
A Proofs

A.1 Proof of Proposition 1.1

Proof. Define the local weak error of SGLD, starting from θ0 and with stepsize h, with test function
φ by

E
∣∣φ(θ1)− φ(θ̄h)

∣∣ ,
where θ̄h is the true underlying Langevin diffusion (1.1), run for time h with starting point θ0. Then
it is shown by Vollmer et al. (2016) that if φ : Rd → R is a smooth test function, and that SGLD
applied with test function φ has local weak error O(h), then

E

∣∣∣∣∣ lim
M→∞

1/M

M∑
m=1

φ(θm)− Eπ[φ(θ)]

∣∣∣∣∣
is also O(h). What remains to be checked is that using such a simple function for φ (the identity),
does not cause things to disappear such that the local weak error of SGLD is no longer O(h). The
identity function is infinitely differentiable, thus is sufficiently smooth. For SGLD, we find that

E[θ1|θ0] = θ0 + hf ′(θ0).

For the Langevin diffusion, we define the one step expectation using the weak Taylor expansion
of Zygalakis (2011), which is valid since we have made Assumptions 3.1 and 3.2 of Vollmer et al.
(2016). Define the infinitesimal operator L of the Langevin diffusion (1.1) by

Lφ = f ′(θ) · ∂θφ(θ) + ∂2θφ(θ).

Then Zygalakis (2011) shows that the weak Taylor expansion of Langevin diffusion (1.1) has the
form

E[θ̄h|θ0] = θ0 + hLφ(θ0) +
h2

2
L2φ(θ0) +O(h3).

This means when φ is the identity then

E[θ̄h|θ0] = θ0 + hf ′(θ0) +
h2

2
[f(θ)f ′(θ) + f ′′(θ)] +O(h3).

Since the terms agree up to O(h) then it follows that even when φ is the identity, SGLD still has local
weak error of O(h). This completes the proof.

A.2 Proof of Theorem 2.1

Proof. Suppose we have a random variable U∞ following a generalized gamma posterior with data z
and the following density

f(u) ∝ u2(α+
∑N

i=1 zi)−1e−u
2/4.

Set a := 2(α+
∑N
i=1 zi), Then ∂ log f(u) = (2a− 1)/u− u/2, so that the Langevin diffusion for

U∞ will have the following integral form

Ut+h |Ut = Ut +

∫ t+h

t

[
2a− 1

Us
− Us

2

]
ds+

√
2

∫ t+h

t

dWt.

Applying Ito’s lemma to Ut to transform to θt = g−1(Ut) = U2
t /4 (here g(·) has been stated in the

proof), we find that

θt+h | θt = θt +

∫ t+h

t

[a− θs] ds+

∫ t+h

t

√
2θtdWt.

This is exactly the integral form for the CIR process. This completes the proof.

Now we give more details of the connection between SGLD and SCIR. Let us define an SGLD
algorithm that approximately targets U∞, but without the Euler discretization by

U(m+1)h |Umh = Umh +

∫ (m+1)h

mh

[
2âm − 1

Us
− Us

2

]
ds+

√
2

∫ (m+1)h

mh

dWt, (A.1)
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where âm is an unbiased estimate of a; for example, the standard SGLD estimate âm = α +
N/n

∑
i∈Sm

zi; also h is a tuning constant which determines how much time is simulated before
resampling âm.

Again applying Ito’s lemma to Umh to transform to θmh = g(Umh) = U2
mh/4, we find that

θ(m+1)h = θmh +

∫ (m+1)h

mh

[âm − θs] ds+

∫ (m+1)h

mh

√
2θtdWt.

This is exactly the integral form for the update equation of an SCIR process.

Finally, to show SCIR has the desired approximate target, we use some properties of the gamma
distribution. Firstly if θ∞ ∼ Gamma(a, 1) then 4θ∞ ∼ Gamma(a, 14 ), so that U∞ = 2

√
θ∞ will

have a generalized gamma distribution with density proportional to h(u) ∝ u2a−1e−u
2/4. This is

exactly the approximate target of the discretization free SGLD algorithm (A.1) we derived earlier.

