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S1 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. RMSProp [Tieleman and Hinton, 2012] and Adam [Kingma and Ba, 2014]
optimization algorithms were investigated and RMSProp algorithm showed a faster convergence rate,
and was used here.

The number of cells in the RNN layer was NCELLS = 48, chosen based on computational constraints.
The time of behavioral data was discretized with resolution dt = 0.6625. Similarly for the purpose
of convolving the cells’ outputs with HRF, the output times were discretized with a similar resolution
dt = 0.6625. The choice of this specific dt was because the TR of the scanner (time between
consecutive image recordings) was 2.65, which is divisible by dt, making it possible to perform the
computations efficiently using the strided convolution operator.

For the purpose of regularization we took the following steps: (1) We first performed leave-one-out
cross-validation at the subject level (leaving one subject out) using only the behavioral loss function
to find the behavioral likelihood value on the training data that yielded the highest performance on the
left-out subjects (Figure S2). (2) We used the likelihood value found in the previous step (adjusted
for the number of subjects) to tune � using a search method. That is, we started with an initial value
for � and performed the joint optimization (over the whole dataset); then we adjusted � based on the
value to which the behavioral likelihood function converged in the previous iteration (i.e., decreased
� if the behavioral likelihood converged to a value below the target value, and increased � otherwise),
re-ran the joint optimization again using the new � value, and then iterated over this process. We
were able to find the desired � with three iterations. This procedure encourages the network not to
compromise on behavioral performance, while allowing it to choose amongst behaviorally equivalent
solutions that fit the data best. Note that the same parameter setting was used for all the subjects. We
ideally aimed to estimate � using a validation dataset, but because of the limited number of subjects
here we used in-sample estimations for �.

S2 fMRI data

The details of fMRI data acquisition and preprocessing are described in Wunderlich et al. [2009]. In
addition, the times-series of voxel intensities were passed through a high-pass filter with frequency
0.01Hz, and were also standardized to have a unit variance. Note that data for one of the subjects was
not available and therefore 22 subjects were used in the current analysis instead of the 23 subjects
used in Wunderlich et al. [2009].

HRF is approximated by the mixture of two Gamma functions with the parameters the same as the
default parameters in ‘spm_hrf’ method in SPM package1.

1https://github.com/spm/spm2/blob/master/spm_hrf.m

11



R

E E E E

0.0

0.1

0.2

0.3

~0 ~3 ~6 ~9 ~1
3

~1
6

~1
9

~2
3

~2
6

~2
9

d π
 r

-100

115

9.2 9.8 10.4 11.0 11.6 12.2 12.8
aStr ACC SMA

time (s)

a) HAND action b) EYE action

c)

R

H H H H

−0.05

0.00

0.05

0.10

0.15

~0 ~3 ~6 ~9 ~1
3

~1
6

~1
9

~2
3

~2
6

~2
9

d π
 r

time (s)

9.2 s 9.8 s 10.4 s 11.0 s 11.6 s 12.2 s 12.8 s

c)

