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Abstract

We study the fundamental problems of identity testing (goodness of fit), and
closeness testing (two sample test) of distributions over k elements, under
differential privacy. While the problems have a long history in statistics,
finite sample bounds for these problems have only been established recently.
In this work, we derive upper and lower bounds on the sample complexity
of both the problems under (ε, δ)-differential privacy. We provide sample
optimal algorithms for identity testing problem for all parameter ranges,
and the first results for closeness testing. Our closeness testing bounds are
optimal in the sparse regime where the number of samples is at most k.
Our upper bounds are obtained by privatizing non-private estimators for
these problems. The non-private estimators are chosen to have small sensi-
tivity. We propose a general framework to establish lower bounds on the
sample complexity of statistical tasks under differential privacy. We show a
bound on differentially private algorithms in terms of a coupling between
the two hypothesis classes we aim to test. By carefully constructing chosen
priors over the hypothesis classes, and using Le Cam’s two point theorem we
provide a general mechanism for proving lower bounds. We believe that the
framework can be used to obtain strong lower bounds for other statistical
tasks under privacy.

1 Introduction

Testing whether observed data conforms to an underlying model is a fundamental scientific
problem. In a statistical framework, given samples from an unknown probabilistic model,
the goal is to determine whether the underlying model has a property of interest.
This question has received great attention in statistics as hypothesis testing [1, 2], where it
was mostly studied in the asymptotic regime when the number of samples m→∞. In the
past two decades there has been a lot of work from the computer science, information theory,
and statistics community on various distribution testing problems in the non-asymptotic
(small-sample) regime, where the domain size k could be potentially larger than m (See [3,
4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], references therein, and [16] for a recent survey). Here
the goal is to characterize the minimum number of samples necessary (sample complexity)
as a function of the domain size k, and the other parameters.
At the same time, preserving the privacy of individuals who contribute to the data samples
has emerged as one of the key challenges in designing statistical mechanisms over the last few
years. For example, the privacy of individuals participating in surveys on sensitive subjects
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is of utmost importance. Without a properly designed mechanism, statistical processing
might divulge the sensitive information about the data. There have been many publicized
instances of individual data being de-anonymized, including the deanonymization of Netflix
database [17], and individual information from census-related data [18]. Protecting privacy
for the purposes of data release, or even computation on data has been studied extensively
across several fields, including statistics, machine learning, database theory, algorithm design,
and cryptography (See e.g., [19, 20, 21, 22, 23, 24, 25]). While the motivation is clear, even
a formal notion of privacy is not straight forward. We use differential privacy [26], a notion
which rose from database and cryptography literature, and has emerged as one of the most
popular privacy measures (See [26, 27, 22, 28, 29, 30, 31, 32], references therein, and the
recent book [33]). Roughly speaking, it requires that the output of the algorithm should be
statistically close on two neighboring datasets. For a formal definition of differential privacy,
see Section 2.
A natural question when designing a differentially private algorithm is to understand how
the data requirement grows to ensure privacy, along with the same accuracy. In this paper,
we study the sample size requirements for differentially private discrete distribution testing.

1.1 Results and Techniques

We consider two fundamental statistical tasks for testing distributions over [k]: (i) identity
testing, where given sample access to an unknown distribution p, and a known distribution
q, the goal is to decide whether p = q, or dTV (p, q) ≥ α, and (ii) closeness testing, where
given sample access to unknown distributions p, and q, the goal is to decide whether p = q,
or dTV (p, q) ≥ α. (See Section 2 for precise statements of these problems). Given differential
privacy constraints (ε, δ), we provide (ε, δ)-differentially private algorithms for both these
tasks. For identity testing, our bounds are optimal up to constant factors for all ranges of
k, α, ε, δ, and for closeness testing the results are tight in the small sample regime where
m = O(k). Our upper bounds are based on various methods to privatize the previously
known tests. A critical component is to design and analyze test statistic that have low
sensitivity (see Definition 4), in order to preserve privacy.
We first state that any (ε+ δ, 0)-DP algorithm is also an (ε, δ) algorithm. [34] showed that
for testing problems, any (ε, δ) algorithm will also imply a (ε+ cδ, 0)-DP algorithm. Please
refer to Lemma 2 and Lemma 3 for more detail. Therefore, for all the problems, we simply
consider (ε, 0)-DP algorithms (ε-DP), and we can replace ε with (ε+ δ) in both the upper
and lower bounds without loss of generality.
One of the main contributions of our work is to propose a general framework for establishing
lower bounds for the sample complexity of statistical problems such as property estimation
and hypothesis testing under privacy constraints. We describe this, and the other results
below. A summary of the results is presented in Table 1, which we now describe in detail.
1. DP Lower Bounds via Coupling. We establish a general method to prove lower

bounds for distribution testing problems. Suppose Xm
1 , and Y m1 are generated by two

statistical sources. Further suppose there is a coupling between the two sources such
that the expected hamming distance between the coupled samples is at most D, then if
ε+ δ = o(1/D), there is no (ε, δ)-differentially private algorithm to distinguish between
the two sources. This result is stated precisely in Theorem 1. By carefully using designed
coupling schemes, we provide lower bounds for identity testing, and closeness testing.

2. Reduction from identity to uniformity. We reduce the problem of ε-DP identity
testing of distributions over [k] to ε-DP uniformity testing over distributions over [6k].
Such a reduction, without privacy constraints was shown in [35], and we use their result
to obtain a reduction that also preserves privacy, with at most a constant factor blow-up
in the sample complexity. This result is given in Theorem 3.

3. Identity Testing. It was recently shown that O(
√
k

α2 ) [7, 36, 11, 37] samples are necessary
and sufficient for identity testing without privacy constraints. The statistic used in these
papers are variants of chi-squared tests, which could have a high global sensitivity.
Given the reduction from identity to uniformity, it suffices to consider uniformity testing.
We consider the test statistic studied by [38] which is simply the distance of the empirical
distribution to the uniform distribution. This statistic also has a low sensitivity, and
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futhermore has the optimal sample complexity in all parameter ranges, without privacy
constraints. In Theorem 2, we state the optimal sample complexity of identity testing.
The upper bounds are derived by privatizing the statistic in [38]. For lower bound, we use
our technique in Theorem 1. We design a coupling between the uniform distribution u[k],
and a mixture of distributions, which are all at distance α from u[k] in total variation
distance. In particular, we consider the mixture distribution used in [7]. Much of the
technical details go into proving the existence of couplings with small expected Hamming
distance. [34] studied identity testing under pure differential privacy, and obtained an

algorithm with complexity O

(√
k

α2 +
√
k log k
α3/2ε

+ (k log k)1/3

α5/3ε2/3

)
. Our results improve their

bounds significantly.
4. Closeness Testing. Closeness testing problem was proposed by [3], and optimal bound

of Θ
(

max{ k
2/3

α4/3 ,
√
k

α2 }
)
was shown in [10]. They proposed a chi-square based statistic,

which we show has a small sensitivity. We privatize their algorithm to obtain the
sample complexity bounds. In the sparse regime we prove a sample complexity bound
of Θ

(
k2/3

α4/3 +
√
k

α
√
ε

)
, and in the dense regime, we obtain a bound of O

(√
k

α2 + 1
α2ε

)
. These

results are stated in Theorem 4. Since closeness testing is a harder problem than identity
testing, all the lower bounds from identity testing port over to closeness testing. The
closeness testing lower bounds are given in Theorem 4.

Problem Sample Complexity Bounds
Identity Testing Non-private : Θ

(√
k

α2

)
[7]

ε-DP algorithms: O
(√

k
α2 +

√
k log k
α3/2ε

)
[34]

S(IT, k, α, ε) = Θ
(√

k
α2 + max

{
k1/2

αε1/2 ,
k1/3

α4/3ε2/3 ,
1
αε

})
[Theorem 2]

Closeness Testing Non-private: Θ
(
k2/3

α4/3 + k1/2

α2

)
[10]

ε-DP algorithms:
IF α2 = Ω

(
1√
k

)
and α2ε = Ω

( 1
k

)
S(CT, k, α, ε) = Θ

(
k2/3

α4/3 +
√
k

α
√
ε

)
ELSE
Ω
(√

k
α2 +

√
k

α
√
ε

+ 1
αε

)
≤ S(CT, k, α, ε) ≤ O

(√
k

α2 + 1
α2ε

)
[Theorem 4]

Table 1: Summary of the sample complexity bounds for ε-DP identity, and closeness testing.
For (ε, δ)-DP algorithms, we can simply replace ε in the sample complexity by (ε+ δ).