A.3 Proof of Theorem 3.1

First let us define the following quantities

r(s) =
se−h

1− s(1− e−h)
, r(n)(s) = r ◦ · · · ◦ r︸ ︷︷ ︸

n

(s).

Then we will make use of the following Lemmas:
Lemma A.1. For all n ∈ N and s ∈ R

r(n)(s) =
se−nh

1− s(1− e−nh)
.

Lemma A.2. For all n ∈ N, s ∈ R, set r(0)(s) := s, then

n−1∏
i=0

[
1− r(i)(s)(1− e−h)

]
=
[
1− s(1− e−nh)

]
.

Both can be proved by induction, which is shown in Section B.

Suppose that θ1|θ0 is a CIR process, starting at θ0 and run for time h. Then we can immediately write
down the MGF of θ1, Mθ1(s), using the MGF of a non-central chi-squared distribution

Mθ1(s) = E
[
esθ1 |θ0

]
=
[
1− s(1− e−h)

]−a
exp

[
sθ0e

−h

1− s(1− e−h)

]
.

We can use this to find E
[
esθM | θM−1

]
, and then take expectations of this with respect to

θM−2, i.e. E
[
E
[
esθM | θM−1

]
| θM−2

]
. This is possible because E

[
esθM |θM−1

]
has the form

C(s) exp[θM−1r(s)], where C(s) is a function only involving s, and r(s) is as defined earlier.
Thus repeatedly applying this and using Lemmas A.1 and A.2 we find

MθM (s) =
[
1− s(1− e−Mh)

]−a
exp

[
sθ0e

−Mh

1− s(1− e−Mh)

]
. (A.2)

Although this was already known, we can use the same idea to find the MGF of the SCIR process.

The MGF of SCIR immediately follows using the same logic as before, as well as using the form of
MθM (s) and Lemmas A.1 and A.2. Leading to

Mθ̂M
(s) =

M∏
m=1

[
1− r(m−1)(s)(1− e−h)

]−âm
exp

[
θ0r

(M)(s)
]

= MθM (s)

M∏
m=1

[
1− s(1− e−mh)

1− s(1− e−(m−1)h)

]−(âm−a)
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A.4 Proof of Theorem 3.2

Proof. From Theorem 3.1, we have

Mθ̂M
(s) = MθM (s)

M∏
m=1

[
1− s(1− e−mh)

]−(âm−a)
︸ ︷︷ ︸

e0(s)

M∏
m=1

[
1− s(1− e−(m−1)h)

]−(a−âm)

︸ ︷︷ ︸
e1(s)

.

We clearly have MθM (0) = e0(0) = e1(0) = 1. Differentiating we find

e′0(s) =

M∑
i=1

(âi − a)(1− e−ih)
[
1− s(1− e−ih)

]−1
e0(s),

similarly

e′1(s) =
M∑
i=1

(a− âi)(1− e−(i−1)h)
[
1− s(1− e−(i−1)h)

]−1
e1(s).

It follows that, labeling the minibatch noise up to iteration M by BM , and using the fact that Eâi = a
for all i = 1, . . . ,M we have

Ê̂θM = E
[
E
(
θ̂M |BM

)]
= E

[
M ′
θ̂M

(0)
]

= E
[
M ′θM (0)e0(0)e1(0) +MθM (0)e′0(0)e1(0) +MθM (0)e0(0)e′1(0)

]
= EθM .

Now taking second derivatives we find

e′′0(s) =

M∑
i=1

(âi − a)(âi − a− 1)(1− e−ih)2
[
1− s(1− e−ih)

]−2
e0(s)

+
∑
i 6=j

(âi − a)(âj − a)(1− e−ih)(1− e−jh)
[
1− s(1− e−ih)

]−1 [
1− s(1− e−jh)

]−1
e0(s).