d)
x10-5

w
e

ca
lc

ul
at

ed
d⇡

u
r

fo
re

ve
ry

vo
xe

la
nd

ev
er

y
tim

e-
st

ep
be

tw
ee

n
t 1

an
d

t 2
,a

nd
m

as
ke

d
ou

tt
he

vo
xe

ls
th

at
w

er
e

no
ti

n
th

e
to

p
on

e
pe

rc
en

t.
B

y
fo

cu
si

ng
on

ly
on

th
e

99
th

pe
rc

en
til

e
of

|d
⇡

u
r
|,

w
e

ho
pe

d
to

lim
it

ou
ra

na
ly

si
st

o
th

e
ci

rc
ui

try
kn

ow
n

to
be

in
vo

lv
ed

in
de

ci
si

on
-m

ak
in

g.
Th

e
re

su
lti

ng
vo

xe
lm

ap
s

ar
e

sh
ow

n
in

Fi
gu

re
3(

c)
fo

rt
he

ca
se

of
H

A
N

D
ac

tio
n

co
rr

es
po

nd
in

g
to

th
e

in
pu

ts
sh

ow
n

in
pa

ne
l

(a
),

an
d

Fi
gu

re
3(

d)
sh

ow
s

th
e

tim
e-

co
ur

se
of

ch
an

ge
s

in
d⇡

u
r
.S

ee
Fi

gu
re

S1
(c

,d
)f

or
E

Y
E

ac
tio

n
co

rr
es

po
nd

in
g

to
th

e
in

pu
ts

sh
ow

n
in

pa
ne

l(
b)

.

Th
e

re
su

lts
sh

ow
th

at
,f

or
ea

ch
ac

tio
n,

th
e

to
p

1%
of

vo
xe

ls
co

nt
ai

n
th

re
e

ke
y

co
rti

ca
la

nd
su

bc
or

tic
al

br
ai

n
re

gi
on

s
kn

ow
n

to
be

cr
iti

ca
lly

in
vo

lv
ed

in
re

w
ar

d-
pr

oc
es

si
ng

an
d

de
ci

si
on

-m
ak

in
g,

i.e
.,

(i)
st

ria
tu

m
(a

ss
oc

ia
tiv

ea
St

r;
or

ve
nt

ra
l,

vS
tr)

,(
ii)

an
te

rio
rc

in
gu

la
te

co
rte

x
(A

C
C

)a
nd

(ii
i)

su
pp

le
m

en
ta

ry
m

ot
or

ar
ea

(S
M

A
)

[R
an

ge
l

an
d

H
ar

e,
20

10
,W

un
de

rli
ch

et
al

.,
20

09
].

W
e

fir
st

no
te

th
at

th
es

e
an

at
om

ic
al

re
gi

on
s

ar
e

am
on

g
th

e
sa

m
e

an
at

om
ic

al
re

gi
on

s
th

at
W

un
de

rli
ch

et
al

.
[2

00
9]

al
so

id
en

tifi
ed

as
in

vo
lv

ed
in

de
ci

si
on

-m
ak

in
g

in
th

is
ta

sk
(s

ee
Fi

gu
re

S4
fo

rt
he

tim
e

co
ur

se
of

ch
an

ge
si

n
d⇡

u
r

fo
rt

he
vo

xe
lc

oo
rd

in
at

es
re

po
rte

d
in

W
un

de
rli

ch
et

al
.[

Ta
bl

e
S3

;2
00

9]
).

Se
co

nd
ly

,w
e

ca
n

se
e

th
at

no
to

nl
y

ar
e

th
e

id
en

tifi
ed

re
gi

on
s

co
ns

is
te

nt
w

ith
th

e
ne

ur
al

su
bs

tra
te

s
of

de
ci

si
on

-m
ak

in
g

ba
se

d
on

pr
ev

io
us

w
or

k,
bu

tt
he

te
m

po
ra

lo
rd

er
of

en
ga

ge
m

en
to

ft
he

se
re

gi
on

s
is

al
so

co
ns

is
te

nt
w

ith
th

ei
rf

un
ct

io
na

lr
ol

e
in

de
ci

si
on

-m
ak

in
g.

