1 Appendix

2 1.1 Distilled policy network

- Details of the DPN's architectures and the number of parameters are given in Table 1. We use three
- 4 hidden convolution layers (using rectifier non-linearities between each two consecutive layers), and
- a fully-connected hidden layer consisting of 512 rectifier units. The output layer is a fully-connect linear layer with a single output for each valid action (5 in the benchmark).

Table 1: Network architectures and number of parameters

# Network	Visual input	Filters in Conv. 1/2/3	Unit in F.C.
DQN	84 * 84 * 3	32/64/64	512
Distilled Policy Network	84 * 84 * 3	16/16/16	128

7 1.2 Pre-trained response policy for distillation

Table 2: hyperparameters of DQN in training response policies

Epoch length	2000 episodes	Discount factor	0.99
Optimizer	Adam	Learning rate	0.0001
ϵ -greedy	$1.0(Initial) \rightarrow 0.1(10000 \text{ steps})$	Target network	Update every 4 steps
Replay memory	50000 samples	Minibatch size	32

8 The policy used for distillation is obtained by DQN (with ϵ -greedy) with the ϵ annealed linearly

9 from 1 to 0 over the first 200 steps. We used the Adam algorithm with 0.0001 learning rate and the

mini-batches of size 32. We trained for a total of 2000 episodes and used a replay memory of 10

thousand most recent frames. At last, the softmax operation is performed when distilling with KL

12 loss functions.

13 Online policy learning against unknown opponent.

Table 3: hyperparameters of DQN in online policy learning

Epoch length	500 episodes	Discount factor	0.99
Optimizer	Adam	Learning rate	0.0001
ϵ -greedy	$1.0(Initial) \rightarrow 0.1(200 \text{ steps})$	Target network	Update every 4 steps
Replay memory	50000 samples	Minibatch size	32
Threshold	0.9		

The online learning of the new response policy (DQN) against an unknown opponent's policy shares the same hyperparameters in Section 1.2 except that the maximum epoch length is set to 500 and

the ϵ -greedy drops rapidly in the first 200 steps. Besides, we assume the optimal response policy is obtained and stop the online learning if the cumulative rewards do not grow in consecutive n episodes

18 (n = 50, 100, 200 for gridworld, navigation and soccer games) after the initial exploration phase or

the total episodes reach maximum epoch length (1000 in online learning). The threshold \mathcal{P}_{thd} is set

to a constant value of 0.9 to detect unknown opponent. Empirical evaluations show that 0.9 is robust

to perform well across all three domains. Note that, to make the comparison fair, all algorithms in

comparison use the same hyperparameters.