1.2 Related Work

A number of papers have recently studied hypothesis testing problems under differential
privacy guarantees [39, 40, 41]. Some works analyze the distribution of the test statistic in
the asymptotic regime. The work most closely related to ours is [34], which studied identity
testing in the finite sample regime. We mentioned their guarantees along with our results on
identity testing in the previous section.
There has been a line of research for statistical testing and estimation problems under the
notion of local differential privacy [24, 23, 42, 43, 44, 45, 46, 47, 48, 49]. These papers study
some basic statistical problems and provide minimax lower bounds using Fano’s inequality. [50]
studies structured distribution estimation under differential privacy. Information theoretic
approaches to data privacy have been studied recently using quantities like mutual information,
and guessing probability to quantify privacy [51, 52, 53, 54, 55].
[56, 57] provide methods to prove lower bounds on DP algorithms via packing. Recently, [58]
use coupling to prove lower bounds on the sample complexity for differentially private
confidence intervals. Our results are more general, in that, we can handle mixtures of
distributions, which can provide optimal lower bounds on identity testing. [59, 60] characterize
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differential privacy through a coupling argument. [61] also uses the idea of coupling implicitly
when designing differentially private partition algorithms. [62] uses our coupling argument
to prove lower bounds for differentially private property estimation problems.
In a contemporaneous and independent work, [63], the authors study the same problems that
we consider, and obtain the same upper bounds for the sparse case, when m ≤ k. They also
provide experimental results to show the performance of the privatized algorithms. However,
their results are sub-optimal for m = Ω(k) for identity testing, and they do not provide any
lower bounds for the problems. Both [34], and [63] consider only pure-differential privacy,
which are a special case of our results.

Organization of the paper. In Section 2, we discuss the definitions and notations. A
general technique for proving lower bounds for differentially private algorithms is described
in Section 3. Section 4 gives upper and lower bounds for identity testing, and closeness
testing is studied in Section 5.

2 Preliminaries

Let ∆k be the class of all discrete distributions over a domain of size k, which wlog is assumed
to be [k] := {1, . . . ,k}. We denote length-m samples X1, . . . ,Xm by Xm

1 . For x ∈ [k], let
px be the probability of x under p. Let Mx(Xm

1 ) be the number of times x appears in
Xm

1 . For A ⊆ [k], let p(A) =
∑
x∈A px. Let X ∼ p denote that the random variable X

has distribution p. Let u[k] be the uniform distribution over [k], and B(b) be the Bernoulli
distribution with bias b. The total variation distance between distributions p, and q over [k]
is dTV (p, q) := supA⊂[k]{p(A)− q(A)} = 1

2‖p− q‖1.

Definition 1. Let p, and q be distributions over X , and Y respectively. A coupling between
p and q is a distribution over X × Y whose marginals are p and q respectively.

Definition 2. The Hamming distance between two sequencesXm
1 and Y m1 is dH(Xm

1 , Y
m
1 ) :=∑m

i=1 I{Xi 6= Yi}, the number of positions where Xm
1 , and Y m1 differ.

Definition 3. A randomized algorithm A on a set Xm → S is said to be (ε, δ)-differentially
private if for any S ⊂ range(A), and all pairs of Xm

1 , and Y m1 with dH(Xm
1 , Y

m
1 ) ≤ 1 such

that Pr (A(Xm
1 ) ∈ S) ≤ eε · Pr (A(Y m1 ) ∈ S) + δ.

The case when δ = 0 is called pure differential privacy. For simplicity, we denote pure
differential privacy as ε-differential privacy (ε-DP).
Next we state the group property of differential privacy. We give a proof in Appendix A.1.
Lemma 1. Let A be a (ε, δ)-DP algorithm, then for sequences xm1 , and ym1 with
dH(xm1 , ym1 ) ≤ t, and ∀S ⊂ range(A), Pr (A(xm1 ) ∈ S) ≤ etε · Pr (A(ym1 ) ∈ S) + δteε(t−1).

The next two lemmas state a relationship between (ε, δ) and ε-differential privacy. We give
a proof of Lemma 2 in Appendix A.2. And Lemma 3 follows from [34].
Lemma 2. Any (ε+ δ, 0)- differentially private algorithm is also (ε, δ)-differentially private.

Lemma 3. An (ε, δ)-DP algorithm for a testing problem can be converted to an (ε+ cδ, 0)
algorithm for some constant c > 0.

Combining these two results, it suffices to prove bounds for (ε, 0)-DP, and plug in ε with
(ε+ δ) to obtain bounds that are tight up to constant factors for (ε, δ)-DP.
The notion of sensitivity is useful in establishing bounds under differential privacy.
Definition 4. The sensitivity of f : [k]m → R is

∆(f) := maxdH(Xm1 ,Ym1 )≤1 |f(Xm
1 )− f(Y m1 )| .

For x ∈ R, σ(x) := 1
1+exp(−x) = exp(x)

1+exp(x) is the sigmoid function. The following properties
follow from the definition of σ.
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Lemma 4. 1. For all x, γ ∈ R, exp(− |γ|) ≤ σ(x+γ)
σ(x) ≤ exp(|γ|).

2. Let 0 < η < 1
2 . Suppose x ≥ log 1

η . Then σ(x) > 1− η.

Identity Testing (IT). Given description of q ∈ ∆k over [k], parameters α, and m
independent samples Xm

1 from unknown p ∈ ∆k. A is an (k, α)-identity testing algorithm for
q, if when p = q, A outputs “p = q” with probability at least 0.9, and when dTV (p, q) ≥ α,
A outputs “p 6= q” with probability at least 0.9.
Definition 5. The sample complexity of DP-identity testing, denoted S(IT, k, α, ε), is the
smallest m for which there exists an ε-DP algorithm A that uses m samples to achieve
(k, α)-identity testing. Without privacy concerns, S(IT, k, α) denotes the sample complexity.
When q = u[k], the problem reduces to uniformity testing, and the sample complexity is
denoted as S(UT, k, α, ε).

Closeness Testing (CT). Given m independent samples Xm
1 , and Y m1 from unknown

distributions p, and q. An algorithm A is an (k, α)-closeness testing algorithm if when p = q,
A outputs p = q with probability at least 0.9, and when dTV (p, q) ≥ α, A outputs p 6= q
with probability at least 0.9.
Definition 6. The sample complexity of DP-closeness testing, denoted S(CT, k, α, ε), is the
smallest m for which there exists an ε-DP algorithm A that uses m samples to achieve
(k, α)-closeness testing. When privacy is not a concern, we denote the sample complexity of
closeness testing as S(CT, k, α).

Hypothesis Testing (HT). Suppose we have distributions p and q over Xm, and Xm
1 ∼

p, Y m1 ∼ q, we say an algorithm A : Xm → {p, q} can distinguish between p and q if
Pr (A(Xm

1 ) = q) < 0.1 and Pr (A(Y m1 ) = p) < 0.1.

3 Privacy Bounds Via Coupling

Recall that coupling between distributions p and q over X , and Y, is a distribution over
X × Y whose marginal distributions are p and q (Definition 1). For simplicity, we treat
coupling as a randomized function f : X → Y such that if X ∼ p, then Y = f(X) ∼ q. Note
that X, and Y are not necessarily independent.
Example 1. Let B(b1), and B(b2) be Bernoulli distributions with bias b1, and b2 such that
b1 < b2. Let p, and q be distributions over {0, 1}m obtained by m i.i.d. samples from B(b1),
and B(b2) respectively. Let Xm

1 be distributed according to p. Generate a sequence Y m1 as
follows: If Xi = 1, then Yi = 1. If Xi = 0, we flip another coin with bias (b2−b1)/(1−b1), and
let Yi be the output of this coin. Repeat the process independently for each i, such that the
Yi’s are all independent of each other. Then Pr (Yi = 1) = b1 +(1− b1)(b2− b1)/(1− b1) = b2,
and Y m1 is distributed according to q.

