
A Algorithms

Image generation, described by Algorithm 1, is exactly the same for SQAIR and AIR. Algorithms 2
and 3 describe inference in SQAIR. Note that DISC is equivalent to AIR if no latent variables are
present in the inputs.

If a function has multiple inputs and if not stated otherwise, all the inputs are concatenated and
linearly projected into some fixed-dimensional space, e. g., Lines 9 and 15 in Algorithm 2. Spatial
Transformer (ST, e. g., Line 7 in Algorithm 2) has no learnable parameters: it samples a uniform
grid of points from an image x, where the grid is transformed according to parameters zwhere. f1φ is

implemented as a perceptron with a single hidden layer. Statistics of qP and qD are a result of
applying a two-layer multilayer perceptron (MLP) to their respective conditioning sets. Different

distributions q do not share parameters of their MLPs. The glimpse encoder hglimpse
φ (Lines 8 and 12

in Algorithm 2 and Line 12 in Algorithm 3; they share parameters) and the image encoder hencφ

(Line 3 in Algorithm 3) are implemented as two-layer MLPs or convolutional neural networks (CNNs),
depending on the experiment (see Appendices D and E for details).

One of the important details of PROP is the proposal glimpse extracted in lines Lines 6 and 7 of
Algorithm 2. It has a dual purpose. Firstly, it acts as an information bottleneck in PROP, limiting
the flow of information from the current observation xt to the updated latent variables zt. Secondly,
even though the information is limited, it can still provide a high-resolution view of the object
corresponding to the currently updated latent variable, given that the location of the proposal glimpse
correctly predicts motion of this object. Initially, our implementation used encoding of the raw
observation (hencφ (xt), similarly to Line 3 in Algorithm 3) as an input to the relation-RNN (Line 9

in Algorithm 2). We have also experimented with other bottlenecks: (1) low resolution image as
an input to the image encoder and (2) a low-dimensional projection of the image encoding before
the relation-RNN. Both approaches have led to ID swaps, where the order of explaining objects
were sometimes swapped for different frames of the sequence (see Figure 10 in Appendix G for an
example). Using encoded proposal glimpse extracted from a predicted location has solved this issue.

To condition DISC on propagated latent variables (Line 4 in Algorithm 3), we encode the latter by
using a two-layer MLP similarly to Zaheer et al., 2017,
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Note that other encoding schemes are possible, though we have experimented only with this one.

Algorithm 1: Image Generation
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Algorithm 2: Inference for Propagation

Input :xt - image at the current time-step,
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hT
t−1 - hidden states from the previous time-step.
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8 êit = hglimpse
φ

(

ĝi
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Algorithm 3: Inference for Discovery

Input : xt - image at the current time-step,

z
Pt

t - propagated latent variables for the current time-step,
N - maximum number of inference steps for discovery.
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B Details for the Generative Model of SQAIR

In implementation, we upper bound the number of objects at any given time by N . In detail, the
discovery prior is given by

pD
(

Dt, z
Dt

t | zPt

t

)

= pD(Dt | Pt)
∏

i∈Dt

pD(zwhat,i
t )pD(zwhere,i

t )δ1(z
pres,i
t ), (7)

pD(Dt | Pt) = Categorical (Dt;N − Pt, pθ(Pt)) , (8)

where δx(·) is the delta function at x, Categorical(k;K, p) implies k ∈ {0, 1, . . . ,K} with proba-
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with fθ a scalar-valued function with range [0, 1] and pP (zwhat,i
t |ht−1), p

P (zwhere,i
t |ht−1) both

factorised Gaussians parameterised by some function of ht−1.

C Details for the Inference of SQAIR

The propagation inference network qPφ is given as below,
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with h
R,i
t the hidden state of the relation RNN (see Equation (14)). Its role is to capture information

from the observation xt as well as to model dependencies between different objects. The propagation
posterior for a single object can be expanded as follows,
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In the second line, we condition the object location z
where,i
t on its previous appearance and location

as well as its dynamics and relation with other objects. In the third line, current appearance z
what,i
t

is conditioned on the new location. Both z
where,i
t and z

what,i
t are modelled as factorised Gaussians.

