
7 Appendix

7.1 Step-by-step Derivation of Equation (7)

Let x(k) be the position of random surfer at time k. Speficically, x : Z+ → V . We assume a Markov
chain: The value of x(k) only depends on previous step: x(k − 1). To calulate the expectation E[D],
the square node-to-node co-occurence matrix, we start by calculating one entry at a time: E[Duv],
the expected number of times that u is selected in v’s context. Let Wv(k) be the context set that gets
sampled if v is visited at the kth step. Concretely, if x(k) = v, and the random walker continues the
sequence, x(k + 1) = v′1 then x(k + 2) = v′2 then x(k + 3) = v′3 . . . , the context set of DeepWalk
can be defined as Wv(k) = {v′1, v′2 . . . , v′c, where c ∼ U{1, C}. We would like to count the event
u ∈Wv(k) for every k ∈ {1, 2, . . . , C}.
Using Markov Chain, we can write:

Pr (x(i+ k) = u | x(i) = v) = Pr (x(k) = u | x(0) = v)

=
(
T k
)
uv

(12)

Now, if node u was visited k steps after node v, then the probabilitiy of it being sampled is given by:

Pr (u ∈Wv(k) | x(k) = u, x(0) = v). (13)

In case of DeepWalk [29], probability above equals:

Pr (c ≥ k | x(k) = u, x(0) = v) where c ∼ U{1, C}, (14)

and event k ≤ c is independant of the condition (x(k) = u ∩ x(0) = v). Further, event k ≤ c can be
partitioned and Eq. (14) can be written as

Pr (c = k ∪ c = k + 1 ∪ · · · ∪ c = C) (15)

=

C∑
j=k

Pr (c = j) (16)

= (C − k + 1)

(
1

C

)
= 1− k − 1

C
, (17)

where second line is trivial since the events c = j are disjoint. We can now use Bayes’ rule to derive
the probability of u being visited k steps after v and being selected in v’s sampled context, as:

Pr (u ∈Wv(k), x(k) = u | x(0) = v)

= Pr (u ∈Wv(k) | x(k) = u, x(0) = v) Pr (x(k) = u | x(0) = v)

=

(
1− k − 1

C

)(
T k
)
uv

(18)

Now, let Evku be the event that a walker visits v and after k steps, visits u and selects it part of its
context. This event happens with the probability indicated in Equation 18. Concretely,

E [Evku | x(0) = v] =

(
1− k − 1

C

)(
T k
)
uv
. (19)

Let Ev∗u count the events {Evku : k ∈ [1, C]}, then:

E [Ev∗u | x(0) = v] = E

[
C∑

k=1

Evku

∣∣∣∣∣ x(0) = v

]
(20)

=

C∑
k=1

E [Evku | x(0) = v] =

C∑
k=1

(
1− k − 1

C

)(
T k
)
uv
. (21)

Suppose we run DeepWalk, starting m random walks from each node v, then the expected number of
times that u is present in the context of v is given by:

E
[
DDEEPWALK

uv

]
= mE [Ev∗u | x(0) = v] = m

C∑
k=1

(
1− k − 1

C

)(
T k
)
uv
.

12

Finally, we can write down the expectation over the square matrix D:

E
[
DDEEPWALK

]
= diag(m,m, . . . ,m)

C∑
k=1

(
1− k − 1

C

)(
T k
)

= Equation (7)

�

7.2 Choice of P̃(0)

The github code of DeepWalk and node2vec start a fixed number (m) walks from every graph
node v ∈ V . For node2vec, m defaults to 10, see num-walks flag in https://github.com/
aditya-grover/node2vec/blob/master/src/main.py. Therefore, in our experiments, we set
P̃(0) := diag(m,m, . . . ,m). This initial condition yields Dvu to be the expected number of times
that u is visited if we started m walks from v. There can be other reasonable choices. Nonetheless,
we use what worked well in practice for [15, 29]. We leave the search for a better P̃(0) as future
work.

7.3 Depiction of Learned Context Distribution

DeepWalk Ours

social
graph

voting
graph

Figure: Depiction of how our model as-
signs context distributions (shaded red)
compared to earlier work. We depict
the graph from the perspective of an-
chor node (yellow). Given a social graph
(top), where friends of friends are usually
friends, our algorithm learns a leftskewed
distribution. Given a voting graph (bot-
tom), with general transitivity: a→ b→
c =⇒ a→ c, it learns a long-tail distri-
bution. Earlier methods (e.g. DeepWalk)
use word2vec, which internally uses a lin-
ear decay context distribution, treating all
graphs the same.

13