We would like to use coupling to prove lower bounds on differentially private algorithms for
testing problems. Let p and q be distributions over Xm. If there is a coupling between p
and q with a small expected Hamming distance, we might expect that the algorithm cannot
have strong privacy guarantees. The following theorem formalizes this intuition:
Theorem 1. Suppose there is a coupling between p and q over Xm, such that
E [dH(Xm

1 , Y
m
1 )] ≤ D where Xm

1 ∼ p, Y m1 ∼ q. Then, any (ε, δ)-differentially private
hypothesis testing algorithm A : Xm → {p, q} on p and q must satisfy ε+ δ = Ω

( 1
D

)
Proof. Let (Xm

1 , Y
m
1 ) be distributed according to a coupling of p, and q with

E [dH(Xm
1 , Y

m
1 )] ≤ D. By Markov’s inequality, Pr (dH(Xm

1 , Y
m
1 ) > 10D) <

Pr (dH(Xm
1 , Y

m
1 ) > 10 · E [dH(Xm

1 , Y
m
1 )]) < 0.1. Let xm1 and ym1 be the realization of Xm

1
and Y m1 . Let W = {(xm1 , ym1 )|dH(xm1 , ym1 ) ≤ 10D}. Then we have

0.1 ≥ Pr (A(Xm
1 ) = q) ≥

∑
(xm1 ,ym1 )∈W

Pr (Xm
1 = xm1 , Y

m
1 = ym1 ) · Pr (A(xm1 ) = q).

By Lemma 1, and Pr (dH(Xm
1 , Y

m
1 ) > 10D) < 0.1, and Pr (A(ym1 ) = q) ≤ 1,
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Pr (A(Y m1 ) = q) ≤
∑

(xm1 ,ym1 )∈W

Pr (xm1 , ym1 ) · Pr (A(ym1 ) = q) +
∑

(xm1 ,ym1 )/∈W

Pr (xm1 , ym1 ) · 1

≤
∑

(xm1 ,ym1 )∈W

Pr (xm1 , ym1 ) · (eε·10D Pr (A(xm1 ) = q) + 10Dδ · eε·10(D−1)) + 0.1

≤ 0.1eε·10D + 10Dδ · eε·10D + 0.1.

Since we know Pr (A(Y m1 ) = q) > 0.9, then 0.9 < Pr (A(Y m1 ) = q) < 0.1eε·10D + 10Dδ ·
eε·10D + 0.1. Hence, either eε·10D = Ω(1) or 10Dδ = Ω(1), which implies that D =
Ω
(
min

{ 1
ε ,

1
δ

})
= Ω

(
1
ε+δ

)
, proving the theorem.

Set δ = 0, we obtain the bound for pure differential privacy. In the next few sections, we use
this theorem to get sample complexity bounds for differentially private testing problems.

4 Identity Testing

In this section, we prove the bounds for identity testing. Our main result is the following.
Theorem 2.

S(IT, k, α, ε) = Θ
(
k1/2

α2 + max
{
k1/2

αε1/2 ,
k1/3

α4/3ε2/3 ,
1
αε

})
.

Or we can write it according to the parameter range,

S(IT, k, α, ε) =


Θ
(√

k
α2 + k1/2

αε1/2

)
, when k = Ω

( 1
α4

)
and k = Ω

( 1
α2ε

)
,

Θ
(√

k
α2 + k1/3

α4/3ε2/3

)
, when k = Ω

(
α
ε

)
and k = O

( 1
α4 + 1

α2ε

)
,

Θ
(√

k
α2 + 1

αε

)
, when k = O

(
α
ε

)
.

Our bounds are tight up to constant factors in all parameters. To get the sample complexity
for (ε, δ)-differential privacy, we can simply replace ε by (ε+ δ).
In Theorem 3 we will show a reduction from identity to uniformity testing under pure
differential privacy. Using this, it will be enough to design algorithms for uniformity testing,
which is done in Section 4.2.
Moreover since uniformity testing is a special case of identity testing, any lower bound for
uniformity will port over to identity, and we give such bounds in Section 4.3.

4.1 Uniformity Testing implies Identity Testing

The sample complexity of testing identity of any distribution is O(
√
k

α2 ), a bound that is
tight for the uniform distribution. Recently [35] proposed a scheme to reduce the problem
of testing identity of distributions over [k] for total variation distance α to the problem of
testing uniformity over [6k] with total variation parameter α/3. In other words, they show
that S(IT, k, α) ≤ S(UT, 6k, α/3). Building on [35], we prove that a similar bound also holds
for differentially private algorithms. The proof is in Appendix B.
Theorem 3. S(IT, k, α, ε) ≤ S(UT, 6k, α/3, ε).

4.2 Identity Testing – Upper Bounds

In this section, we will show that by privatizing the statistic proposed in [38] we can achieve
the sample complexity in Theorem 2 for all parameter ranges. The procedure is described in
Algorithm 1.
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Recall that Mx(Xm
1 ) is the number of appearances of x in Xm

1 . Let

S(Xm
1 ) := 1

2 ·
n∑
x=1

∣∣∣∣Mx(Xm
1 )

m
− 1
k

∣∣∣∣ , (1)

be the TV distance from the empirical distribution to the uniform distribution. Let µ(p) =
E [S(Xm

1 )] when the samples are drawn from distribution p. They show the following
separation result on the expected value of S(Xm

1 ).
Lemma 5 ([38]). Let p be a distribution over [k] and dTV (p, u[k]) ≥ α, then there is a
constant c such that

µ(p)− µ(u[k]) ≥ cα2 min
{
m2

k2 ,
√

m
k ,

1
α

}
.

[38] used this result to show that thresholding S(Xm
1 ) at 0 is an optimal algorithm for

identity testing. We first normalize the statistic to simplify the presentation of our DP
algorithm. Let

Z(Xm
1 ) :=


k
(
S(Xm

1 )− µ(u[k])− 1
2cα

2 · m
2

k2

)
, when m ≤ k,

m
(
S(Xm

1 )− µ(u[k])− 1
2cα

2 ·
√

m
k

)
, when k < m ≤ k

α2 ,
m
(
S(Xm

1 )− µ(u[k])− 1
2cα

)
, when m ≥ k

α2 .
(2)

where c is the constant in Lemma 5, and µ(u[k]) is the expected value of S(Xm
1 ) when Xm

1
are drawn from uniform distribution.

Algorithm 1 Uniformity testing
Input: ε, α, i.i.d. samples Xm

1 from p

1: Let Z(Xm
1 ) be evaluated from (1), and (2).

2: Generate Y ∼ B(σ(ε · Z)), σ is the sigmoid function.
3: if Y = 0, return p = u[k], else, return p 6= u[k].

We now prove that this algorithm is ε-DP. We need the following sensitivity result.
Lemma 6. ∆(Z) ≤ 1 for all values of m, and k.

Proof. Recall that S(Xm
1 ) = 1

2 ·
∑n
x=1

∣∣∣Mx(Xm1 )
m − 1

k

∣∣∣. Changing any one symbol changes
at most two of the Mx(Xm

1 )’s. Therefore at most two of the terms change by at most
1
m . Therefore, ∆(S(Xm

1 )) ≤ 1
m , for any m. When m ≤ k, this can be strengthened

with observation that Mx(Xm
1 )/m ≥ 1

k , for all Mx(Xm
1 ) ≥ 1. Therefore, S(Xm

1 ) = 1
2 ·(∑

x:Mx(Xm1 )≥1

(
Mx(Xm1 )

m − 1
k

)
+
∑
x:Mx(Xm1 )=0

1
k

)
= Φ0(Xm1 )

k , where Φ0(Xm
1 ) is the number

of symbols not appearing in Xm
1 . This changes by at most one when one symbol is changed,

proving the result.

Using this lemma, ε · Z(Xm
1 ) changes by at most ε when Xm

1 is changed at one location.
Invoking Lemma 4, the probability of any output changes by a multiplicative exp(ε), and
the algorithm is ε-differentially private.
To prove the sample complexity bound, we first show that the mean of the test statistic is
well separated using Lemma 5. Then we use the concentration bound of the test statistic
from [38] to get the final complexity. Due to lack of space, the detailed proof of sample
complexity bound is given in Appendix C.

4.3 Sample Complexity Lower bounds for Uniformity Testing

In this section, we will show the lower bound part of Theorem 2. The first term is the lower
bound without privacy constraints, proved in [7]. In this section, we will prove the terms
associated with privacy.
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The simplest argument is for m ≥ k
α2 , which hopefully will give you a sense of how coupling

argument works. We consider the case of binary identity testing where the goal is to test
whether the bias of a coin is 1/2 or α-far from 1/2. This is a special case of identity testing
for distributions over [k] (when k − 2 symbols have probability zero). This is strictly harder
than the problem of distinguishing between B(1/2) and B(1/2 + α). The coupling given in
Example 1 has expected hamming distance of αm. Hence combing with Theorem 1, we get
a lower bound of Ω( 1

αε ).