Finally, presence depends on the new appearance and location as well as the presence of the same
object at the previous time-step. More specifically,
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where the second term is the delta distribution centered on the presence of this object at the previous
time-step. If it was not there, it cannot be propagated. Let j ∈ {0, . . . , i − 1} be the index of the
most recent present object before object i. Hidden states are updated as follows,
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where RT
φ and RR

φ are temporal and propagation RNNS, respectively. Note that in Eq. (14) the RNN

does not have direct access to the image xt, but rather accesses it by extracting an attention glimpse

at a proposal location, predicted from h
T,i
t−1 and z

where,i
t−1 . This might seem like a minor detail, but in

practice structuring computation this way prevents ID swaps from occurring, cf. Appendix G. For
computational details, please see Algorithms 2 and 3 in Appendix A.
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D Details of the moving-MNIST Experiments

D.1 SQAIR and AIR Training Details

All models are trained by maximising the evidence lower bound (ELBO) LIWAE (Equation (5)) with
the RMSPROP optimizer (Tieleman and Hinton, 2012) with momentum equal to 0.9. We use the
learning rate of 10−5 and decrease it to 1

3
·10−5 after 400k and to 10−6 after 1000k training iterations.

Models are trained for the maximum of 2 · 106 training iterations; we apply early stopping in case
of overfitting. SQAIR models are trained with a curriculum of sequences of increasing length: we
start with three time-steps, and increase by one time-step every 105 training steps until reaching the
maximum length of 10. When training AIR, we treated all time-steps of a sequence as independent,
and we trained it on all data (sequences of length ten, split into ten independent sequences of length
one).

D.2 SQAIR and AIR Model Architectures

All models use glimpse size of 20 × 20 and exponential linear unit (ELU) (Clevert et al., 2015)
non-linearities for all layers except RNNS and output layers. MLP-SQAIR uses fully-connected layers

for all networks. In both variants of SQAIR, the RD
φ and RR

φ RNNS are the vanilla RNNS. The

propagation prior RNN and the temporal RNN RT
φ use gated recurrent unit (GRU). AIR follows the

same architecture as MLP-SQAIR. All fully-connected layers and RNNS in MLP-SQAIR and AIR have
256 units; they have 2.9M and 1.7M trainable parameters, respectively.

CONV-SQAIR differs from the MLP version in that it uses CNNs for the glimpse and image encoders
and a subpixel-CNN (Shi et al., 2016) for the glimpse decoder. All fully connected layers and RNNS

have 128 units. The encoders share the CNN, which is followed by a single fully-connected layer
(different for each encoder). The CNN has four convolutional layers with [16, 32, 32, 64] features
maps and strides of [2, 2, 1, 1]. The glimpse decoder is composed of two fully-connected layers with
[256, 800] hidden units, whose outputs are reshaped into 32 features maps of size 5× 5, followed by
a subpixel-CNN with three layers of [32, 64, 64] feature maps and strides of [1, 2, 2]. All filters are of
size 3× 3. CONV-SQAIR has 2.6M trainable parameters.

We have experimented with different sizes of fully-connected layers and RNNS; we kept the size of
all layers the same and altered it in increments of 32 units. Values greater than 256 for MLP-SQAIR

and 128 for CONV-SQAIR resulted in overfitting. Models with as few as 32 units per layer (< 0.9M
trainable parameters for MLP-SQAIR) displayed the same qualitative behaviour as reported models,
but showed lower quantitative performance.

The output likelihood used in both SQAIR and AIR is Gaussian with a fixed standard deviation set to
0.3, as used by Eslami et al., 2016. We tried using a learnable scalar standard deviation, but decided
not to report it due to unsable behaviour in the early stages of training. Typically, standard deviation
would converge to a low value early in training, which leads to high penalties for reconstruction
mistakes. In this regime, it is beneficial for the model to perform no inference steps (zpres is always
equal to zero), and the model never learns. Fixing standard deviation for the first 10k iterations and
then learning it solves this issue, but it introduces unnecessary complexity into the training procedure.