It
ha

s
be

en
ar

gu
ed

th
at

ac
tiv

ity
in

su
br

eg
io

ns
of

th
e

st
ria

tu
m

re
fle

ct
re

w
ar

d
pr

ed
ic

tio
n-

er
ro

rs
[O

’D
oh

er
ty

et
al

.,
20

04
]a

nd
th

at
th

es
e

er
ro

rs
se

rv
e

to
up

da
te

ac
tio

n-
va

lu
es

in
th

e
A

C
C

[D
ay

an
an

d
B

al
le

in
e,

20
02

,W
un

de
rli

ch
et

al
.,

20
09

,
Se

o
an

d
Le

e,
20

07
,W

al
to

n
et

al
.,

20
04

],
w

hi
ch

in
tu

rn
m

us
tb

e
co

m
pa

re
d

in
th

e
SM

A
to

de
te

rm
in

e
th

e
be

st
ac

tio
n

be
fo

re
a

de
ci

si
on

ca
n

be
m

ad
e

[W
un

de
rli

ch
et

al
.,

20
09

].
Su

ch
pr

io
rw

or
k

ha
s

ar
gu

ed
th

at
th

es
e

di
ff

er
en

td
ec

is
io

n-
m

ak
in

g
si

gn
al

s
ar

e
ca

rr
ie

d
by

se
pa

ra
te

re
gi

on
s

in
a

co
rti

co
st

ria
ta

ll
oo

p,
w

hi
ch

is
as

su
m

ed
to

pa
rti

ci
pa

te
in

a
tim

e
co

ur
se

of
ev

en
ts

le
ad

in
g

to
ac

tio
n-

se
le

ct
io

n
[B

al
le

in
e

an
d

O
’D

oh
er

ty
,2

01
0,

H
ar

e
et

al
.,

20
11

].

H
er

e
w

e
sh

ow
fo

rt
he

fir
st

tim
e

th
e

te
m

po
ra

ld
yn

am
ic

s
be

tw
ee

n
th

es
e

cr
iti

ca
lr

eg
io

ns
in

th
e

st
ria

tu
m

,
an

te
rio

rc
in

gu
la

te
co

rte
x

an
d

m
ot

or
ar

ea
s

le
ad

in
g

to
ac

tio
n-

se
le

ct
io

n.
Fi

gu
re

3(
d)

sh
ow

s
th

e
tim

e
co

ur
se

of
ea

ch
re

gi
on

’s
d⇡

u
r

be
tw

ee
n

th
e

re
w

ar
d

at
9.

2
s

(t
1
)a

nd
th

e
ne

xt
re

sp
on

se
at

12
.8

s
(t

2
).

N
ot

e
th

at
si

nc
e

w
e

to
ok

th
e

pr
ob

ab
ili

ty
of

ta
ki

ng
th

e
E

Y
E

ac
tio

n
as

th
e

re
fe

re
nc

e,
ne

ga
tiv

e
va

lu
es

of
d⇡

u
r

in
di

ca
te

a
re

gi
on

’s
ro

le
in

se
le

ct
in

g
th

e
H

A
N

D
ac

tio
n.

A
tr

ew
ar

d
re

ce
ip

t(
9.

2
s)

,d
⇡

u
r

of
th

e
ve

nt
ra

ls
tri

at
um

be
gi

ns
be

lo
w

th
e

ze
ro

ba
se

lin
e

an
d

th
en

(n
eg

at
iv

el
y)

pe
ak

s
at

9.
8

s,
as

it
m

ed
ia

te
s

th
e

ef
fe

ct
of

re
w

ar
d

pr
ed

ic
tio

n-
er

ro
rs

on
th

e
su

bs
eq

ue
nt

ha
nd

re
sp

on
se

.T
he

va
lu

e
of

d⇡
u

r
fo

rt
he

an
te

rio
r

ci
ng

ul
at

e
th

en
(n

eg
at

iv
el

y)
pe

ak
s

af
te

r
10

.4
s,

co
ns

is
te

nt
w

ith
its

ro
le

in
up

da
tin

g
ac

tio
n

va
lu

es
w

ith
th

e
ne

w
er

ro
rs

be
fo

re
th

e
ne

xt
re

sp
on

se
.F

in
al

ly
d⇡

u
r

fo
rt

he
la

rg
e

cl
us

te
ri

n
th

e
m

ot
or

ar
ea

(in
cl

ud
in

g
th

e
su

pp
le

m
en

ta
ry

m
ot

or
ar

ea
)c

on
tro

lli
ng

m
ot

or
re

sp
on

se
s

su
ch

as
th

e
H

A
N

D
ac

tio
n,

ne
ga

tiv
el

y
pe

ak
sa

tt
he

tim
e

of
th

e
ac

tio
n

(1
2.

