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Abstract

Variational inference plays a vital role in learning graphical models, especially on
large-scale datasets. Much of its success depends on a proper choice of auxiliary
distribution class for posterior approximation. However, how to pursue an auxiliary
distribution class that achieves both good approximation ability and computation
efficiency remains a core challenge. In this paper, we proposed coupled variational
Bayes which exploits the primal-dual view of the ELBO with the variational distri-
bution class generated by an optimization procedure, which is termed optimization
embedding. This flexible function class couples the variational distribution with
the original parameters in the graphical models, allowing end-to-end learning of
the graphical models by back-propagation through the variational distribution.
Theoretically, we establish an interesting connection to gradient flow and demon-
strate the extreme flexibility of this implicit distribution family in the limit sense.
Empirically, we demonstrate the effectiveness of the proposed method on multiple
graphical models with either continuous or discrete latent variables comparing to
state-of-the-art methods.

1 Introduction

Probabilistic models with Bayesian inference provides a powerful tool for modeling data with
complex structure and capturing the uncertainty. The latent variables increase the flexibility of the
models, while making the inference intractable. Typically, one resorts to approximate inference such
as sampling [Neall 1993 [Neal et al.,[2011} Doucet et al., 2001]], or variational inference [Wainwright
and Jordan, 2003} [Minkal 2001]]. Sampling algorithms enjoys good asymptotic theoretical properties,
but they are also known to suffer from slow convergence especially for complex models. As a result,
variational inference algorithms become more and more attractive, especially driven by the recent
development on stochastic approximation methods [Hoffman et al.,[2013].

Variational inference methods approximate the intractable posterior distributions by a family of
distributions. Choosing a proper variational distribution family is one of the core problems in
variational inference. For example, the mean-field approximation exploits the distributions generated
by the independence assumption. Such assumption will reduce the computation complexity, however,
it often leads to the distribution family that is too restricted to recover the exact posterior [Turner and
Sahani, |2011]]. Mixture models and nonparametric family [Jaakkola and Jordon, |1999, |Gershman
et al.,[2012} |Dai et al., [2016a]| are the natural generalization. By introducing more components in
the parametrization, the distribution family become more and more flexible, and the approximation
error is reduced. However, the computational cost increases since it requires the evaluations of
the log-likelihood and/or its derivatives for each component in each update, which could limit
the scalability of variational inference. Inspired by the flexibility of deep neural networks, many
neural networks parametrized distributions [Kingma and Welling|, [2013} Mnih and Gregorl 2014
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and tractable flows [Rezende and Mohamed, 2015, Kingma et al.l 2016} [Tomczak and Welling}, 2016
Dinh et al.,[2016]] have been introduced as alternative families in variational inference framework.
The compromise in designing neural networks for computation tractability restricts the expressive
ability of the approximation distribution family. Finally, the introduction of the variational distribution
also brings extra separate parameters to be learned from data. As we know, the more flexible the
approximation model is, the more samples are required for fitting such a model. Therefore, besides
the approximation error and computational tractability, the sample efficiency should also be taken
into account when designing the variational distribution family.

In summary, most existing works suffer from a trade-off between approximation accuracy, computa-
tion efficiency, and sample complexity. It remains open to design a variational inference approach
that enjoys all three aspects. This paper provides a method towards such a solution, called coupled
variational Bayes (CVB). The proposed approach hinges upon two key components: i), the primal-
dual view of the ELBO; and ii), the optimization embedding technique for generating variational
distributions. The primal-dual view of ELBO avoids the computation of determinant of Jacobian
in flow-based model and makes the arbitrary flow parametrization applicable, therefore, reducing
the approximation error. The optimization embedding generates an interesting class of variational
distribution family, derived from the updating rule of an optimization procedure. This distribution
class reduces separate parameters by coupling the variational distribution with the original parameters
in the graphical models. Therefore, we can back-propagate the gradient w.r.t. the original parameters
through the variational distributions, which promotes the sample efficiency of the learning procedure.
We formally justify that in continuous-time case, such a technique implicitly provides a flexible
enough approximation distribution family from the gradient flow view, implying that the CVB al-
gorithm also guarantees zero approximation error in the limit sense. These advantages are further
demonstrated in our numerical experiments.