Now taking expectations with respect to the minibatch noise, noting independence of âi and âj for
i 6= j,

E [e′′0(0)] =

M∑
i=1

(1− e−ih)2Var(âi).

By symmetry

E [e′′1(0)] =

M∑
i=1

(1− e−(i−1)h)2Var(âi).

We also have

E [e′0(0)e′1(0)] = −
M∑
i=1

(1− e−ih)(1− e−(i−1)h)Var(âi).
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Now we can calculate the second moment using the MGF as follows, note that E(e′0(0)) =
E(e′1(0)) = 0,

Eθ̂2M = E
[
M ′′
θ̂M

(0)
]

= E
[
M ′′θM (0)e0(0)e1(0) +MθM (0)e′′0(0)e1(0) +MθM (0)e0(0)e′′1(0) + 2MθM (0)e′0(0)e′1(0)

]
= Eθ2M +

M∑
i=1

(1− e−ih)2Var(âi) +

M∑
i=1

(1− e−(i−1)h)2Var(âi)− 2

M∑
i=1

(1− e−ih)(1− e−(i−1)h)Var(âi)

= Eθ2M + Var(â)

[
e−2Mh − 1 + 2

M∑
i=1

(
e−2(i−1)h − e−(2i−1)h

)]

= Eθ2M + Var(â)

[
e−2Mh − 1 + 2

2M−1∑
i=0

(−1)ie−ih

]

= Eθ2M + Var(â)

[
e−2Mh − 1 +

2− 2e−2Mh

1 + e−h

]
= Eθ2M + Var(â)(1− e−2Mh)

[
1− e−h

1 + e−h

]

B Proofs of Lemmas

B.1 Proof of Lemma A.1

Proof. We proceed by induction. Clearly the result holds for n = 1. Now assume the result holds for
all n ≤ k, we prove the result for n = k + 1 as follows

r(k+1)(s) = r ◦ r(k)(s)

= r

(
se−kh

1− s(1− e−kh)

)
=

se−kh

1− s(1− e−kh)
· e−h(1− s(1− e−kh))

1− s(1− e−kh)− se−kh(1− e−h)

=
se−(k+1)h

1− s(1− e−(k+1)h)
.

Thus the result holds for all n ∈ N by induction.

B.2 Proof of Lemma A.2

Proof. Once again we proceed by induction. Clearly the result holds for n = 1. Now assume the
result holds for all n ≤ k. Using Lemma A.1, we prove the result for n = k + 1 as follows

k∏
i=0

[
1− r(i)(s)(1− e−h)

]
=
[
1− s(1− e−kh)

] [
1− se−kh(1− e−h)

1− s(1− e−kh)

]
=
[
1− s(1− e−kh)

] [1− s(1− e−(k+1)h)

1− s(1− e−kh)

]
=
[
1− s(1− e−(k+1)h)

]
Thus the result holds for all n ∈ N by induction.
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C CIR Parameter Choice

As mentioned in Section 2, the standard CIR process has more parameters than those presented. The
full form for the CIR process is as follows

dθt = b(a− θt)dt+ σ
√
θtdWt, (C.1)

where a, b and σ are parameters to be chosen. This leads to a Gamma(2ab/σ2, 2b/σ2) stationary
distribution. For our purposes, the second parameter of the gamma stationary distribution can be set
arbitrarily, thus it is natural to set 2b = σ2 which leads to a Gamma(a, 1) stationary distribution and
a process of the following form

dθt = b(a− θt)dt+
√

2bθtdWt.

Fix the stepsize h, and use the slight abuse of notation that θm = θmh. The process has the following
transition density

θm+1 | θm = ϑm ∼
1− e−bh

2
W, W ∼ χ2

(
2a, 2ϑm

e−bh

1− e−bh

)
.

Using the MGF of a non-central chi-square distribution we find

MθM (s) =
[
1− s(1− e−Mbh)

]−a
exp

[
sθ0e

−Mbh

1− s(1− e−Mbh)

]
.

