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A Proof of Theorem and Lemmas
Lemma 1. Let X be the (N + 1)-mode matricization of X. Denote X = [x1, -+, X ]| where each
X; is a column of X, then
Amax = 2/M max{|x}y|;i =1,---,1.}.
Moreover; letting i* = argmax;|x; y| and (if,---,i}) represents its corresponding indices in
tensor space, then the initial non-zero solution of (11), denoted as (o, {w'™}), is given by
oc=¢wl = sign(x}ly)lq, w) = 1i,Vn=2,---,N.
where 1;x is a vector with all 0’s except for a 1 in the iy, -th coordinate.
Proof. By using multilinear algebra, the problem (8) can be equivalently written as
. 1
min —
{owmy M
st. 0>0, [w"|1=1,n=1,---,N. (1)

where ® denotes the Kronecker product operator.
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Iy = X(ew™ & - o wEA [T W™ i+ac* ] w3

This problem has the same A, as its corresponding elastic net problem by considering (O‘W(N ) ®
e ® w(l)) as a whole. Thus Ay, and the initial non-zero solution can be obtained as above by the

Karush-Kuhn-Tucker (KKT) optimality conditions for the elastic net problem. O
Lemma 2. If there exists s and i, with |s|= e¢,n =1,--- N such that

it must be true that A < \g.
Proof. By assumption, we can expand (2) as
J($1i171i27 tey llN) + )\Q(Slil, 11'2, teey 1iN) S J({O})

It follows that
1
A< Z(JHOY) = J (51, iy, -0, Liy )
1
< -(J({0}) — . J 113117)12
< CUMO) = min (11, L)
= )\. O
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Lemma 3. For any t with M\y11 = A, we have T'(0441, {w§_7_)1}7 At11) < T(oy, {wﬁ")}; Air1) — &

Proof. This is obviously true if the backward step is taken since F(UtH,{wEi)l};)\t) <

(o, {wgn)}; At) —& and ;11 = A;. So we only need to consider the forward step when Ay = ;.
If the claim is not true, then

J(0e AW™Y) = (0001, AW < MQU0es1, (WD }) = MQ(00, {w™}) + € = Me + €.
That is,
1 n n
w1 = A > =(J(on AW }) = T (o {wih}) =€),

which contradicts with the fact that A1 = min(A, 2 (J (o4, {wt")}) J(ot41, {wii)l}) =¢)). O

Lemma 4. For any t with A1 < A\, we have T'(W, (m) 4 Si, i3 Ae) > F(W,En) At) — &
Proof. First of all, when \;y1 < Ay, it holds that Q(oy41, {Wt+1}) = Q(o1, {w{™}) + €. From
A1 = min(Ay, 2(J(or, {w{™}) = J(ors1, {w)}) — €)) and Ay 1 < Ar, we know that
T(oe AW} = J(oi1, AWED D) = € = Agre = A1 (Qovir, (w1 1) — Qor, {w(})),
that is, P(WE")- Am) - 5 = F(Wﬁ)l; At+1). Then we have
D5 0) = € =T A1) = €+ (O = A1) Q0w {wi™})
= D(Wih Aeyr) + (A = A1) 2o, {wi™ )
D M) + (At = A)( Q01 {wih}) — Q(er, {wi™})
= D(WiTh M) + (Aen — Ae < T(Wihs Ar) = min{D(Wi™ + 53, 15,3 \) ). O

Theorem 1. For any t such that A\i11 < A\, we have (oy, {th)}) = (M), {w™ (X)) as
€, & — 0, where (0(\), {W(™ (X\;)}) denotes a coordinate-wise minimum point of Problem (7).
Proof. First, by Lemma we have T'(oy, {w{™}; Ay) < T(oy—1, {w\™ }: A1) — € when \, =
At—1. Then it is easy to verify the series of inequalities

(o, AW} M) < D01 AW s Mo1) =€ < - < Doy, {Wiz)p}; At—p) —P§  (3)
holds when Ay = A\¢—1 = --- = M\_, and p is the value such that \;_, < \—p_1. As €€ —

0, a straightforward consequence of (3) is that the sequence of the objective function values is
monotonically decreasing at A\, that is,

Lo, fwi" }i M) < T(oro1 AW 1 M) < -+ S T, {wi5 1 Me). 4y
Using Lemma |4, we know that \; gets reduced such that A\;; < A only occurs in the forward

step when I'(oyy 1, {Wii)l}, At) > (o, {WE")}; At) — & This means that even by searching over
all possible coordinate descent directions in each subproblem (with the size of update fixed at ¢),
the objective function at \; can not be further reduced. Since each subproblem is strongly convex
w.rt (o, w(")), it has a unique solution. Therefore, when €, ¢ — 0 and at the time \; gets reduced to
At+1, We can say a coordinate-wise minimum point of T'(+) is reached for \;, which completes the
proof. O

B Description of Data Preprocessing

We preprocessed the DTI and MRI acquisitions on 656 subjects as follows. T1-weighted MRI data
was acquired using the ADNI-2 sequence, and processed using the FreeSurfer”| followed by [1]. For
DTI data, each subject’s raw data were aligned to the b0 image using the FSL’|eddy-correct tool to
correct for head motion and eddy current distortions. The gradient table is also corrected accordingly.
Non-brain tissue is removed from the diffusion MRI using the Brain Extraction Tool (BET) from
FSL [2]. To correct for echo-planar induced (EPI) susceptibility artifacts, which can cause distortions
at tissue-fluid interfaces, skull-stripped b0 images are linearly aligned and then elastically registered
to their respective preprocessed structural MRI using Advanced Normalization Tools (ANTS") with

*https://surfer.nmr.mgh.harvard.edu
*http://www.fmrib.ox.ac.uk/fsl
*http://stnava.github.io/ANTs/
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SyN nonlinear registration algorithm [3]]. The resulting 3D deformation fields are then applied to the
remaining diffusion-weighted volumes to generate full preprocessed diffusion MRI dataset for the
brain network reconstruction. In the meantime, 84 ROIs is parcellated from T1-weighted MRI using
Freesufer.

Based on these 84 ROIs, we reconstruct four types of brain connectivity matrices for each subject,
using the following four tensor-based deterministic tractography algorithms: Fiber Assignment by
Continuous Tracking (FACT) [4], the 2nd-order Runge-Kutta (RK2) [5], interpolated streamline (SL)
[6]], and the tensorline (TL) [7]]. Each resulted connectivity matrix for each subject is 84 x 84. To
avoid computation bias, we normalize each connectivity matrix by dividing by its maximum value, as
matrices derived from different tractography methods have different scales and ranges.
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