In the remainder of this paper, we first provide a preliminary introduction to problem settings described
in directed graphical models and the variational auto-encoder (VAE) framework in Section 2] We
present our coupled variational Bayes in Section |3} which leverages the optimization embedding in
the primal-dual view of ELBO to couple the variational distribution with original graphical models.
We build up the connections of the proposed method with the existing flows formulations in Section 4]
We demonstrate the empirical performances of the proposed algorithm in Section 5]

2 Background

Variational inference and learning Consider a probabilistic generative model, pg(z,z) =
po(7|2)p(z), where z € R? denotes the observed variables and z € R latent variables [, Given

the dataset D = [mi}ﬁvzl, one learns the parameter 6 in the model by maximizing the marginal
likelihood, i.e., log f pe(x, z)dz. However, the integral is intractable in general cases. Variational in-
ference [Jordan et al.l [1998|]] maximizes the evidence lower bound (ELBO) of the marginal likelihood
by introducing an approximate posterior distribution, i.e.,

log py(x) = log/pe(:v,Z)dz > E.gy (2| logpo(z, 2) — log gg(2|2)], (1

where ¢ denotes the parameters of the variational distributions. There are two major issues in solving
such optimization: i), the appropriate parametrization for the introduced variational distributions,
and ii), the efficient algorithms for updating the parameters {6, ¢}. By adopting different variational
distributions and exploiting different optimization algorithms, plenty of variants of variational
inference and learning algorithms have been proposed. Among the existing algorithms, optimizing
the objective with stochastic gradient descent [Hoffman et al., 2013} Titsias and Lazaro-gredilla, 2014,
Dai et al., 2016a]] becomes the dominated algorithm due to its scalability for large-scale datasets.
However, how to select the variational distribution family has not been answered satifiedly yet.

Reparametrized density |Kingma and Welling| [2013]], Mnih and Gregor| [2014] exploit the recog-
nition model or inference network to parametrize the variational distributions. A typical inference
network is a stochastic mapping from the observation x to the latent variable z with a set of global

parameters ¢, e.g., g4 (z|z) = N (z\u¢1 (x),diag (O’iz (z))) where [y, (z) and o4, () are ofter

>We mainly discuss continuous latent variables in main text. However, the proposed algorithm can be
extended to discrete latent variables easily as we show in Appendix@



parametrized by deep neural networks. Practically, such reparameterizations have the closed-form
of the entropy in general, and thus, the gradient computation and the optimization is relatively easy.
However, such parameterization cannot perfectly fit the posterior when it does not fall into the known
distirbution family, therefore, resulting extra approximation error to the true posterior.

Tractable flows-based model Parameterizing the variational distributions with flows is proposed

to mitigate the limitation of expressive ability of the variational distribution. Specifically, assuming

a series of invertible transformations as {7; : R” — R"},_, and 20 ~ ¢ (z|z), we have 2T =

TroTr_10...0T; (2°) following the distribution gr (z|z) = qo(2|z) []}_, |det 97t y‘l by the
change of variable formula. The flow-based parametrization generalizes the reparametrization tricks
for the known distributions. However, a general parametrization of the transformation may violate
the invertible requirement and result expensive or even infeasible calculation for the Jacobian and its
determinant. Therefore, several carefully designed simple parametric forms of 7 have been proposed
to compromise the invertible requirement and tractability of Jacobian [Rezende and Mohamed, 2015}
Kingma et al., [2016} [Tomczak and Welling, |2016} Dinh et al., 2016], at the expense of the flexibility
of the corresponding variational distribution families.