We now consider the cases m ≤ k and k < m ≤ k
α2 .

To this end, we invoke LeCam’s two point theorem, and design a hypothesis testing problem
that will imply a lower bound on uniformity testing. The testing problem will be to distinguish
between the following two cases.
Case 1: We are given m independent samples from the uniform distribution u[k].
Case 2: Generate a distribution p with dTV (p, u[k]) ≥ α according to some prior over all
such distributions. We are then given m independent samples from this distribution p.
Le Cam’s two point theorem [64] states that any lower bound for distinguishing between
these two cases is a lower bound on identity testing problem.
We now describe the prior construction for Case 2, which is the same as considered by [7]
for lower bounds on identity testing without privacy considerations. For each z ∈ {±1}k/2,
define a distribution pz over [k] such that

pz(2i− 1) = 1 + zi · 2α
k

, and pz(2i) = 1− zi · 2α
k

.

Then for any z, dTV (Pz, u[k]) = α. For Case 2, choose p uniformly from these 2k/2
distributions. Let Q2 denote the distribution on [k]m by this process. In other words, Q2 is
a mixture of product distributions over [k].
In Case 1, let Q1 be the distribution of m i.i.d. samples from u[k].
To obtain a sample complexity lower bound for distinguishing the two cases, we will design
a coupling between Q1, and Q2, and bound its expected Hamming distance. While it can be
shown that the Hamming distance of the coupling between the uniform distribution with
any one of the 2k/2 distributions grows as αm, it can be significantly smaller, when we
consider the mixtures. In particular, the following lemma shows that there exist couplings
with bounded Hamming distance.
Lemma 7. There is a coupling between Xm

1 generated by Q1, and Y m1 by Q2 such that

E [dH(Xm
1 , Y

m
1 )] ≤ C · α2 min{m

2

k ,
m3/2

k1/2 }.

The lemma is proved in Appendix D. Now applying Theorem 1, we get the bound in
Theorem 2.

5 Closeness Testing

Recall the closeness testing problem from Section 2, and the tight non-private bounds from
Table 1. Our main result in this section is the following theorem characterizing the sample
complexity of differentially private algorithms for closeness testing.
Theorem 4. If α > 1/k1/4, and εα2 > 1/k,

S(CT, k, α, ε) = Θ
(
k2/3

α4/3 + k1/2

α
√
ε

)
,

otherwise,

Ω
(
k1/2

α2 + k1/2

α
√
ε

+ 1
αε

)
≤ S(CT, k, α, ε) ≤ O

(
k1/2

α2 + 1
α2ε

)
.
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This theorem shows that in the sparse regime, when m = O(k), our bounds are tight up to
constant factors in all parameters. To prove the upper bounds, we only consider the case
when δ = 0, which would suffice by lemma 2. We privatize the closeness testing algorithm
of [10]. To reduce the strain on the readers, we drop the sequence notations explicitly and let

µi := Mi(Xm
1 ), and νi := Mi(Y m1 ).

The statistic used by [10] is

Z(Xm
1 , Y

m
1 ) :=

∑
i∈[k]

(µi − νi)2 − µi − νi
µi + νi

,

where we assume that ((µi − νi)2 − µi − νi)/(µi + νi) = 0, when µi + νi = 0. It turns out
that this statistic has a constant sensitivity, as shown in Lemma 8.
Lemma 8. ∆(Z(Xm

1 , Y
m
1 )) ≤ 14.

Proof. Since Z(Xm
1 , Y

m
1 ) is symmetric, without loss of generality assume that one of the

symbols is changed in Y m1 . This would cause at most two of the νi’s to change. Suppose
νi ≥ 1, and it changed to νi − 1. Suppose, µi + νi > 1, the absolute change in the ith term
of the statistic is∣∣∣∣ (µi − νi)2

µi + νi
− (µi − νi + 1)2

µi + νi − 1

∣∣∣∣ =
∣∣∣∣ (µi + νi)(2µi − 2νi + 1) + (µi − νi)2

(µi + νi)(µi + νi − 1)

∣∣∣∣
≤
∣∣∣∣2µi − 2νi + 1
µi + νi − 1

∣∣∣∣+
∣∣∣∣ µi − νi
µi + νi − 1

∣∣∣∣
≤3 |µi − νi|+ 1

µi + νi − 1 ≤ 3 + 4
µi + νi − 1 ≤ 7.

When µi + νi = 1, the change can again be bounded by 7. Since at most two of the νi’s
change, we obtain the desired bound.

We use the same approach with the test statistic as with uniformity testing to obtain a
differentially private closeness testing method, described in Algorithm 2. Since the sensitivity
of the statistic is at most 14, the input to the sigmoid changes by at most ε when any
input sample is changed. Invoking Lemma 4, the probability of any output changes by a
multiplicative exp(ε), and the algorithm is ε-differentially private.

Algorithm 2
Input: ε, α, sample access to distribution p and q

1: Z ′ ← (Z(Xm
1 , Y

m
1 )− 1

2
m2α2

4k+2m )/14
2: Generate Y ∼ B(σ(exp(ε · Z ′))
3: if Y = 0, return p = q
4: else, return p 6= q

The remaining part is to show that Algorithm 2 satisfies sample complexity upper bounds
described in theorem 4. We will give the details in Appendix E, where the analysis of the
lower bound is also given.
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A Proof of Lemmas

A.1 Proof of Lemma 1

Proof. Let dH(xm1 , ym1 ) = D̂. When D̂ = 0 or 1, the lemma is trivially true. Then,
suppose D̂ ≥ 2 we can find D̂ − 1 sequences zm1 , . . . , zmD̂−1 over Xm with dH(xm1 , zm1 ) =
1, dH(zm

D̂−1, y
m
1 ) = 1 and dH(zmi , zmi+1) = 1 for i ∈ {1, 2, ..., D̂ − 2}. Hence, by the condition

of (ε, δ) - differential privacy,

Pr (A(xm1 ) = q) ≤ eε Pr (A(zm1 ) = q) + δ ≤ eε(eε Pr (A(zm2 ) = q) + δ) + δ ≤ . . .

≤ eD̂ε Pr (A(ym1 ) = q) + δ ·
D̂−1∑
i=0

eiε ≤ eD̂ε Pr (A(ym1 ) = q) + δD̂e(D̂−1)ε

≤ etε Pr (A(ym1 ) = q) + δteε(t−1).

A.2 Proof of Lemma 2

Proof. Suppose A is a (ε+ δ)-differentially private algorithm. Then for any Xm
1 and Y m1

with dH(Xm
1 , Y

m
1 ) ≤ 1 and any S ⊂ range(A), we have

Pr (A(Xm
1 ) ∈ S) ≤ eε · Pr (A(Y m1 ) ∈ S) + (eδ − 1) · eε Pr (A(Y m1 ) ∈ S).

If eε · Pr (A(Y m1 ) ∈ S) > 1 − δ, then Pr (A(Xm
1 ) ∈ S) ≤ 1 < eε · Pr (A(Y m1 ) ∈ S) + δ.

Otherwise, eε ·Pr (A(Y m1 ) ∈ S) ≤ 1−δ. To prove (eδ−1) ·eε ·Pr (A(Y m1 ) ∈ S) < δ, it suffices
to show (eδ − 1)(1− δ) ≤ δ, which is equivalent to e−δ ≥ 1− δ, completing the proof.

B Proof of Theorem 3

Proof. We first briefly describe the essential components of the construction of [35]. Given
an explicit distribution q over [k], there exists a randomized function Fq : [k]→ [6k] such
that if X ∼ q, then Fq(X) ∼ u[6k], and if X ∼ p for a distribution with dTV (p, q) ≥ α, then
the distribution of Fq(X) has a total variation distance of at least α/3 from u[6k]. Given
s samples Xs

1 from a distribution p over [k]. Apply Fq independently to each of the Xi

to obtain a new sequence Y s1 = Fq(Xs
1) := Fq(X1) . . . Fq(Xs). Let A be an algorithm that

distinguishes u[6k] from all distributions with total variation distance at least α/3 from it.
Then consider the algorithm A′ that outputs p = q if A outputs “p = u[6k]”, and outputs
p 6= q otherwise. This shows that without privacy constraints, S(IT, k, α) ≤ S(UT, 6k, α/3)
(See [35] for details).

