E[H(kX0k2)],

which immediately implies that

logE[exp(kXkk22)]  kX0k22 +
2�(b + G2) + 2d

� � 4⌘
k⌘,

where we assume that ⌘  1 and � > 4⌘.
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D.7 Proof of Lemma C.10

Proof. Since by Algorithm 3 we have erk = (1/B)
P

ik2Ik

�
rfik(Zk)�rfik( eZ(s))+rFn( eZ(s))

�
,

therefore,
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where the last equality is due to the fact that 1/n
P

n

i=1 ui(x) = 0. Therefore, we have

E[kerk �rFn(Zk)k22] 
n � B

B(n � 1)
Ekuik22

=
n � B

B(n � 1)
Ekrfik(Zk) �rfik( eZ) � E[rfik(Zk) �rfik( eZ)]k22

 n � B

B(n � 1)
Ekrfik(Zk) �rfik( eZ)k22

 M2(n � B)

B(n � 1)
EkZk � eZk22, (D.27)

where the second inequality holds due to the fact that E[kx � E[x]k22]  E[kxk22] and the last
inequality follows from Assumption 3.1. This completes the proof.

E Proof of Auxiliary Lemmas in Appendix D

E.1 Proof of Lemma D.1

Proof. By Assumption 3.2 we obtain

hx⇤,rFn(x⇤)i � mkx⇤k22 � b.

Note that x⇤ is the minimizer for Fn, which implies that rFn(x⇤) = 0 and threfore kx⇤k2  b/m.
By Assumption 3.1 we further have

krfi(x)k2  krfi(x
⇤)k2 + Mkx � x⇤k2  krfi(x

⇤)k2 +
bM

m
+ Mkxk2.

The proof is completed by setting G = maxi=1,...,n{krfi(x⇤)k2} + bM/m.
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