3 Coupled Variational Bayes

In this section, we first consider the variational inference from a primal-dual view, by which we
can avoid the computation of the determinant of the Jacobian. Then, we propose the optimization
embedding, which generates the variational distribution by the adopt optimization algorithm. It
automatically produces a nonparametric distribution class, which is flexible enough to approximate
the posterior. More importantly, the optimization embedding couples the implicit variational distribu-
tion with the original graphical models, making the training more efficient. We introduce the key
components below. Due to space limitation, we postpone the proof details of all the theorems in this
section to Appendix [A]

3.1 A Primal-Dual View of ELBO in Functional Space

As we introduced, the flow-based parametrization introduce more flexibility in representing the distri-
butions. However, the calculating of the determinant of the Jacobian introduces extra computational
cost and invertible requirement of the parametrization. In this section, we start from the primal-dual
view perspective of ELBO, which will provide us a mechanism to avoid such computation and
requirement, therefore, making the arbitrary flow parametrization applicable for inference.

As|Zellner| [1988)]],|Dai et al.|[2016a]] show, when the family of variational distribution includes all
valid distributions P, the ELBO matches the marginal likelihood, i.e.,

L(0):=E,wp [log/pe (z, 2) dz] :q(gl%)ép EynDEg(zl2) log po(z]2) — KL (q(z|z)||p (2))],
Lo(q)

where py (z,2) = pg (x]2) p (2) and E,~p [-] denotes the expectation over empirical distribution &
observations and ¢y (¢) stands for the objective for the variational distribution in density space P

under the probabilistic model with 6. Denote g; (2|x) := argmax,(,|,)ep lo (¢) = %. The

ultimate objective L(#) will solely depend on 6, i.e.,
L(a) = E?I:NDEqu; (z|x) [logPH (177 Z) - IOg q; (Z“T)] ) €)]
which can be updated by stochastic gradient descent.

This would then require routinely solving the subproblem max,cp €y (¢). Since the objective is
taking over the whole distribution space, it is intractable in general. Traditionally, one may introduce
special parametrization forms of distributions or flows for the sake of computational tractability, thus
limiting the approximation ability. In what follows, we introduce an equivalent primal-dual view of
the £g(q) in Theorem |1} which yields a promising opportunity to meet both approximation ability and
computational tractability.

Theorem 1 (Equivalent reformulation of L (8)) We can reformulate the L (0) equivalently as

min E,.p {Engs(.) { max logpg (z]zz,e) —logv (z,226) | + Evpey [V(2,2)]| =1, D
veH 2z, ERT

where H, = {h :RIX R — R+}, pe (+) denotes some simple distribution and the optimal

45 (2]%)

vy (x,2) = TR



The primal-dual formulation of L () is derived based on Fenchel-duality and interchangeability
principle [Dai et al.||2016b, |[Shapiro et al., |2014f]. With the primal-dual view of ELBO, we are able
to represent the distributional operation on g by local variables z, ¢, which provides an implicit
nonparametric transformation from (x,¢) € R? x = to zz,¢ € RP. Meanwhile, with the help of dual
function v (z, z), we can also avoid the computation of the determinant of Jacobian matrix of the
transformation, which is in general infeasible for arbitrary transformation.

3.2 Optimization Embedding

In this section, inspired by the local variable representation of the variational distribution in Theorem/[T]
we will construct a special variational distribution family, which integrates the variational distribution
q, i.e., transformation on local variables, and the original parameters of graphical models §. We
emphasize that optimization embedding is a general technique for representing the variational
distributions and can also be accompanied with the original ELBO, which is provided in Appendix [B]

As shown in Theorem we switch handling the distribution ¢(z|z) € P to each local variables.
Specifically, given 2z ~ D and § ~ p(§), with a fixed v € H .,
Zy ¢ = argmax logpg (v|zz¢) — logv (v, 24.¢) - )
" Zx.€ €Rp
For the complex graphical models, it is difficult to obtain the global optimum of (5). We can approach
the z . by applying mirror descent algorithm (MDA) [Beck and Teboulle, 2003, Nemirovski et al.,
2009]]. Specifically, denote the initialization as 227 ¢ in ¢-th iteration, we update the variables until
converges via the prox-mapping operator
Zi,g;e = argrﬂrgax <z717tg (x, zi}lg)> - D, <z§;§1;9, z) , (6)
z€R"
where g (x,z;_;e) = V., logpy (x|z§:_519> — V.logv (x,zi_gle) and Dy, (z1,22) = w(z2) —
[w(z1) + (Vw (z1) , 22 — z1)] is the Bregman divergence generated by a continuous and strongly
convex function w (+). In fact, we have the closed-form solution to the prox-mapping operator (6).