We now prove that if further A was an ε-DP algorithm, then A′ is also an ε-DP algorithm.
Suppose Xs

1 , and X
′s
1 be two sequences in [k]s that could differ only on the last coordinate,

namely Xs
1 = Xs−1

1 Xs, and X
′s
1 = Xs−1

1 X
′

s.

Consider two sequences Y s1 = Y s−1
1 Ys, and Y

′s
1 = Y s−1

1 Y
′

s in [6k]s that could differ on only
the last coordinate. Since A is ε-DP,

A(Y s1 = u[6k]) ≤ A(Y
′s
1 = u[6k]) · eε. (3)

Moreover, since Fq is applied independently to each coordinate,

Pr (Fq(Xs
1) = Y s1 ) = Pr

(
Fq(Xs−1

1 ) = Y s−1
1

)
Pr (Fq(Xs) = Ys).
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Then,

Pr
(
A
′
(Xs

1) = q
)

= Pr (A(Fq(Xs
1)) = u[6k])

=
∑
Y s1

Pr (A(Y s1 ) = u[6k]) Pr (Fq(Xs
1) = Y s1 ))

=
∑
Y s−1

1

∑
Ys∈[6k]

Pr (A(Y s1 ) = u[6k]) Pr
(
Fq(Xs−1

1 ) = Y s−1
1

)
Pr (Fq(Xs) = Ys)

=
∑
Y s−1

1

Pr
(
Fq(Xs−1

1 ) = Y s−1
1

) ∑
Ys∈[6k]

Pr (A(Y s1 ) = u[6k]) Pr (Fq(Xs) = Ys)

. (4)

Similarly,

Pr
(
A
′
(X
′s
1 ) = q

)
=
∑
Y s−1

1

Pr
(
Fq(Xs−1

1 )=Y s−1
1

) ∑
Y ′s∈[6k]

Pr
(
A(Y

′s
1 ) = u[6k]

)
Pr
(
Fq(X

′

s) = Y
′

s

).
(5)

For a fixed Y s−1
1 , the term within the bracket in (4), and (5) are both expectations over the

final coordinate. However, by (3) these expectations differ at most by a multiplicative eε
factor. This implies that

Pr (A′(Xs
1) = q) ≤ Pr

(
A′(X

′s
1 ) = q

)
eε.

The argument is similar for the case when the testing output is not u[6k], and is omitted
here. We only considered sequences that differ on the last coordinate, and the proof remains
the same when any of the coordinates is changed. This proves the privacy guarantees of the
algorithm.

C Sample Complexity Bound of Algorithm 1

In this section, we prove the sample complexity bound of Algorithm 1 where we privatize the
statistic proposed in [38] to achieve the sample complexity in Theorem 2 for all parameter
ranges.
Because of the normalization in Equation 2 and lemma 5, for Xm

1 drawn from u[k]

E [Z(Xm
1 )] ≤


− 1

2cα
2 · m

2

k , when m ≤ k,
− 1

2cα
2 · m

3/2

k1/2 , when k < m ≤ k
α2 ,

− 1
2cmα, when m ≥ k

α2 .
(6)

For Xm
1 drawn from p with dTV (p, u[k]) ≥ α,

E [Z(Xm
1 )] ≥


1
2cα

2 · m
2

k , when m ≤ k,
1
2cα

2 · m
3/2

k1/2 , when k < m ≤ k
α2 ,

1
2cmα, when m ≥ k

α2 .
(7)

In order to prove the utility bounds, we also need the following (weak) version of the result
of [38], which is sufficient to prove the sample complexity bound for constant error probability.
Lemma 9. There is a constant C > 0, such that when m > C

√
k/α2, then for Xm

1 ∼ p,
where either p = u[k], or dTV (p, u[k]) ≥ α,

Pr
(
|Z(Xm

1 )− E [Z(Xm
1 )]| > 2E [Z(Xm

1 )]
3

)
< 0.01.
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The proof of this result is in Appendix C.1.

We now proceed to prove the sample complexity bounds. Assume that m > C
√
k/α2, so

Lemma 9 holds. Suppose ε be any real number such that ε|E [Z(Xm
1 )] | > 3 log 100. Let

A(Xm
1 ) be the output of Algorithm 1. Denote the output by 1 when A(Xm

1 ) is “p 6= u[k]”,
and 0 otherwise. Consider the case when Xm

1 ∼ p, and dTV (p, u[k]) ≥ α. Then,

Pr (A(Xm
1 ) = 1) ≥ Pr

(
A(Xm

1 ) = 1 and Z(Xm
1 ) > E [Z(Xm

1 )]
3

)
= Pr

(
Z(Xm

1 ) > E [Z(Xm
1 )]

3

)
· Pr

(
A(Xm

1 ) = 1|Z(Xm
1 ) > E [Z(Xm

1 )]
3

)
≥ 0.99 · Pr

(
B

(
σ(ε · E [Z(Xm

1 )]
3 )

)
= 1
)

≥ 0.99 · 0.99 ≥ 0.9,
where the last step uses that εE [Z(Xm

1 )] /3 > log 100, along with Lemma 4. The case of
p = u[k] follows from the same argument.

Therefore, the algorithm is correct with probability at least 0.9, whenever, m > C
√
k/α2,

and ε|E [Z(Xm
1 )] | > 3 log 100. By (7), note that ε|E [Z(Xm

1 )] | > 3 log 100 is satisfied when,
cα2 ·m2/k ≥(6 log 100)/ε, for m ≤ k,

cα2 ·m3/2/k1/2 ≥(6 log 100)/ε, for k < m ≤ k/α2,

cα ·m ≥(6 log 100)/ε, for m ≥ k/α2.

This gives the upper bounds for all the three regimes of m.

C.1 Proof of Lemma 9

In order to prove the lemma, we need the following lemma, which is proved in [38].
Lemma 10. (Bernstein version of McDiarmid’s inequality) Let Y m1 be independent random
variables taking values in the set Y. Let f : Ym → R be a function of Y m1 so that for every
j ∈ [m], and y1, ...ym, y

′
j ∈ Y, we have that:∣∣f(y1, ...yj , ...ym)− f(y1, ..., y

′
j , ...ym)

∣∣ ≤ B,
Then we have

Pr (f − E [f ] ≥ z) ≤ exp
(
−2z2

mB2

)
.

In addition, if for each j ∈ [m] and y1, ...yj−1, yj+1, ...ym we have that

VarYj [f(y1, ...yj , ...ym)] ≤ σ2
j ,

then we have

Pr (f − E [f ] ≥ z) ≤ exp
(

−z2∑m
j=1 σ

2
j + 2Bz/3

)
.

The statistic we use Z(Xm
1 ) has sensitivity at most 1, hence we can use B = 1 in Lemma 10.

We first consider the case when k < m ≤ k
α2 . When p = u[k], we get E [Z(Xm

1 )] =
− 1

2cmα
2 ·
√

m
k , then by the first part of Lemma 10,

Pr
(
Z(Xm

1 ) > E [Z(Xm
1 )]

3

)
= Pr

(
Z(Xm

1 ) > −1
6cmα

2 ·
√
m

k

)
≤Pr

(
Z(Xm

1 )− E [Z(Xm
1 )] > 2

3cmα
2 ·
√
m

k

)
≤ exp

(
−8c2m2α4

9k

)
. (8)
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Therefore, there is a C1 such that if m ≥ C1
√
k/α2, then under the uniform distribution

Pr
(
Z(Xm

1 ) > E[Z(Xm1 )]
3

)
is at most 1/100. The non-uniform distribution part is similar and

we omit the case.
Then we consider the case when k

α2 < m. When p = u[k], we get E [Z(Xm
1 )] = − 1

2cmα, then
also by the first part of Lemma 10,

Pr
(
Z(Xm

1 ) > E [Z(Xm
1 )]

3

)
= Pr

(
Z(Xm

1 ) > −1
6cmα

)
≤Pr

(
Z(Xm

1 )− E [Z(Xm
1 )] > 2

3cmα
)

≤ exp
(
−8c2mα2

9

)
.

Using the same argument we can show that there is a constant C2 such that for m ≥ C2/α
2,

then under the uniform distribution Pr
(
Z(Xm

1 ) > E[Z(Xm1 )]
3

)
is at most 1/100. The case of

non-uniform distribution is omitted because of the same reason.
At last we consider the case when m ≤ k. In this case we need another result proved in [38]:

VarXj [Z(x1, x2, ..., Xj , .., xm)] ≤ m

k
,∀j, x1, x2, ..., xj−1, xj+1, ...xn.