Clearly b and h are unidentifiable. Thus we arbitrarily set b = 1.

D Stochastic Slice Sampler for Dirichlet Processes

D.1 Dirichlet Processes

The Dirichlet process (DP) (Ferguson, 1973) is parameterised by a scale parameter α ∈ R>0 and a
base distribution G0 and is denotedDP (G0, α). A formal definition is that G is distributed according
to DP (G0, α) if for all k ∈ N and k-partitions {B1, . . . , Bk} of the space of interest Ω

(G(B1), . . . , G(Bk)) ∼ Dir(αG0(B1), . . . , αG0(Bk)).

More intuitively, suppose we simulate θ1, . . . θN from G. Then integrating out G (Blackwell and
MacQueen, 1973) we can represent θN conditional on θ−N as

θN | θ1, . . . , θN−1 ∼
1

N − 1 + α

N−1∑
i=1

δθi +
α

N − 1 + α
G0,

where δθ is the distribution concentrated at θ.

An explicit construction of a DP exists due to Sethuraman (1994), known as the stick-breaking
construction. The slice sampler we develop in this section is based on this construction. For
j = 1, 2, . . . , set Vj ∼ Beta(1, α) and θj ∼ G0. Then the stick breaking construction is given by

ωj := Vj

j−1∏
k=1

(1− Vk) (D.1)

G ∼
∞∑
j=1

ωjδθj , (D.2)

and we have G ∼ DP (G0, α).

D.2 Slice sampling Dirichlet process mixtures

We focus on sampling from Dirichlet process mixture models defined by

Xi | θi ∼ F (θi)

θi | G ∼ G
G | G0, α ∼ DP (G0, α).
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A popular MCMC algorithm for sampling from this model is the slice sampler, originally developed
by Walker (2007) and further developed by Papaspiliopoulos (2008); Kalli et al. (2011). The slice
sampler is based directly on the stick-breaking construction (D.2), rather than the sequential (Pólya
urn) formulation of (D.1). This makes it a more natural approach to develop a stochastic sampler
from; since the stochastic sampler relies on conditional independence assumptions. The slice sampler
can be extended to other Bayesian nonparametric models quite naturally, from their corresponding
stick breaking construction.

We want to make inference on a Dirichlet process using the stick breaking construction directly.
Suppose the mixture distribution F , and the base distributionG0 admit densities f and g0. Introducing
the variable z, which determines which component x is currently allocated to, we can write the
density as follows

p(x|ω, θ, z) ∝ ωzf(x|θz).
Theoretically we could now use a Gibbs sampler to sample conditionally from z, θ and ω. However
this requires updating an infinite number of weights, similarly z is drawn from a categorical distribu-
tion with an infinite number of categories. To get around this Walker (2007) introduces another latent
variable u, such that the density is now

p(x|ω, θ, z, u) ∝ 1(u < ωz)f(x|θz),

so that the full likelihood is given by

p(x|ω, θ, z,u) ∝
N∏
i=1

1(ui < ωzi)f(xi|θzi). (D.3)

Walker (2007) shows that in order for a standard Gibbs sampler to be valid given (D.3), the number
of weights ωj that needs to be sampled given this new latent variable is now finite, and given by k∗,
where k∗ is the smallest value such that

∑k∗

j=1 ωj > 1− ui.

The Gibbs algorithm can now be stated as follows, note we have included an improvement suggested
by Papaspiliopoulos (2008), in how to sample vj .

• Sample the slice variables u, given by ui | ω, z ∼ U(0, ωzi) for i = 1, . . . , N . Calculate
u∗ = minu.

• Delete or add components until the number of current components k∗ is the smallest value
such that u∗ < 1−

∑k∗

j=1 ωj .

• Draw new component allocations zi for i = 1, . . . , N , using
p(zi = j|xi, ui, ω, θ) ∝ 1(ωj > ui)f(xi|θ).