8
s)

,w
hi

ch
m

ar
ks

th
e

en
d

of
th

e
de

ci
si

on
pr

oc
es

si
n

th
e

cu
rr

en
tt

as
k.

A
s

pa
rt

of
ou

rs
up

pl
em

en
ta

ry
m

at
er

ia
l,

Fi
gu

re
S1

(d
)s

ho
w

s
th

e
tim

e
dy

na
m

ic
s

be
tw

ee
n

th
e

st
ria

tu
m

,
an

te
rio

rc
in

gu
la

te
an

d
m

ot
or

ar
ea

s
co

nt
ro

lli
ng

E
Y

E
ch

oi
ce

s
–

co
rr

es
po

nd
in

g
to

th
e

in
pu

ts
sh

ow
n

in
pa

ne
l(

b)
.H

er
e

po
si

tiv
e

va
lu

es
of

d⇡
u

r
in

di
ca

te
a

re
gi

on
’s

ro
le

in
se

le
ct

in
g

th
e

E
Y

E
ac

tio
n.

A
tr

ew
ar

d
re

ce
ip

t(
9.

2
s)

th
e

as
so

ci
at

iv
e

st
ria

tu
m

is
in

vo
lv

ed
im

m
ed

ia
te

ly
in

m
ed

ia
tin

g
th

e
ef

fe
ct

of
re

w
ar

d
on

th
e

su
bs

eq
ue

nt
ac

tio
n-

se
le

ct
io

n.
Th

en
at

11
s

th
e

in
vo

lv
em

en
to

ft
he

an
te

rio
rc

in
gu

la
te

pe
ak

s
be

fo
re

a
re

gi
on

in
th

e
m

ot
or

ar
ea

ne
ar

es
tt

he
su

pp
le

m
en

ta
ry

ey
e

fie
ld

pe
ak

s
at

th
e

tim
e

of
ac

tio
n

(1
2.

8
s)

.
In

su
m

,c
ha

ng
es

in
d⇡

u
r

ov
er

th
is

tim
e

pe
rio

d
m

irr
or

th
os

e
fo

rt
he

H
A

N
D

ac
tio

n,
an

d
ar

e
co

ns
is

te
nt

w
ith

th
e

hy
po

th
es

iz
ed

ro
le

so
ft

he
se

re
gi

on
si

n
th

e
va

ry
in

g
de

ci
si

on
st

ag
es

of
th

e
re

w
ar

d-
le

ar
ni

ng
ta

sk
us

ed
he

re
.

5
D

is
c
u

s
s
io

n

W
e

ha
ve

in
tro

du
ce

d
a

ne
w

ne
ur

al
ar

ch
ite

ct
ur

e
fo

r
in

ve
st

ig
at

in
g

th
e

ne
ur

al
su

bs
tra

te
s

of
de

ci
si

on
-

m
ak

in
g

in
th

e
br

ai
n.

U
nl

ik
e

pr
ev

io
us

m
et

ho
ds

,o
ur

ap
pr

oa
ch

do
es

no
tr

eq
ui

re
m

an
ua

le
ng

in
ee

rin
g

an
d

is
ab

le
to

le
ar

n
co

m
pu

ta
tio

na
lp

ro
ce

ss
es

di
re

ct
ly

fr
om

th
e

da
ta

.W
e

fu
rth

er
sh

ow
ed

th
at

th
e

m
od

el
ca

n
be

in
te

rp
re

te
d

to
un

co
ve

rt
he

te
m

po
ra

le
ng

ag
em

en
to

fd
iff

er
en

tb
ra

in
re

gi
on

s
in

ch
oi

ce
an

d
re

w
ar

d
pr

oc
es

si
ng

.B
es

id
es

be
in

g
us

ed
as

a
st

an
da

lo
ne

an
al

ys
is

to
ol

,t
hi

s
ap

pr
oa

ch
ca

n
in

fo
rm

m
od

el
-b

as
ed

fM
R

Ia
na

ly
se

st
o

in
ve

st
ig

at
e

w
he

th
er

th
e

m
od

el
co

rr
ec

tly
tra

ck
st

he
br

ai
n’