When p = u[k], we get E [Z(Xm
1 )] = − 1

2ckα
2 · m

2

k2 , then by the second part of Lemma 10,

Pr
(
Z(Xm

1 ) > E [Z(Xm
1 )]

3

)
= Pr

(
Z(Xm

1 ) > −1
6cα

2 · m
2

k

)
≤Pr

(
Z(Xm

1 )− E [Z(Xm
1 )] > 2

3cα
2 · m

2

k

)
≤ exp

(
− 4

9c
2α4m4

k2

m2

k + 4
9cα

2m2

k

)

≤ exp
(
−2

9cα
4m

2

k

)
.

Therefore, there is a C3 such that if m ≥ C3
√
k/α2, then under the uniform distribution

Pr
(
Z(Xm

1 ) > E[Z(Xm1 )]
3

)
is at most 1/100. The case of non-uniform distribution is similar

and is omitted.
Therefore, if we take C = max{C1, C2, C3}, we prove the result in the lemma.

D Proof of Lemma 7

D.1 m ≤ k,min{m
2

k ,
m3/2

k1/2 } = m2

k ,

Before proving the lemma, we consider an example that will provide insights and tools to
analyze the distributions Q1, and Q2. Let t ∈ N. Let P2 be the following distribution over
{0, 1}t:

• Select b ∈ { 1
2 − α,

1
2 + α} with equal probability.

• Output t independent samples from B(b).
Let P1 be the distribution over {0, 1}t that outputs t independent samples from B(0.5).
When t = 1, P1 and P2 both become B(0.5). For t=2, P1(00) = P1(11) = 1

4 + α2, and
P1(10) = P1(01) = 1

4 − α
2, and dTV (P1, P2) is 2α2. A slightly general result is the following:

Lemma 11. For t = 1, dTV (P1, P2) = 0 and for t ≥ 2, dTV (P1, P2) ≤ 2tα2.
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Proof. Consider any sequence Xt
1 that has t0 zeros, and t1 = t− t0 ones. Then,

P1(Xt
1) =

(
t

t0

)
1
2t ,

and

P2(Xt
1) =

(
t

t0

)
1
2t

(
(1− 2α)t0(1 + 2α)t1 + (1 + 2α)t0(1− 2α)t1

2

)
.

The term in the parentheses above is minimized when t0 = t1 = t/2. In this case,

P2(Xt
1) ≥P1(Xt

1) · (1 + 2α)t/2(1− 2α)t/2 = P1(Xt
1) · (1− 4α2)t/2.

Therefore,

dTV (P1, P2) =
∑
P1>P2

P1(Xt
1)− P2(Xt

1) ≤
∑
P1>P2

P1(Xt
1)
(

1− (1− 4α2)t/2
)
≤ 2tα2,

where we used the Weierstrass Product Inequality, which states that 1− tx ≤ (1−x)t proving
the total variation distance bound.

As a corollary this implies:
Lemma 12. There is a coupling between Xt

1 generated from P1 and Y t1 from P2 such that
E [dH(Xt

1, Y
t
1 )] ≤ t · dTV (P1, P2) ≤ 4(t2 − t)α2.

Proof. Observe that
∑
Xt1

min{P1(Xt
1), P2(Xt

1)} = 1− dTV (P1, P2). Consider the following
coupling between P1, and P2. Suppose Xt

1 is generated by P1, and let R be a U [0, 1] random
variable.

1. R < 1 − dTV (P1, P2) Generate Xt
1 from the distribution that assigns probability

min{P1(Xt1),P2(Xt1)}
1−dTV (P1,P2) to Xt

1. Output (Xt
1, X

t
1).

2. R ≥ 1 − dTV (P1, P2) Generate Xt
1 from the distribution that assigns probability

P1(Xt1)−min{P1(Xt1),P2(Xt1)}
dTV (P1,P2) toXt

1, and Y t1 from the distribution that assigns probability
P2(Y t1 )−min{P1(Y t1 ),P2(Y t1 )}

dTV (P1,P2) to Y t1 independently. Then output (Xt
1, Y

t
1 ).

To prove the coupling, note that the probability of observing Xt
1 is

(1− dTV (P1, P2))·min{P1(Xt
1), P2(Xt

1)}
1− dTV (P1, P2) +dTV (P1, P2)·P1(Xt

1)−min{P1(Xt
1), P2(Xt

1)}
dTV (P1, P2) = P1(Xt

1).

A similar argument gives the probability of Y t1 to be P2(Y t1 ).
Then E [dH(Xt

1, Y
t
1 )] ≤ t · dTV (P1, P2) = 2t2α2 ≤ 4(t2 − t)α2 when t ≥ 2, and when t = 1,

the distributions are identical and the Hamming distance of the coupling is equal to zero.

We now have the tools to prove Lemma 7 for m ≤ k.

Proof of Lemma 7 for m ≤ k. The following is a coupling between Q1 and Q2:
1. Generate m samples Zm1 from a uniform distribution over [k/2].
2. For j ∈ [k/2], let Tj ⊆ [m] be the set of locations where j appears. Note that
|Tj | = Mj(Zm1 ).

3. To generate samples from Q1:
• Generate |Tj | samples from a uniform distribution over {2j− 1, 2j}, and replace

the symbols in Tj with these symbols.
4. To generate samples from Q2:

• Similar to the construction of P1 earlier in this section, consider two distributions
over {2j − 1, 2j} with bias 1

2 − α, and
1
2 + α.

• Pick one of these distributions at random.
• Generate |Tj | samples from it over {2j − 1, 2j}, and replace the symbols in Tj
with these symbols.
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From this process the coupling between Q1, and Q2 is also clear:
• Given Xm

1 from Q2, for each j ∈ [k/2] find all locations ` such that X` = 2j − 1, or
X` = 2j. Call this set Tj .

• Perform the coupling between P2 and P1 from Lemma 12, after replacing {0, 1} with
{2j − 1, 2j}.

Using the coupling defined above, by the linearity of expectations, we get:

E [dH(Xm
1 , Y

m
1 )] =

k/2∑
j=1

E
[
dH(X |Tj |1 , Y

|Tj |
1 )

]
= k

2E
[
dH(XR

1 , Y
R
1 )
]

≤ k

2 · E
[
4α2(R2 −R)

]
,

where R is a binomial random variable with parameters m and 2/k. Now, a simple exercise
computing Binomial moments shows that for X ∼ Bin(n, s), E

[
X2 −X

]
= s2(n2 − n) ≤

n2s2. This implies that

E
[
R2 −R

]
≤ 4m2

k2 .

Plugging this, we obtain

E [dH(Xm
1 , Y

m
1 )] ≤ k

2 ·
16α2m2

k2 = 8m2α2

k
,

proving the claim.

D.2 k ≤ m ≤ k/α2,min{m
2

k ,
m3/2

k1/2 } = m3/2

k1/2

Lemma 11 holds for all values of t, and α. The lemma can be strengthened for cases where
α is small.
Lemma 13. Let P1, and P2 be the distributions over {0, 1}t defined in the last section.
There is a coupling between Xt

1 generated by P1, and Y t1 by P2 such that

E
[
dH(Xt

1, Y
t
1 )
]
≤ C · (α2t3/2 + α4t5/2 + α5t3).

D.2.1 Proof of Lemma 7 assuming Lemma 13

Given the coupling we defined in Appendix D.2.2 for proving Lemma 13, the coupling
between Q1, and Q2 uses the same technique in the last section for m ≤ k.

• Given Xm
1 from Q2, for each j ∈ [k/2] find all locations ` such that X` = 2j − 1, or

X` = 2j. Call this set Tj .
• Perform the coupling in Appendix D.2.2 between P2 and P1 on Tj , after replacing
{0, 1} with {2j − 1, 2j}.

Using the coupling defined above, by the linearity of expectations, we get:

E [dH(Xm
1 , Y

m
1 )] =

k/2∑
j=1

E
[
dH(X |Tj |1 , Y

|Tj |
1 )

]
= k

2E
[
dH(XR

1 , Y
R
1 )
]

≤ k

2 · E
[
64 ·

(
α4R5/2 + α2R3/2 + α5R3

)]
,

where R ∼ Bin(m, 2/k).
We now bound the moments of Binomial random variables. The bound is similar in flavor
to [65, Lemma 3] for Poisson random variables.
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Lemma 14. Suppose m
k > 1, and Y ∼ Bin(m, 1

k ), then for γ ≥ 1, there is a constant Cγ
such that

E [Y γ ] ≤ Cγ
(m
k

)γ
.

