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Figure A.1: Detection of the dose changes in the DMOS system using the SML method with a normal prior
and the maximal number of change points of 30, and the NOT method.

B Proofs

Let ¢'(u) and g” (1) denote the first and second derivatives of a generic function g(u) with respect to
1 respectively, and further define the utility function as

Te+1—1

Up(p) == >, (Vi =Yy —p),

l=7'k

The following conditions are imposed for the theoretical derivations.

(A1) Assume p to be in a closed set of points in R.
(A2) Assume (1) to be a continuous density function with bounded first and second derivatives.
(A3) Assume that Pr{Y, |7 (p)} has a unique maximizer in the neighborhood of 75(pg).

Lemma 1. Assume that 7y, is a change point for which the mean of Y; — Y, satisfies |juxo| > 9 for
6>0, n,lc/ ) /o — o0, then there is a constant D > 0 such that

Hp STT exp{—(Y; — Yo, — p)%}(p)du
nl—{I}L r Trt1—1 —(Y; — }7 2
Il exp{—(Y1 — Y7,)?}

l=7p

> exp(Dnyd?) | = 1.




Proof: By the definition of Uy (1), we can write

ST exp{=(Yi = Vo, — )’ }m(w)dp _ §exp{Us(n)}m(p)dp
128 exp{—(V — ¥5,)%} exp{U(0)}

l:Tk

We first define Ns(uro) = {1 : | — pro| < 6} and denote N (puro) as its compliment, and then
show

lim Pr sup  {Ug(p) — Up(pro)} < —Dngd? | = 1.
no%w HENE (1ro)

Note that

Tr4+1—1
Ur(p) = Ur(pro) = {(uio — 1) =g (ko — ) Y, 2(Yi— Ym)}

[—
= (1o — 1) — 2o — ko + Op(ny*piro — ploe)}
= = = o)} + Oy ko — plore)
< —npd? + Op(ni/2|uko — plog)
= —nkd?/2 — np6%/2 + Op(n)? | ko — ptlow).
Asn,/?5 /o — o0, we have —n62/2 + Op(n)/*|uko — plow) < 0 with probability 1, and thus
lim Pr[ sup  {UL () = U(pro)} < —an] _1
noE HENE (1ro)
When 7y, is a change point, let 4 = 0, because |ugo| > J, we have

exp{Ux(0)}

i, Pr [exp{Ukwko)}

n—aoo

< exp(—an(Sz)] =1. (2)
By the Laplace approximation,

j exp{Us ()b ()dp = O, [~U? () =2 exp (U () ()], 3)

where /i is the maximizer of Uy (p) + log{m(p)}, and U}/ (1t) = Op(n;). Let [ be the maximizer of
Uk (), and then

0 = Ly(f) + dlogm(fx)/op
Li(w*)(fi — ) + Ologm (fi)/op,
where p* is a point on the line segment between [i and ji. As 7(1) has two bounded derivatives by
condition (A2), LY (u*) = Op(n;), we have fi — i = Op(nj*l). Therefore, (3) can be written as

Jexp{Uk(u)}W(/«L)du = Op[~Ui (@) exp{Us(R)}m(R)]

= Op[=Ui (ko) "/ exp{Us (1r0) 1 (1150)], 4

where the last equality holds because Ji is the least squares estimator. This implies
exp{Uk (ko) } 1/2
= Op(ny"),
Sexp{Us(p)m(p)ydp — Pk
which in conjunction with (2) leads to
exp{Ux(0)}

§exp{Up (1)} (p)dpe
By condition (A2) and the boundedness of Uy (1), we have

[SeXp{Uk(u)}ﬂ(u)du
exp{U}(0)}

lim Pr [

n—xLC

< exp(—an.(SQ)] =1.

lim Pr

n—a

> exp(an5)] =1,

which completes the proof.



Lemma 2. Let w(u) = 7, (1) be a local prior, and assume that ; is not a change point, i.e., [1jo = 0,
then

SHZ—J:_:—E_l exp{—(Yl - Y‘rj - /14)2}77(ﬂ)d“ —0 (n_1/2
T exp{=(Yi — ¥r))?) o

l=7'j

).

Proof: By the definition of Uj (1), we can write

§exp{U;()br(uydp ST ™ exp{—=(Yi = Yo, — p)?}m(p)dp
exp{U;(0)} B 7 exp{—(Y; = Y7,)2} '

l:Tj

Using the same argument as that leading to (4) with ;0 = 0, we have
JeXP{Uj(H)}W(M)dM = 0,[-U"(0)7"/? exp{U;(0)}(0)].