si
nt

er
na

lm
ec

ha
ni

sm
.T

ha
t

is
,i

fa
br

ai
n

re
gi

on
is

fo
un

d
to

be
im

po
rta

nt
in

th
e

cu
rr

en
ta

na
ly

si
s,

bu
tn

ot
us

in
g

th
e

m
od

el
-b

as
ed

fM
R

Ia
na

ly
si

s,
th

is
co

ul
d

m
ea

n
th

at
th

e
m

od
el

us
ed

to
ex

tra
ct

ne
ur

al
in

fo
rm

at
io

n
is

no
tr

ep
re

se
nt

in
g

al
lo

ft
he

re
le

va
nt

ne
ur

al
si

gn
al

s
in

vo
lv

ed
in

de
ci

si
on

-m
ak

in
g

an
d

re
qu

ire
s

fu
rth

er
m

od
ifi

ca
tio

n.

7

0

To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.
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Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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To look for neural correlates of action values we had to estimate
the value of taking each action in every trial. We calculated the
action values using a computational reinforcement-learning (RL)
model in which the value of each action, Veye and Vhand, was
updated in proportion to a prediction error on each trial (see Table
S1 for a summary of how the different types of value signals relate
to the components of the experiment). The model also assumed
that action selection in every trial followed a soft-max probability
rule based on the difference of the estimated action values (8). To
test for the presence of action value signals in the brain we took the
model predicted trial-by-trial estimates of the two action values and
entered these into a regression analysis against the fMRI data. In
addition to a whole brain screening for the presence of action-value
signals, we specifically looked for them in areas known to be
involved in the planning of motor actions, including supplementary
motor cortex (18–21) and lateral parietal cortex (22, 23). Given that
both of these areas have previously been shown to contain value-
related signals for movements in nonhuman primates, and that they
are closely interconnected with the area of motor cortex involved
in carrying out motor actions (24–26), we considered these areas
prime candidates for containing action-value representations that
could then be used to guide action-based choices. It is important to
emphasize, however, that the tasks used in previous studies did not
make it possible to determine if the value signals identified were
chosen values or action values.

We also looked for areas that are involved in comparing the
action values to make a choice. Two areas of a priori interest were
the anterior cingulate cortex (ACC) and the dorsal striatum. ACC
has been previously implicated in action-based choice, both in the
context of a human imaging study reporting activity in this area
during a task involving choices between different actions compared
to a situation involving responses guided by instruction (27), and in
a monkey lesion study where ACC lesions produced an impairment
in action-outcome based choice but not in mediating changes in
responses following errors (28). Dorsal striatum has been impli-
cated in both goal-directed and habitual instrumental responding
for reward in rodents (29, 30). Moreover, human fMRI studies
reveal increased activity in both of these regions when subjects

make choices to obtain reward compared to an otherwise analogous
situation in which the rewards are obtained without the need to
make a choice (31–34).

The most simple type of comparison process would be to
compute a difference between the two action values. We tested for
such a difference, but as we had no a priori hypothesis about the
directionality of the computation, we tested for both the difference
between the value of the action chosen and the value of action not
chosen (Vchosen ! Vunchosen), and one involving the opposite
difference (Vunchosen ! Vchosen). As we found evidence for such an
action-value comparison signal in the brain, we then proposed a
simple computational model to provide a conceptual explanation as
to how such a signal could reflect the output of a computationally
plausible decision mechanism.

Results
RL Model Fits to Behavioral Choice Data. A comparison of the choice
probabilities predicted by the RL model and the soft-max proce-
dure to subjects’ actual behavior suggests that the model matches
subjects behavior well. Fig. 1C compares both variables for a typical
subject. Fig. 1D compares the predicted choice probability (binned)
against the actual choice probabilities for the group. A similar linear
regression analysis at the individual level generated an average R2

across subjects of 0.83 and regression coefficients that were signif-
icant at P " 0.001 in each subject.