• For j ≤ k∗, sample new component parameters θj from
p(θj |x, z) ∝ g0(θj)

∏
i : zi=j

f(xi|θj)
• For j ≤ k∗ calculate simulate new stick breaks v from
vj | z, α ∼ Beta

(
1 +mj , α+

∑k∗

l=j+1ml

)
. Here mj :=

∑N
i=1 1zi=j .

• Update ω using the new v: ωj = vj
∏
l<j(1− vj).

D.3 Stochastic Sampler

The conditional independence of each update of the slice sampler introduced in Section D.2 makes
it possible to adapt it to a stochastic variant. Suppose we update θ and v given a minibatch of the
z and u parameters. Then since the z and u parameters are just updated from the marginal of the
posterior, only updating a minibatch of these parameters at a time would leave the posterior as the
invariant distribution. Our exact MCMC procedure is similar to that in the R package PReMiuM
(Liverani et al., 2015), though they do not use a stochastic sampler. First define the following:
Z∗ = max z; S ⊂ {1, . . . , N} is the current minibatch; u∗ = minuS ; k∗ is the smallest value such
that

∑k∗

j=1 ωj > 1− u∗. Then our updates proceed as follows:

• Recalculate Z∗ and S (note this can be done in O(n) time since only n z values changed).
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Figure 4: (a) plots the perplexity of SGRLD, SCIR and Gibbs when used to sample from the LDA
model of Section 4.1 applied to Wikipedia documents; (b) plots the log predictive on a test set of the
anonymous Microsoft user dataset, sampling the mixture model defined in Section 4.2 using SCIR,
SGRLD and Gibbs.

• For j = 1, . . . , Z∗ sample vj stochastically with SCIR from
vj | z, α ∼ Beta(1 + m̂j , α+

∑k∗

l=j+1 m̂l). Here m̂j = N/n
∑
i∈S 1zi=j .

• Update ωj using the new v: ωj = vj
∏
l<j(1− vj).

• For j = 1, . . . , Z∗ sample θj stochastically with SGMCMC from
p(θj |x, z) ∝ g0(θj)

∏
Sj
f(xi|θj). Here Sj = {i : zi = j and i ∈ S}.

• For i ∈ S sample the slice variables ui |ω, z ∼ U(0, ωzi).

• Sample α if required. Using Escobar and West (1995), for our example we assume a
Gamma(b1, b2) prior so that α | v1:Z∗ ∼ Gamma(b1 + Z∗, b2 −

∑K∗

j=1 log(1− vj)).

• Recalculate u∗. Sample additional ωj from the prior, until k∗ is reached. For j = (Z∗ +
1), . . . , k∗ sample additional θj from the prior.

• For i ∈ S, sample zi, where P(zi = j|ui, ω, θ,x) ∝ 1(ωj > ui)f(xi|θj).

Note that for our particular example, we have the following conditional update for θ (ignoring
minibatching for simplicity):

θj | zj ,x ∼ Dirichlet

a+
∑
i∈Sj

xi1, . . . , a+
∑
i∈Sj

xid

 .

E Experiments

E.1 Comparison with Gibbs

We provide a comparison of the SGRLD and SCIR algorithms for both experiments to an exact, but
non-scalable Gibbs sampler. Figure 4a compares SGRLD and SCIR run on the LDA model to an
exact collapsed Gibbs sampler (Griffiths and Steyvers, 2004), run for 100 iterations. Although due
to the large-scale dataset, it was not possible to run the Gibbs algorithm for very many iterations, it
shows that the SCIR algorithm for LDA is competetive to exact, non-scalable methods.