Proof. For integer values of γ, this directly follows from the moment formula for Binomial
distribution [66], and for other γ ≥ 1, by Jensen’s Inequality

E [Y γ ] ≤ E
[(
Y dγe

) γ
dγe
]
≤ E

[(
Y dγe

)] γ
dγe ≤

(
CdγeE [Y ]dγe

) γ
dγe = C ′(E [Y ])γ ,

proving the lemma.

Therefore, letting C = max{C5/2, C3, C3/2}, we obtain

E [dH(Xm
1 , Y

m
1 )] ≤ 32kC ·

(
α4
(m
k

)5/2
+ α2

(m
k

)3/2
+ α5

(m
k

)3
)
.

Now, notice α
√

m
k < 1. Plugging this,

E [dH(Xm
1 , Y

m
1 )] ≤ 32C · k ·

(
α4
(m
k

)5/2
+ α2

(m
k

)3/2
+ α5

(m
k

)3
)

= 32C · kα2 ·

(
α2m

k
·
(m
k

)3/2
+
(m
k

)3/2
+ α3

(m
k

)3/2(m
k

)3/2
)

≤ 96C · k
(m
k

)3/2
,

completing the argument.

D.2.2 Proof of Lemma 13

To prove Lemma 13, we need a few lemmas first:
Definition 7. A random variable Y1 is said to stochastically dominate Y2 if for all t,
Pr (Y1 ≥ t) ≥ Pr (Y2 ≥ t).
Lemma 15. Suppose N1 ∼ Bin(t, 1

2 ), N2 ∼ 1
2Bin(t, 1+α

2 ) + 1
2Bin(t, 1−α

2 ). Then Z2 =
max{N2, t−N2} stochastically dominates Z1 = max{N1, t−N1}.

Proof.

Pr (Z2 ≥ l) =
t−l∑
i=0

(
t

i

)[(
1 + α

2

)i(1− α
2

)t−i
+
(

1− α
2

)i(1 + α

2

)t−i]
,

Pr (Z1 ≥ l) = 2 ·
t−l∑
i=0

(
t

i

)(
1
2

)t
.

Define F (l) = Pr (Z2 ≥ l)−Pr (Z1 ≥ l). What we need to show is F (l) ≥ 0,∀l ≥ t
2 . First we

observe that Pr
(
Z2 ≥ t

2
)

= Pr
(
Z1 ≥ t

2
)

= 1 and Pr (Z2 ≥ t) = ( 1+α
2 )t + ( 1−α

2 )t ≥ 2( 1
2 )t =

Pr (Z1 ≥ t). Hence F ( t2 ) = 0, F (t) > 0. Let

f(l) = F (l+1)−F (l) = −
(
t

l

)[(
1 + α

2

)l(1− α
2

)t−l
+
(

1− α
2

)l(1 + α

2

)t−l
− 2
(

1
2

)t]
.

Let g(x) =
( 1+α

2
)x( 1−α

2
)t−x +

( 1−α
2
)x( 1+α

2
)t−x − 2

( 1
2
)t
, x ∈ [t/2, t], then

dg(x)
dx

= ln
(

1 + α

1− α

)
·

[(
1 + α

2

)x(1− α
2

)t−x
−
(

1− α
2

)x(1 + α

2

)t−x]
≥ 0.

We know g(t/2) < 0, g(t) > 0, hence ∃x∗, s.t.g(x) ≤ 0,∀x < x∗ and g(x) ≥ 0,∀x > x∗.
Because f(l) = −

(
t
l

)
g(l), hence ∃l∗, s.t.f(l) ≤ 0,∀l ≥ l∗ and f(l) ≥ 0,∀l < l∗. Therefore,

F (l) first increases and then decreases, which means F (l) achieves its minimum at t
2 or t.

Hence F (l) ≥ 0, completing the proof.

21



For stochastic dominance, the following definition [67] will be useful.
Definition 8. A coupling (X ′, Y ′) is a monotone coupling if Pr (X ′ ≥ Y ′) = 1.

The following lemma states a nice relationship between stochastic dominance and monotone
coupling, which is provided as Theorem 7.9 in [67]
Lemma 16. Random variable X stochastically dominates Y if and only if there is a monotone
coupling between (X ′, Y ′) with Pr (X ′ ≥ Y ′) = 1.

By Lemma 16, there is a monotone coupling between Z1 = max{N1, t − N1} and Z2 =
max{N2, t−N2}. Suppose the coupling is P cZ1,Z2

, we define the coupling between Xt
1 and

Y t1 as following:
1. Generate Xt

1 according to P1 and count the number of one’s in Xt
1 as n1.

2. Generate n2 according to P c[Z2|Z1 = max{n1, t− n1}].
3. If n1 > t− n1, choose n2 − n1 of the zero’s in Xt

1 uniformly at random and change
them to one’s to get Y t1 .

4. If n1 < t − n1, choose n2 − (t − n1) of the one’s in Xt
1 uniformly at random and

change them to zero’s to get Y t1 .
5. If n1 = t− n1, break ties uniformly at random and do the corresponding action.
6. Output (Xt

1, Y
t
1 ).

Since the coupling is monotone, and dH(Xt
1, Y

t
1 ) = Z2 − Z1 for every pair of (Xt

1, Y
t
1 ), we

get:
E
[
dH(Xt

1, Y
t
1 )
]

= E [max{N2, t−N2}]− E [max{N1, t−N1}] .

Hence, to show lemma 13, it suffices to show the following lemma:
Lemma 17. Suppose N1 ∼ Bin(t, 1

2 ), N2 ∼ 1
2Bin(t, 1+α

2 ) + 1
2Bin(t, 1−α

2 ).
E [max{N2, t−N2}]− E [max{N1, t−N1}] < C · (α2t3/2 + α4t5/2 + α5t3)

Proof.
E [max{N2, t−N2}]

=
∑

0≤`≤t/2

(t/2 + `)
(

t
t
2 − `

)((
1− α

2

) t
2−`(1 + α

2

) t
2 +`

+
(

1 + α

2

) t
2−`(1− α

2

) t
2 +`
)

= t

2 +
∑

0≤`≤t/2

`

(
t

t
2 − `

)((
1− α

2

) t
2−`(1 + α

2

) t
2 +`

+
(

1 + α

2

) t
2−`(1− α

2

) t
2 +`
)
.

Consider a fixed value of t. Let

f(α) =
∑

0≤`≤t/2

`

(
t

t
2 − `

)((
1− α

2

) t
2−`(1 + α

2

) t
2 +`

+
(

1 + α

2

) t
2−`(1− α

2

) t
2 +`
)
.

The first claim is that this expression is minimized at α = 0. This is because of the monotone
coupling between Z1 and Z2, which makes E [Z2] ≥ E [Z1]. This implies that f ′(0) = 0, and
by intermediate value theorem, there is β ∈ [0, α], such that

f(α) = f(0) + 1
2α

2 · f ′′(β). (9)

We will now bound this second derivative. To further simplify, let

g(α) =
(

1− α
2

) t
2−`(1 + α

2

) t
2 +`

+
(

1 + α

2

) t
2−`(1− α

2

) t
2 +`

.

Differentiating g(α), twice with respect to α, we obtain,

g′′(α) = 1
16 ·

(
α2(t2 − t)− 4α`(t− 1) + 4`2 − t

)(1− α
2

) t
2−`−2(1 + α

2

) t
2 +`−2

+ 1
16 ·

(
α2(t2 − t) + 4α`(t− 1) + 4`2 − t

)(1 + α

2

) t
2−`−2(1− α

2

) t
2 +`−2

.
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Then g′′(α) can be bound by,

g′′(α) ≤ 1
16 ·

(
α2t2 + 4`2

)((1− α
2

) t
2−`−2(1 + α

2

) t
2 +`−2

+
(

1 + α

2

) t
2−`−2(1− α

2

) t
2 +`−2

)
.

When α < 1
4 , (1− α2)2 > 1

2 , and we can further bound the above expression by

g′′(α) ≤ 2 ·
(
α2t2 + 4`2

)((1− α
2

) t
2−`(1 + α

2

) t
2 +`

+
(

1 + α

2

) t
2−`(1− α

2

) t
2 +`
)
.