D.3 VRNN Implementation and Training Details

Our VRNN implementation is based on the implementation4 of Filtering Variational Objectives (FIVO)
by Maddison et al., 2017. We use an LSTM with hidden size J for the deterministic backbone of the
VRNN. At time t, the LSTM receives ψx(xt−1) and ψz(zt−1) as input and outputs ot, where ψx is
a data feature extractor and ψz is a latent feature extractor. The output is mapped to the mean and
standard deviation of the Gaussian prior pθ(zt | xt−1) by an MLP. The likelihood pθ(xt | zt,xt−1) is

a Gaussian, with mean given by ψdec(ψz(zt), ot) and standard deviation fixed to be 0.3 as for SQAIR

and AIR. The inference network qφ(zt | zt−1,xt) is a Gaussian with mean and standard deviation
given by the output of separate MLPs with inputs [ot, ψ

x(xt)].

All aforementioned MLPs use the same number of hidden units H and the same number of hidden
layers L. The CONV-VRNN uses a CNN for ψx and a transposed CNN for ψdec. The MLP-VRNN

uses an MLP with H ′ hidden units and L′ hidden layers for both. ELU were used throughout as
activations. The latent dimensionality was fixed to 165, which is the upper bound of the number of

4https://github.com/tensorflow/models/tree/master/research/fivo
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Table 2: Number of trainable parameters for the reported models.

CONV-SQAIR MLP-SQAIR MLP-AIR CONV-VRNN MLP-VRNN

number of parameters 2.6M 2.9M 1.7M 2.6M 2.1M

latent dimensions that can be used per time-step in SQAIR or AIR. Training was done by optimising
the FIVO bound, which is known to be tighter than the IWAE bound for sequential latent variable
models (Maddison et al., 2017). We also verified that this was the case with our models on the
moving-MNIST data. We train with the RMSPROP optimizer with a learning rate of 10−5, momentum
equal to 0.9, and training until convergence of test FIVO bound.

For each of MLP-VRNN and CONV-VRNN, we experimented with three architectures:
small/medium/large. We used H=H ′=J=128/256/512 and L=L′=2/3/4 for MLP-VRNN, giving
number of parameters of 1.2M/2.1M/9.8M. For CONV-VRNN, the number of features maps we
used was [32, 32, 64, 64], [32, 32, 32, 64, 64, 64] and [32, 32, 32, 64, 64, 64, 64, 64, 64], with strides
of [2, 2, 2, 2], [1, 2, 1, 2, 1, 2] and [1, 2, 1, 2, 1, 2, 1, 1, 1], all with 3 × 3 filters, H=J=128/256/512
and L=1, giving number of parameters of 0.8M/2.6M/6.1M. The largest convolutional encoder
architecture is very similar to that in Gulrajani et al., 2016 applied to MNIST.

We have chosen the medium-sized models for comparison with SQAIR due to overfitting encountered
in larger models.

D.4 Addition Experiment

We perform the addition experiment by feeding latent representations extracted from the considered
models into a 19-way classifier, as there are 19 possible outputs (addition of two digits between 0
and 9). The classifier is implemented as an MLP with two hidden layers with 256 ELU units each
and a softmax output. For AIR and SQAIR, we use concatenated zwhat variables multiplied by the
corresponding zpres variables, while for VRNN we use the whole 165-dimensional latent vector. We
train the model over 107 training iterations with the ADAM optimizer (Kingma and Ba, 2015) with
default parameters (in tensorflow).

E Details of the DukeMTMC Experiments

We take videos from cameras one, two, five, six and eight from the DukeMTMC dataset (Ristani et al.,
2016). As pre-processing, we invert colors and subtract backgrounds using standard OpenCV tools
(Itseez, 2015), downsample to the resolution of 240× 175, convert to gray-scale and randomly crop
fragments of size 64× 64. Finally, we generate 3500 sequences of length five such that the maximum
number of objects present in any single frame is three and we split them into training and validation
sets with the ratio of 9 : 1.

We use the same training procedure as for the MNIST experiments. The only exception is the learning
curriculum, which goes from three to five time-steps, since this is the maximum length of the
sequences.