Figure 4b compares the SGRLD and SCIR algorithms to the Gibbs slice sampler of Walker (2007);
Papaspiliopoulos and Roberts (2008); Kalli et al. (2011), run until convergence. While SCIR
outperforms SGRLD, the methods are not that competetive with the Gibbs sampler. This is to be
expected, since stochastic gradient methods converge only to an approximation of the posterior, while
the Gibbs sampler converges to the true posterior. The reason the stochastic gradient methods do
particularly badly in this case is due to the methods getting stuck in local stationary points. Fitting
Bayesian nonparametric models at scale remains a challenging problem, and further work which
improves the performance of these scalable samplers would be useful. The hyperparameters used for
the Gibbs sampler is given in the tables in the sections below.
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Method h
SCIR 1.0 5e-1 1e-1 5e-2 1e-2 5e-3 1e-3
SGRLD 5e-1 1e-1 5e-2 1e-2 5e-3 1e-3 5e-4 1e-4

Table 1: Stepsizes for the synthetic experiment

Method h τ κ α β K n Gibbs Samples
CIR 0.5 10. .33 0.1 0.5 100 50 200
SGRLD 0.01 1000. .6 0.01 0.0001 100 50 200
Gibbs 0.1 0.5 100

Table 2: Hyperparameters for the LDA experiment

Method hθ hDP a K n
CIR 0.1 0.1 0.5 20 1000
SGRLD 0.001 0.005 0.001 30 1000
Gibbs 0.5

Table 3: Hyperparameters for the Bayesian nonparametric mixture experiment

E.2 Synthetic

We now fully explain the distance measure used in the synthetic experiments. Suppose we have
random variables X taking values in R with cumulative density function (CDF) F . We also have
an approximate sample from X , X̂ with empirical density function F̂ . The Kolmogorov-Smirnov
distance dKS between X and X̂ is defined by dKS(X, X̂) = supx∈R

∥∥∥F̂ (x)− F (x)
∥∥∥ . However the

Dirichlet distribution is multi-dimensional, so we measure the average Kolmogorov-Smirnov distance
across dimensions by using the Rosenblatt transform (Rosenblatt, 1952).

Suppose now that X takes values in Rd. Define the conditional CDF of Xk = xk|Xk−1 =
xk−1, . . . , X1 = x1 to be F (xk|x1:(k−1)). Suppose we have an approximate sample from X ,
which we denote x(m), for m = 1, . . .M . Define F̂j to be the empirical CDF defined by the sam-
ples F (x

(m)
j |x(m)

1:(j−1)). Then Rosenblatt (1952) showed that if X̂ is a true sample from X then F̂j
should be the uniform distribution and independent of F̂k for k 6= j. This allows us to define a
Kolmogorov-Smirnov distance measure across multiple dimensions as follows

dKS(X, X̂) =
1

K

K∑
j=1

sup
x∈R

∥∥∥F̂j(x)− Fj(x)
∥∥∥ .

Where here applying Rosenblatt (1952), Fj(X) is just the uniform distribution.

The full posterior distributions for the sparse and dense experiments are as follows:

ωsparse | z ∼ Dir [800.1, 100.1, 100.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] ,

ωdense | z ∼ Dir [112.1, 119.1, 92.1, 98.1, 95.1, 96.1, 102.1, 92.1, 91.1, 103.1] .

For each of the five random seeds, we pick the stepsize giving the best dKS for SGRLD and SCIR
from the options given in Table 1.

E.3 Latent Dirichlet Allocation

As mentioned in the main body, we use a decreasing stepsize scheme of the form hm = h(1+m/τ)−κ.
We do this to be fair to SGRLD, where the best performance is found by using this decreasing scheme
(Patterson and Teh, 2013; Ma et al., 2015); and this will probably reduce some of the bias due to the
stepsize h. We find a decreasing stepsize scheme of this form also benefits SCIR, so we use it as well.
Notice that we find similar optimal hyperparameters for SGRLD to Patterson and Teh (2013). Table
2 fully details the hyperparameter settings we use for the LDA experiment.

19



E.4 Bayesian Nonparametric Mixture

For details of the stochastic slice sampler we use, please refer to Section D. Table 3 details full hyper-
parameter settings for the Bayesian nonparametric mixture experiment. Note that hθ corresponds
to the stepsizes assigned for sampling the θ parameters; while hDP corresponds to the stepsizes
assigned for sampling from the weights ω for the Dirichlet process.
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