Action Values. We found neural activity correlating with the action
values for making a hand movement in left supplementary motor
area (SMA; Fig. 2A and Table S2). A region of interest (ROI)
analysis showed that activity in this area satisfied the properties of
a hand action value: it was sensitive to the value of hand movements,
and it showed no response selectivity to the value of eye movements
(Fig. 2B). Activity in lateral parietal cortex, ACC, and right dorsal
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Fig. 1. Experimental Design and Behavior. (A) Subjects were presented with a
choice cue after which they had to respond within 2.5 s by performing a saccade
to the red target circle or a right handed button press. Once a response was
registered the screen was immediately cleared for a short delay and subsequently
theoutcomewasrevealed(6safter trialonset) indicatingeither receiptof reward
or no reward. Inter-trial-intervals varied between 1 and 8 s. (B) Example reward
probabilities for saccades and button presses as a function of the trial number.
The probability of being rewarded following choice of either the hand or eye
movement was varied across the experiment independently for each movement.
(C) Fitted model choice probability (red) and actual choice behavior (blue) shown
for a single subject. (D) Actual choice behavior versus model predicted choice
probability. Data are pooled across subjects, the regression slope is shown as a
line, vertical bars, SEM.
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Fig. 2. Action values. (A) Region of supplementary motor area showing cor-
relations with action values for hand movement (Vh/green) and a region of
pre-SEF showing correlations with action-values for eye movements (Ve/red).
T-maps are shown from a whole brain analysis thresholded at P " 0.001 uncor-
rected (see Fig. S1 for a version with color bars relating to t stats). (B) Average
effect sizes of Ve (red) and Vh (green) extracted from SEF and SMA. The effects
shownherewerecalculatedfromtrials independentof thoseusedtofunctionally
identify the ROI. Note that only Ve but not Vh modulate the signal in preSEF, and
that activity in SMA shows the opposite pattern. Vertical lines, SEM.

17200 ! www.pnas.org"cgi"doi"10.1073"pnas.0901077106 Wunderlich et al.

Figure 2: The task. Each trial started with the presentation of a screen (the left most square in the
figure) and the subjects had 2.5 seconds to make an eye saccade to the red target circle or press
a button with their right hand. After a delay (3.5 second) during which the screen showed only a
fixation point, subjects received the outcome of their choice which indicated whether their choice was
rewarded. The next trial started after an inter-trial interval (ITI) that varied between 1 and 8 seconds.
Figure reprinted with permission from Wunderlich et al. [2009]. Copyright (2009) National Academy
of Sciences.

4.1 Task and subjects

The data used here were previously published in Wunderlich et al. [2009]. The structure of the
decision-making task is shown in Figure 2. In each trial subjects had a choice between making
a saccade (EYE) or pressing a button (HAND). Choices were rewarded with varying probabilities
across the experiment. There were four trial types in the task: (i) free-choice trials (150 trials), in
which subjects could choose between EYE and HAND; (ii) forced-choice trials in which subjects
were instructed to choose EYE (50 trials) or (iii) HAND (50 trials); (iv) null trials in which no
reward was received irrespective of the action selected (50 trials). Forced-choices and null trails
were randomly inserted between the free-choice trials. The environment consisted of two actions
(EYE and HAND) and five states corresponding to the four trial types and one state when the choice
outcomes were shown (reward or no-reward). Actions and states are assumed to be coded using
one-hot representations. Since time was discretized (see below), there were time points at which no
action was taken or no visual stimulus was shown, in which case states and actions were coded using
zero vectors.

The total number of subjects was NSUBJ = 22, and in total NACQ = 1136 images were acquired by
the scanner each containing NVOX = 63191 voxels. Therefore, the fMRI data can be summarized as
a tensor of size 22 ⇥ 1136 ⇥ 63191. Each subject made ⇠ 300 choices. See Supplementary Material
for the details of fMRI preprocessing and model settings.

