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A. Gradient visualization for the explicit attribute knowledge module

To further investigate the effectiveness of our explicit knowledge module, we use some gradient
visualization technique to visualize output features from a “deconvolution approach”. More specifi-
cally, we adopt the gradient visualization with guided back-propagation [1] on the final layer of the
Faster-RCNN and £/, of our explicit attribute knowledge module.

Figure [I] shows three representative examples of gradient visualization comparing Faster-RCNN
with our explicit attribute knowledge module. Left panels denote the original images and detection
results with a visualization threshold of 0.3, the middle panels denote the guided back-propagation
saliency graphs and right panels denote the colored guided back-propagation graphs.

From Figure [T} we can see the activation of our module on the middle and right panels is clearer
than the Faster-RCNN. For example, from the top comparison, we can find that more areas in the
water are activated. Thus more objects are located and recognized in our module. For the middle
comparison, the stripes of the zebra in our module are more obvious and we believe this attribute
feature of zebra is enhanced by our module. From the last comparison, the features of covered
green’s leaves are shared and enhanced thus we can see a clear sandwich in the saliency graphs.

B. Flow charts for Implicit Knowledge Module

Our Implicit Knowledge Module can be found in Figure Suppose q = {¢;} are the input features
with the information of some implicit knowledge. M Multiple graphs is used to incorporate different
knowledge. We consider a stacked Perceptron for the mth knowledge graph as:

& = 9 (qi,q;) = MLPq(q; — q5),

where 7, j is the index of proposed regions, m = 1, ..., M. Then each graph is added back a identities
matrix I and taken average over M :
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*Both authors contributed equally to this work.
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Figure 1: Gradient visualization with guided back-propagation from the output layer of Faster-
RCNN and our explicit attribute knowledge module.
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E = {é{ j} is then normalized by row and the final output of the module is: g’ = ELfW .
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Figure 2: Implicit Knowledge Module to learn those knowledge without explicit definitions or being
summarized by human. Taking the pairwise differences of the q as inputs, M different region-to-
region graphs are generated by stacked MLP. Then each graph is added back a identities matrix I and
taken average over M. The output evolved feature g’ is the enhanced feature via graph propagation.
Then the output is concatenated to the proposals feature f to produce final detection results.

C. Illustration of calculation Q4 and QF in the explicit knowledge module

Figure shows an illustration of calculate Q“* and Q¥ in the explicit knowledge module.

To construct the ground truth of attribute knowledge Q*, we first get frequent statistics for K
attributes and C categories through counting. After normalization, pairwise Jensen—Shannon (JS)
divergence between two categories can be measured based on the C' x K frequency distribution table
table:
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Figure 3: Illustration of how to generate the ground truth attribute class-to-class graph Q“ (top) and
relationship graph Q¥ (bottom) from the category frequent count.



Improvement AP over baseline of Top 150 infrequent categories
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Figure 4: Improvement of AP over baseline for top 150 infrequent categories.
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where K L(P;||P;) is the Kullback—Leibler divergence between two probability distribution P; and
P;. Thus a pairwise C' x C graph Q4 is constructed.

To construct ground truth class-to-class graph QF , we first create a C' x C squared matrix R°
with counts from the semantic information. Then, we add the transpose (R®)” back to R°. Then a
R‘z?. _ C .
J ~ where D;; = ijl R, .
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column-row normalization is performed to get QF: QE =

D. Improvement on infrequent categories

We plot the improvement of our HKRM over the baseline in Figure @ The bar chart shows the
improvement overall AP of the top 150 infrequent categories in VG1ggo dataset. Solid improvement
for our method for those categories can be found. The degraded categories only account for a very
small fraction of categories, which only happens 44 from categories with very few samples in VG,
biased and noisy annotations of attribute and relationship.

E. Visualization of different implicit graph

To prove that our implicit module can learn different spatial layouts, 3 random different images
are feed into trained implicit module and M = 10 learned spatial graphs are extracted. Figure
[2) visualizes these spatial graphs where black denotes 0 and red denotes 1. Note that our method
learned different kinds of graphs for spatial layout.

F. Additional Qualitative result comparisons

More qualitative result comparison on VGygp between Faster RCNN and our HKRM can be found
in Figure[6] From the comparisons, objects with occlusion, ambiguities and rare category can be
detected and localized well by our modules, while the Faster RCNN fail to detect them.
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Figure 5: Visualization of M = 10 implicit graphs from 3 different image.
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Figure 6: More qualitative results comparison on VGjggo between Faster RCNN and our HKRM.
Objects with occlusion, ambiguities and rare category can be detected by our modules.
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