AsU"(0)"1/2 = Op(nj_l/z), and 7(0) is a bounded density, we have

§exp{U; ()} (p)dp _ o2
o0, ) o)

Lemma 3. Let

2v

Ty
Cum

(1) = mar () = E—my(p),

where C)y is a normalizing constant, m,(u) with 7,(0) > 0 is the base prior density with 2v finite
moments, and bounded first two derivatives in the neighborhood around 0. Assume that 7; is not a
change point, i.e., o = 0, then

SH;:;;il eXp{—(Y2 - YTJ- - M)Q}W(M)dﬂ -0 (n,l,,l/g
Tj+1_1eXp{—(}/l _Y/—Tj)z} b\

l=‘f'j

).

Proof: We can write

Tj+1—1

[T expl=(Yi = Vs, = (i = [ exp(Uy) +logr(u) .
l=T1;

Let h(p) = U;j(p) + logm(p) = 2vlog(p) + log{my (1)} + U; (1), and let [ be the maximizer of
h(p), then we have

20/fi + () () + () = 0.

If we expand L(jz) around /i, the least squares estimator for /150, the above equality can be rewritten
as

20/ +n = imh (7)o (i) + L (u*)7i(ji - ) = O,
where ;* is a point on the line segment between [ and [i. Therefore,

O™ = i~ )

—1/2
J

Along with the fact that ji = Op(nj_l/Q), we have [i — i = O,(n; /%), and fi = O,(n~/?). Next,

by the Laplace expansion, we have

fexp{h(u)}du = O, ({20/1% = U} (70)} /2 exp[2vlog (1) + log{my(R)} + U; (W)]),



and also
n () U 0) = 0 U
= 0 HUNR) + UL - U@
= OP(MT —p
Op(n), (5)

where 117 is a point on the line segment between Ji and 0. Thus,

|U; (1) — U;(0)] = Op(1).

As a result,

STIZ~ expl{—(Yi = Yy, — p) () dp
2 exp{—(V - Y7,)2}
§exp{U; ()} (p)dp
exp{U;(0)}
§exp{h(u)}du
exp{U;(0)}
= O,({2v/f* — U} ()}~ exp[2vlog(fi) + log{mns (F)} + U; (%) — U;(0)])
= Opln; )

— Op(ﬂﬂ-l/?-l))7

J

where the last equality holds due to the fact that ;i = Op(n_l/ 2). This completes the proof.
Lemma 4. Let

sp/2 2\ 78
) = milo) = g gy e {‘ (%) } |

Assume that 7; is not a change point, i.e., {150 = 0, then

STIZ ™ expl—(Yi = Yy, — p)2 () dp s/(s+1)
= = Oplex & )
T o o T ] {exp( )}

l:‘l']‘

Proof: We first write
Tj+1—1 B
,[ [T exp{-(Vi =Yz, —p)*im(p)dp = CJGXP{UJ'(N) — 1720 — (g + Dlog(p) } dps,
l:Tj

where c is a constant. Let h(p) = U; (1) — p2* — (¢ + 1)log(u), and assume [i is the maximizer of
h(p), then we have

1~ 2s—1._,s ~—1 ! ~ ~ 2s—1._,s ~—1
Uj(f) +2sp~= 7 v = (q+ D~ = Uj(p*) (B —p) + 25577 v* — (¢ + )i~ =0,

where p* is a point on the line segment between [t and ji. The above equality yields

~2619 2s50° — (q + 1)i?
(L = /) = 0 )/nj : (©6)
which implies i = O, (n}/***?)).
From (6), we have nfi>**1(i — 1) = O,(1), which leads to
Gofi= Op{n;(4s+3)/(28+2)}. )



Following (30) in [11] and using our notation, we obtain

52 1 9g)25+2 —1/2
[exptvnan =0, [{“*j) ~u} T el 4 U@0) .

Expanding U (ji) around the least squares estimator /i, we have
UiE) = Us(i) + 1207 (i - o)?
U; (i) + op(1)

where p* is a point on the line segment between i and /i, the second equality follows (7), and the
last equality follows the same argument as that leading to (5). Therefore, we have

STIZE " exp{—(Yi — Yo, — )2} () dps
Ti+1—1 exp{—(Yl _ YTj)Z}

1=
§ exp{U; ()} () dpe
exp{U;(0)}
§ exp{h(u)}du
exp{U;(0)}

{ (452 + 25)25+2
1

;/(3+1))}

—1/2
o, o) et ) - 1,00

= Op{exp(—n ,
which completes the proof.

Lemma 5. Assume py = 1 and 7y, is the only true change point. As n,lc/zé/a — o, Pr(Mi|Y,)-1=
Op{ K0, exp(—n6?)}. Hence when ny/log(n) — ¢ > 0, ny < )\, we have Pr(M,|Y,,) 2 1.

Proof: First, we can write

-1
& Pr(Yn|Mj)} ®

Pr(Mi|Y,) = {1 +
S Pr(Y | M)

To show Pr(My|Y,) — 1 — 0, it is equivalent to showing

& Pr(Y,|M;
3 (Ya|M;)

— — 0.