4.2 Model settings

All the methods were implemented in Tensorflow [Abadi et al., 2016] and gradients (for both
optimization and interpretation of the model) were calculated using automatic differentiation methods
available in this package. See Supplementary Material for the model settings.

4.3 From reward to action

Figure 3(a,b) shows two sets of off-policy simulations. In each simulation there are four choice states,
the times of which are shown by the vertical gray patches in the top panels. The red patch following
each grey ribbon shows the time at which the outcome was revealed following the choice. The first
choice was rewarded (shown by ‘R’ in the graph), but the rest were not. In panel (a) action HAND
was selected in all choice states whereas in panel (b) it was action EYE. Based on this, since in
panel (a) the reward was earned when HAND was selected, we expected that choice to decrease the
probability of selecting action EYE on the next choice. This is shown by the blue bars which illustrate
the gradient of the probability of selecting the EYE action at each subsequent choice with respect to
the amount of reward earned after the first choice (d⇡r). For panel (b), since the reward was earned
as a consequence of choosing EYE in the first choice, we expected the reward to have a positive effect
on the probability of selecting EYE on the next trials, which is consistent with the graph.

Next we asked about the intermediation of each brain region between the reward earned after the first
choice (t1) and the next choice (t2), shown by the red arrow in Figure 3(a). To answer this question,
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Figure S1: (a,b). The graphs show the effect of reward on actions in terms of d⇡r. The choice states
(between EYE and HAND actions) are shown by the grey shaded area. In the left panel, action HAND
(shown by ‘H’) was selected and in the right panel action EYE (shown by ‘E’) was selected at all of
the choice states. The outcome of each choice (reward/no reward) was delivered in the red shaded
area. The first choice was rewarded, as shown by ‘R’ in the graph, but the other choices were not
followed by any reward. The blue bars show the effect of reward received after the first choice on
the subsequent choices (d⇡r). (c). Voxel maps and the time-course of changes in d⇡ur in cortical
and subcortical brain regions between reward of the EYE action at 9.2 s and the response at 12.8 s
shown by the red arrow in panel (b). Voxels below the 99th percentile of voxels were masked to
reveal only the top one percent of voxels shown here. (d) The time courses of each region calculated
from the maximum voxel in that region at each time point (smoothed), selected within an anatomical
mask from wfu_pickatlas. y-axis represents d⇡ur. ACC: anterior cingulate cortex; aStr: associative
striatum; SMA: supplementary motor area. See Figure 3 for the voxel maps and time course changes
relating to the HAND action.
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Figure S2: Cross-validation results for different numbers of optimization iterations using only the
behavioral objective function (LBEH). Mean negative log-probability (NLP) averaged over cross-
validation folds. Error-bars represent 1SEM.
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Figure S3: The haemodynamic response function (HRF). The graph shows the relationship be-
tween the neuronal activities and recorded voxel intensities. Assuming that there was a neuronal
activity at time 0, the graph shows an approximation of how Blood Oxygenation Level Dependent
signal (BOLD) changes over time. The BOLD signal corresponds to the voxel intensities yi,v
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Figure S4: d⇡µr for the coordinates reported in Wunderlich et al. [Table S3; 2009]. For each
coordinate and each time point, d⇡µr is calculated for all the voxels within 6mm of the coordinate
and z-scores are calculated for each voxel (based on d⇡µr in the whole brain), and then z-scores
are averaged among the voxels (within 6mm of the coordinate). The z-scores for the coordinates
reported in Wunderlich et al. [Table S3; 2009] for (a) ‘Vh’ (b) ‘Ve’ (c) ‘Vchosen’ (d) ‘Vchosen’
(e) ‘Vunchosen-Vchosen’ (f) ‘Vunchosen-Vchosen’. In panels (a), (d), (f), the simulation setting in
Figure S1(b) is used (HAND action) and in the panels (b), (c), (e), the simulation setting in Figure S1(b)
is used (EYE action).

14