Theorem 2 (The closed-form of MDA) Recall the w(-) is strongly convex, denote f(-) = Vw (-),
then, f~1 (-) exists. Therefore, the solution to (6) is

o =1 (mo (v 2d) + 1 (2520)) ©)
Proper choices of the Bregman divergences could exploit the geometry of the feasible domain and
yield faster convergence. For example, if z lies in the general continuous space, one may use
w(z)=1]= g the D,, (-, -) will be Euclidean distance on R”, f () = z and f ! (2) = z, and if 2
lies in a simplex, one may use w (2) = >_;_, 2;log z;, the D,, (-, -) will be K L-divergence on the
p-dim simplex, f (z) = logz and f~! (2) = exp (2).

Assume we conduct the update (7)) T iterations, the mirror descent algorithm outputs Zig;e for
each pair of (x, ). Therefore, it naturally establishes another nonparametric function that maps
from R? x = to R" to approximate the sampler of the variational distribution point-wise, i.e.,
2 (2,€) = 2y 00 ¥ (2,€) € R? x Z. Since such an approximation function is generated by the
mirror descent algorithm, we name the corresponding function class as optimization embedding.
Most importantly, the optimization embedded function explicitly depends on 6, which makes the
end-to-end learning possible by back-propagation through the variational distribution. The detailed
advantage of using the optimization embedding for learning will be explained in Section [3.3]

Before that, we first justify the approximation ability of the optimization embedding by connecting
to the gradient flow for minimizing the K L-divergence with a special v (, z) in the limit case.For
simplicity, we mainly focus on the basic case when f(z) = z. For a fixed z, sample £ ~ p(£), the
particle 2} (z,€) is recursively constructed by transform T (2) = z + ng (z, z). We show that

Theorem 3 (Optimization embedding as gradient flow) For a continuous time t = nT and in-
finitesimal step size n — 0, the density of the particles 2t € R, denoted as q; (z|z), follows
nonlinear Fokker-Planck equation

O0q (z|x
WD) — 9 (a0 ) g0 (2 2)), ®
if gt (z,2) = Vlogpg (x|2) — V. logvy (z,2) with vy (z,2) = %. Such process defined

by (8) is a gradient flow of K L-divergence in the space of measures with 2-Wasserstein metric.



Algorithm 1 Coupled Variational Bayes (CVB)

1: Initialize 6, V and W (the parameters of v and z°) randomly, set length of steps 7" and mirror
function f.
Set 2°(x, &) = hw (z,€).
: foriteration k =1,..., K do
Sample mini-batch {x;}]" | from dataset D, {;}.~, from prior p(z), and {&;}.~, from p(¢).
for iterationt = 1,...,7T do
Compute 2§ (z, &) for each pair of {z;,&}!" ;.
Descend V with V-1 ™7 [y (24, 2;) — log vy (4, 2§ (4, &:))] -
end for
Ascend 6 by stochastic gradient (TT).
Ascend W by Vi = 3" [logpy (z|2] (%,€)) —logvy (z, 2] (x,8))].
end for

PRI NRLEN

1

From such a gradient flow view of optimization embedding, we can see that in limit case, the
optimization embedding, zQT (z,£), is flexible enough to approximate the posterior accurately.

3.3 Algorithm

Applying the optimization embedding into the ¢y (¢), we arrive the approximate surrogate optimiza-
tion to L (6) in (@) as
meaxf/ 0) := rg}{n E,p [E£~p(§) [logpg (x|zeT (sc,f)) —logv (:L’, 2 (amf))] + ELopey V(2 z)H .
veH 4
)

We can apply the stochastic gradient algorithm for (9) with the unbiased gradient estimator as follows.