The reported model is similar to CONV-SQAIR. We set the glimpse size to 28× 12 to account for the
expected aspect ratio of pedestrians. Glimpse and image encoders share a CNN with [16, 32, 64, 64]
feature maps and strides of [2, 2, 2, 1] followed by a fully-connected layer (different for each encoder).
The glimpse decoder is implemented as a two-layer fully-connected network with 128 and 1344 units,
whose outputs are reshaped into 64 feature maps of size 7× 3, followed by a subpixel-CNN with two
layers of [64, 64] feature maps and strides of [2, 2]. All remaining fully-connected layers in the model
have 128 units. The total number of trainable parameters is 3.5M.

F Harder multi-MNIST Experiment

We created a version of the multi-MNIST dataset, where objects can appear or disappear at an arbitrary
point in time. It differs from the dataset described in Section 4.1, where all digits are present
throughout the sequence. All other dataset parameters are the same as in Section 4.1. Figure 9 shows
an example sequence and MLP-SQAIR reconstructions with marked glimpse locations. The model
has no trouble detecting new digits in the middle of the sequence and rediscovering a digit that was
previously present.
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Figure 9: SQAIR trained on a harder version of moving-MNIST. Input images (top) and SQAIR reconstructions
with marked glimpse locations (bottom)

G Failure cases of SQAIR

Figure 10: Examples of ID swaps in
a version of SQAIR without proposal
glimpse extraction in PROP (see Ap-
pendix A for details). Bounding box
colours correspond to object index
(or its identity). When PROP is al-
lowed the same access to the image
as DISC, then it often prefers to ig-
nore latent variables, which leads to
swapped inference order.

Figure 11: Examples of re-detections
in MLP-SQAIR. Bounding box
colours correspond to object iden-
tity, assigned to it upon discovery.
In some training runs, SQAIR con-
verges to a solution, where objects
are re-detected in the second frame,
and PROP starts tracking only in the
third frame (left). Occasionally, an
object can be re-detected after it has
severely overlapped with another one
(top right). Sometimes the model de-
cides to use only DISC and repeatedly
discovers all objects (bottom right).
These failure mode seem to be mutu-
ally exclusive – they come from dif-
ferent training runs.

Figure 12: Two failed reconstructions of SQAIR. Left: SQAIR re-detects objects in the second time-step. Instead
of 5 and 2, however, it reconstructs them as 6 and 7. Interestingly, reconstructions are consistent through the
rest of the sequence. Right: At the second time-step, overlapping 6 and 8 are explained as 6 and a small 0. The
model realizes its mistake in the third time-step, re-detects both digits and reconstructs them properly.
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H Reconstruction and Samples from the Moving-MNIST Dataset

H.1 Reconstructions

Figure 13: Sequences of input (first row) and SQAIR reconstructions with marked glimpse locations. Reconstruc-
tions are all temporally consistent.
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Figure 14: Sequences of input (first row) and CONV-VRNN reconstructions. They are not temporally consistent.
The reconstruction at time t = 1 is typically of lower quality and often different than the rest of the sequence.
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H.2 Samples

Figure 15: Samples from SQAIR. Both motion and appearance are temporally consistent. In the last sample, the
model introduces the third object despite the fact that it has seen only up to two objects in training.
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Figure 16: Samples from CONV-VRNN. They show lack of temporal consistency. Objects in the generated
frames change between consecutive time-steps and they do not resamble digits from the training set.
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H.3 Conditional Generation

Figure 17: Conditional generation from SQAIR, which sees only the first three frames in every case. Top is the
input sequence (and the remaining ground-truth), while bottom is reconstruction (first three time-steps) and then
generation.
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I Reconstruction and Samples from the DukeMTMC Dataset

Figure 18: Sequences of input (first row) and SQAIR reconstructions with marked glimpse locations. While not
perfect (spurious detections, missed objects), they are temporally consistent and similar in appearance to the
inputs.
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Figure 19: Samples with marked glimpse locations from SQAIR trained on the DukeMTMC dataset. Both
appearance and motion is spatially consistent. Generated objects are similar in appearance to pedestrians in the
training data. Samples are noisy, but so is the dataset.
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Figure 20: Conditional generation from SQAIR, which sees only the first four frames in every case. Top is the
input sequence (and the remaining ground-truth), while bottom is reconstruction (first four time-steps) and then
generation.
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