Py Pr(Y,|M,)
Note that

Pr(Y,|M;)

———~=AXB

Pr(Yn| M) X5
where

Tj 71 <7
A SH[:J; exp{—(Y; = Y, — p)?}m(p)dp
7 exp{—(Yi - V)2

and

_ I T en(-( Y%
STIEE exp{—(Y; — Yo, — )2 m(u)dp

As shown in [11], A is a Bayes factor whose convergence rate is O (ay, ). For B, note that the data
in [k, Tx+1) are generated from the model with mean pux such that 0| > 6. Hence, we have

B = Opfexp(—nid?)},




where the last equality holds by Lemma 1 that

(Pr l [T exp{—(Y = V2 )%)
SIS expl=(Yi = Yoy = )2} (po)dp

l:‘f']c

lim
n—o0

< exp(—an52)]> =1,

where D is a constant. Combining the convergence rates for A and B, we have
AB = Oplan, exp(—nzd?)}.
Thus, this leads to
Pr(Y,|M;) 2
————<= = AB = 0O,{a, —nré)},
Pr(Yn|Mk;) P{a I eXp( nr )}

and

Z" Pr(Y, |M;)
P

1 )
(Yo [ My) 1 = Op{K,an, exp(—nid~)}

Plugging this result into (8), we have
Pr(My|Y,) 5 1,
which completes the proof.

Proof of Theorem 1
First, we can write

D1 Pr(Mi|Y,) =
MpeM

—1
- 2ar,em Pr(Yn|M;)
Soaspem Pr(Yan M) |
Note that

Znsem Pr(YalMy) - 2int;em Pr(YalM;)
2anem Pr(Yn|My) h Pr(Y,|Mg) ’

for M}, € M. Hence, by the same argument as that leading to Lemma 5, we have

ZMJQEM Pr(Y,[M;)
ZMkeM Pr(Yn|Mk)

= Op{Kpan, exp(—n1(52)},

and

1 Pr(Mi|Y,) — 1 = Op{Kpan, exp(—ns8°)},
MipeM

which completes the proof.

Proof of Proposition 1
Following [15], we define x as an n-flat point so that there is no change-point in (x — nr, z + ny).
Let F be the set of all ny-flat points, then

el N R>c m(mRKc)

teTo (po) TEF

1—Pr lJ B.->cC U(URT<C)

7€T0 (po) TEF

1—Pr{< max R; > C’> U (minRT < C)}
teTo(po) TeF

1- {Pr( max R; > C) + Pr (minRT < C>}
teTo(po) TEF

WV



For each 7 € To(po),
Pr(R, < C) = O{exp(—ns6%)},
by Lemma 1. Furthermore, for 7 € F,
Pr(R, > C) = O(ay,),
by Lemmas 2—4. Hence,

Pr m R, >C ﬂ (ﬂ R, < C) > 1 — O[min{exp(—n;6?), an, }].

teTo(po) TEF
By Lemma 3 in [15], for any ¢ € To(po) we have a 7 € H.(ns) such that

Pr{t e (r —nr,7 +n;)} = 1 — O[min{exp(—n;6?), a,, }].

Proof of Theorem 2 R
We first show that for a given p, 7 (p) is the maximizer of Pr{Y,|7(p)}. Based on the BMS

procedure, ’?'(p) is the maximizer of } ., .\ Pr(My|Y ), where M = {Mj,, 7. € T(p)}. As we
impose the uniform prior on My, 7 (p) is the maximizer of

D, Pr(Ya|My) )
MpeM
Ti+1—1 Tha1—1
= D, )] H [] expi-(vi—75)% f [T exp{-(¥i =Yz, — w)*tm(u)dp
MpeM j=1,j#k =Ty =Ty
ST FITE " exp{=(Yi = Yo, — p)?
. = 7 — ) () dp
= D[] [] ewl-i-v,} ¥ = O s
j=1 l=r; MieM Hz:m exp{—(Y; — Y7,)?}
where D, is a constant depending on n. Further note that
Pr{Y,|7T(p)} (10)
Tjt1—1 Trt+1—1
= I1 [ ewt-0i-72) [ | 1 expl-000- o = wPhe(u)d
€T (p) 1=7; TET (p) l=7x
S . ST ™" exp{=(Yi = Yo, — ) }m(p)dp
- H H exp{—(V; — ¥;,)%} H =T o
j=1 l=7; TLET (p) l_ll:'r;C exp{_(Yi—YTk) }

Comparing (9) and (10), clearly they have the same optimizer, and thus ?\'(p) is also the maximizer of
(10). Hence, our BMS procedure results in the estimators p and 7 (p) that maximize Pr{Y |7 (p)}.