Suppose X is a Bin(t, 1+β
2 ) distribution. Then, for any ` > 0,

Pr
(∣∣∣∣X − t

2

∣∣∣∣ = `

)
=
(

t
t
2 − `

)((
1− β

2

) t
2−`(1 + β

2

) t
2 +`

+
(

1 + β

2

) t
2−`(1− β

2

) t
2 +`
)
.

Therefore, we can bound (9), by

f ′′(β) ≤ 2 ·
(
β2t2E

[∣∣∣∣X − t

2

∣∣∣∣]+ 4E
[∣∣∣∣X − t

2

∣∣∣∣3
])

.

For X ∼ Bin(m, r),

E
[
(X −mr)2

]
= mr(1− r) ≤ m

4 , and

E
[
(X −mr)4

]
= mr(1− r)(3r(1− r)(m− 2) + 1) ≤ 3m

2

4 .

We bound each term using these moments,

E
[∣∣∣∣X − t

2

∣∣∣∣] ≤ E

[(
X − t

2

)2
]1/2

=
(
t
(1− β2)

4 +
(
tβ

2

)2
)1/2

≤
√
t+ tβ.

We similarly bound the next term,

E

[∣∣∣∣X − t

2

∣∣∣∣3
]
≤ E

[(
X − t

2

)4
]3/4

≤ E

[(
X − t(1 + β)

2 + tβ

2

)4
]3/4

≤ 8

E

[(
X − t(1 + β)

2

)4
]3/4

+
(
tβ

2

)3


≤ 8
(
t3/2 +

(
tβ

2

)3
)
,

where we use (a+ b)4 ≤ 8(a4 + b4).
Therefore,

f ′′(β) ≤ 64 ·
(
β2t5/2 + t3/2 + (tβ)3

)
≤ 64 ·

(
α2t5/2 + t3/2 + (tα)3

)
.

As a consequence,

E [max{N2, t−N2}]− E [max{N1, t−N1}] = α2f ′′(β) ≤ 64 · (α2t3/2 + α4t5/2 + α5t3).

completing the proof.
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E Proof of Theorem 4

E.1 Closeness Testing – Upper Bounds

In this section, we will show that Algorithm 2 satisfies sample complexity upper bounds
described in Theorem 4.
The results in [10] were proved under Poisson sampling, and we also use Poisson sampling,
with only a constant factor effect on the number of samples for the same error probability.
They showed the following bounds:

E [Z(Xm
1 , Y

m
1 )] = 0 when p = q, (10)

Var(Z(Xm
1 , Y

m
1 )) ≤ 2 min{k,m} when p = q, (11)

E [Z(Xm
1 , Y

m
1 )] ≥ m2α2

4k + 2m when dTV (p, q) ≥ α, (12)

Var(Z(Xm
1 , Y

m
1 )) ≤ 1

1000E [Z(Xm
1 , Y

m
1 )]2 when p 6= q, and m = Ω

(
1
α2

)
. (13)

Case 1: α2 > 1√
k
, and α2ε > 1

k . In this case, we will show that S(CT, k, α, ε) =

O
(
k2/3

α4/3 + k1/2

α
√
ε

)
. In this case, k

2/3

α4/3 + k1/2

α
√
ε
≤ 2k.

We consider the case when p = q, then Var(Z(Xm
1 , Y

m
1 )) ≤ 2 min{k,m}. Let

Var(Z(Xm
1 , Y

m
1 )) ≤ cm for some constant c. By the Chebyshev’s inequality,

Pr
(
Z ′ > − 1

84 ·
m2α2

4k + 2m

)
≤Pr

(
Z(Xm

1 , Y
m
1 )− E [Z(Xm

1 , Y
m
1 )] > 1

3 ·
m2α2

4k + 2m

)
≤Pr

(
Z(Xm

1 , Y
m
1 )− E [Z(Xm

1 , Y
m
1 )] > 1

3 ·
m2α2

8k

)
≤Pr

(
Z(Xm

1 , Y
m
1 )− E [Z(Xm

1 , Y
m
1 )] > (cm)1/2 · m

3/2α2

24c1/2k

)
≤576c · k2

m3α4 ,

where we used that 4k + 2m ≤ 8k.
Therefore, there is a C1 such that if m ≥ C1k

2/3/α4/3, then under p = q,
Pr
(
Z ′ > − 1

84 ·
m2α2

4k+2m

)
is at most 1/100. Now furthermore, if ε ·m2α2/(672k) > log(20),

then for all Z ′ < − 1
84 ·

m2α2

4k+2m , with probability at least 0.95, the algorithm outputs the
p = q. Combining the conditions, we obtain that there is a constant C2 such that for
m = C2

(
k2/3

α4/3 + k1/2

α
√
ε

)
, with probability at least 0.9, the algorithm outputs the correct answer

when the input distributions satisfy p = q. The case of dTV (p, q) > α distribution is similar
and is omitted.

Case 2: α2 < 1√
k
, or α2ε < 1

k . In this case, we will prove a bound of O
(√

k
α2 + 1

α2ε

)
on

the sample complexity. We still consider the case when p = q. We first note that when
α2 < 1√

k
, or α2ε < 1

k , then either
√
k

α2 + 1
α2ε > k. Hence we can assume that the sample

complexity bound we aim for is at least Ω(k). So Var(Z(Xm
1 , Y

m
1 )) ≤ ck for constant c. By

the Chebyshev’s inequality,

24



Pr
(
Z ′ > − 1

84 ·
m2α2

4k + 2m

)
≤Pr

(
Z(Xm

1 , Y
m
1 )− E [Z(Xm

1 , Y
m
1 )] > 1

3 ·
m2α2

4k + 2m

)
≤Pr

(
Z(Xm

1 , Y
m
1 )− E [Z(Xm

1 , Y
m
1 )] > 1

3 ·
mα2

6

)
≤Pr

(
Z(Xm

1 , Y
m
1 )− E [Z(Xm

1 , Y
m
1 )] > (ck)1/2 · mα2

18c1/2k1/2

)
≤144 · c · k

m2α4 .

Therefore, there is a C1 such that if m ≥ C1k
1/2/α2, then under p = q,

Pr
(
Z ′ > − 1

84 ·
m2α2

4k+2m

)
is at most 1/100. In this situation, if ε ·mα2/504 > log(20), then

for all Z ′ < − 1
84 ·

m2α2

4k+2m , with probability at least 0.95, the algorithm outputs the p = q.
Combining with the previous conditions, we obtain that there also exists a constant C2 such
that for m = C2

(√
k

α2 + 1
α2ε

)
, with probability at least 0.9, the algorithm outputs the correct

answer when the input distribution is p = q. The case of dTV (p, q) > α distribution is similar
and is omitted.

E.2 Closeness Testing – Lower Bounds

To show the lower bound part of Theorem 4, we need the following simple result.
Lemma 18. S(IT, k, α, ε) ≤ S(CT, k, α, ε).

Proof. Suppose we want to test identity with respect to q. Given Xm
1 from p, generate Y m1

independent samples from q. If p = q, then the two samples are generated by the same
distribution, and otherwise they are generated by distributions that are at least ε far in
total variation. Therefore, we can simply return the output of an (k, α, ε)-closeness testing
algorithm on Xm

1 , and Y m1 .

By Lemma 18 we know that a lower bound for identity testing is also a lower bound on
closeness testing.
We first consider the sparse case, when α2 > 1√

k
, and α2ε > 1

k . In this case, we show that

S(CT, k, α, ε) = Ω
(
k2/3

α4/3 +
√
k

α
√
ε

)
.

When α > 1
k1/4 , k2/3

α4/3 is the dominating term in the sample complexity S(CT, k, α) =
Θ
(
k2/3

α4/3 +
√
k

α2

)
, giving us the first term. By Lemma 18 we know that a lower bound for

identity testing is also a lower bound on closeness testing giving the second term, and the
lower bound of Theorem 2 contains the second term as a summand.
In the dense case, when α2 < 1√

k
, or α2ε < 1

k , we show that

S(CT, k, α, ε, δ) = Ω
(√

k

α2 +
√
k

α
√
ε

+ 1
αε

)
.

In the dense case, using the non-private lower bounds of Ω
(
k2/3

α4/3 +
√
k

α2

)
along with the

identity testing bound of sample complexity lower bounds of note that
√
k

α
√
ε

+ 1
αε gives a

lower bound of Ω
(
k2/3

α4/3 +
√
k

α2 +
√
k

α
√
ε

+ 1
αε

)
. However, in the dense case, it is easy to see that

k2/3

α4/3 = O
(√

k
α2 +

√
k

α
√
ε

)
giving us the bound.
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