Next, let £ be the event that at least one j such that t; € (75, 7,1), and t; # Thy by # Taq forall i
and 7y, Tp+1 € He(ng), t; € T(p) that maximizes Pr{Y,, |7 (p)}. Following similar arguments as

those in [5], we show that the probability of £ goes to 0. Suppose that 7 (p) is such an estimate.
Consider the first case where (t; — 7 + 1) (k41 — 7% + 1)~ = O(1); that is, ¢; is bounded away
from 7. We can choose a set of change points,

Th+1) = {f,.... %)
= {?17"'7z\i77_k+17%\i+1;?ﬁ}~
Then,
~ Te+2—1 =
Pr{Y,|T(p)} _ [125 ) exp{—(Y: — Yz, )?}

PriY|T(+1)}  STIE . exp{—(Yi — Ve, — w)2}m(w)du



Because lim,, o supn;/A < 1/2, there is an N, such that for all n > N, ¢; 1 > 7,19, and hence
there is no change point within (7441, Tx+2). This prevents the situation where there are more than
one change points in between 75, and 7y 2. Further for n > N,

E(Yi Yy, = mﬂ—m+n*E{§nn—nH-21M—n&

s=Tg s=t;+1
> (tj— 7+ 1)(Thy1 — e + 1)716
Therefore, by Lemma 1,
Pr{Y|T(p + 1)}
If (t; — 7 + 1)(Tk1 — 7 + 1)71 = o(1), we define

~

= Op{exp(—ns6?)}.

To+1) = {7, ..., 41}
= {ti, . iy Ty tig1, bp)s
and then
PriY,|T(B)} _ [1755 " exp{—(Yi = V7)%)
Pr{Y|7 (5 +1)} STIEH " exp{—(Yi — Yy, — )2 }m(p)dpe
Zo exp{—(V = Y7,)?)

STIZ ™ exp{—(Yi — Yy, — )2} ()dps
SIS ™ exp{—(Vi = Vo — ()
FTT exp{=(Yi = Yo, = )2)m o)y
N A C
e = (= V)2

l:tj

where the first term is of order O, {exp(—nr§?)} by Lemma 1, and the last two terms are of order
O, (1) because (t; — 71, + 1) (k41 — 7% + 1)~ = o(1). Therefore,

Pr{Y,|T(p)} >¢4 lmﬂyﬂm
Pr{Y|T(p+ 1)} Pr{Y|T(p+ 1)}

As T (p) is the maximizer of Pr{Y,|T(p)}, we have

Pr lpr{Yfmﬁ)} > 1] ~1,
Pr{Y|T (5 + 1)}

<E 1 = O{exp(—ns6?)}.

because ’?\'(]3) is the maximizer of Pr{Y,, |’f'(]3)} and it is unique by condition (A3). By the Bayes
rule, we have

> 1

Pr lsl‘Pr{Y"mf’)} < Ofexp(—n;62)}. (11)

Pr{Y|T(p + 1)}

Hence, Pr(tAi =T,0rt; = Tir1) = 1 — O{exp(—n82)}. Further note that 75, and 741 are in the
nr-neighborhood of ¢;, and thus for any ¢, there is a ¢; such that

Pr{t; € (fl — n;,i‘\i +n5)} =1 — Ofexp(—ns6%)}.
As it holds for any j, we can write

Pr{ sup inf |({; —t;)/n| <ni/n} =1—Ofexp(—nsd?)}.
#,e7(p) ti€To(po)



Next we show that for any tA, there is a ¢; in the nr-neighborhood of 1?1 Define &, as the event that
there is at least one #; such that there is no t; in the n;-neighborhood of #;. Let T (p) be such an
estimate that #; is the kth candidate point, and (a, Tit1) and (Tg_1, tAl) do not contain t; for all j.
Then, we define a new set of change points by deleting ¢;,

T(ﬁ_ 1) = {%\17 cee 7i\i—1a%\i+1a?ﬁ}'
Then,

Pr{Y,[T(p)) T2 ep(=( = ¥ — w?im(u)du

Pr{Y[T(p—1)} [0 exp{—(Yi = ¥3,)%)

= OP (anl )

by Lemmas 2—4. Therefore, using the same argument as that leading to (11), we have

) lg | Pr{Y.|7(9)}

Iy To-1)

= O(an,).

For any t:;, there exists a ¢; such that
Priti € (tj —nr,t; +n5)} =1 —O(an,).
It holds for any fi, and thus we have

Pr| sup inf |(t; —t;)/n| <nr/n|=1-0(an,).
t;€To(po) £;€T (D)

Because (t; —ns,t; + nr) contains only one estimate by the definition of 7\'(]3) that [£j,1 — ;| > A,
we have Pr(p = pg) = 1 — Op(max{exp(—n;6?),a,,}) by using the same arguments as those
leading to Theorem 3.3 in [5]. O