Theorem 4 (Unbiased gradient estimator) Denote

vy (z,2) = arggin EondEomp(o) [V (2, 2)] — EuonEeope) [logv (z, 2 (2,€))] (10)
vEH ¢

we have the unbiased gradient estimator w.r.t. 0 as

oL () 9log py (z]2)

0z (x,€)
o0 ]EwwEw(s)[ 50 o

z=z}(x,£) o7}

dlogpg (72)
z=z}(x,£) 0z
92 (2, 5)}
z=z} (¢,£) 00 '

Olog v} (x,2)
0z

- EveoBenno | an

As we can see from the gradient estimator (IT), besides the effect on 6 from the log-likelihood as in
traditional VAE method with separate parameters of the variational distribution, which is the first
term in (TI)), the estimator also considers the effect through the variational distribution explicitly
in the second term. Such dependences through optimization embedding will potentially accelerate
the learning in terms of sample complexity. The computation of the second term resembles to the
back-propagation through time (BPTT) in learning the recurrent neural network, which can be easily
implemented in Tensorflow or PyTorch.

Practical extension With the functional primal-dual view of ELBO and the optimization em-
bedding, we are ready to derive the practical CVB algorithm. The CVB algorithm can be easily
incorporated with parametrization into each component to balance among approximation flexibility,
computational cost, and sample efficiency. The introduced parameters can be also trained by SGD
within the CVB framework. For example, in the optimization embedding, the algorithm requires the
initialization zg) ¢ Besides the random initialization, we can also introduce a parametrized function for
23, ¢ = hw (2,§), with W denoting the parameters. We can parametrize the v (z, ) by deep neural
networks with parameter V. To guarantee positive outputs of vy (x, ), we can use positive activation
functions, e.g., Gaussian, exponential, multi-quadratics, and so on, in the last layer. However, the
neural networks parameterization may induce non-convexity, and thus, loss the guarantee of the
global convergence in both (9) and (10), which leads to the bias in the estimator and potential
unstability in training. Empirically, to reduce the effect from neural network parametrization, we
update the parameters in v within the optimization embedding simultaneously, implicitly pushing
21" to follow the gradient flow. Taking into account of the introduced parameters, we have the CVB
algorithm illustrated in Algorithm I}



Moreover, we only discuss the optimization embedding through the basic mirror descent. In fact,
other optimization algorithm, e.g., the accelerated gradient descent, gradient descent with momentum,
and other adaptive gradient method (Adagrad, RMSprop), can also be used for constructing the
variational distributions. For the variants of CVB to parametrized continuous/discrete latent variables
model and hybrid model with Langevin dynamics, please refer to the Appendix [B]and Appendix [C]

4 Related Work

Connections to Langevin dynamics and Stein variational gradient descent As we show in The-
orem[3] the optimization embedding could be viewed as a discretization of a nonlinear Fokker-Plank
equation, which can be interpreted as a gradient flow of K L-divergence on 2-Wasserstein metric with
a special v (x, z). It resembles the gradient flow with Langevin dynamics [Otto, [2001]]. However,
Langevin dynamics is governed by a linear Fokker-Plank equation and results a stochastic update
rule, i.e., 2 = 271 + 9V logpy (w,2'7) +2,/n&" ! with 1 ~ N (0, 1), thus different from our

deterministic update given the initialization 2°.

Similar to the optimization embedding, Stein variational gradient descent (SVGD) also exploits a
nonlinear Fokker-Plank equation. However, these two gradient flows follow from different PDEs
and correspond to different metric spaces, thus also resulting different deterministic updates. Unlike
optimization embedding, the SVGD follows interactive updates between samples and requires to
keep a fixed number of samples in the whole process.

Connection to adversarial variational Bayes (AVB) The AVB [Mescheder et al.| 2017] can
also exploit arbitrary flow and avoid the calculation related to the determinant of Jacobian via
variational technique. Comparing to the primal-dual view of ELBO in CVB, AVB is derived based
on classification density ratio estimation for K L-divergence in ELBO [Goodfellow et al., 2014,
Sugiyama et al.|[2012]]. The most important difference is that CVB couples the adversarial component
with original models through optimization embedding, which is flexible enough to approximate the
true posterior and promote the learning sample efficiency.

Connection to deep unfolding The optimization embedding is closely related to deep unfolding
for inference and learning on graphical models. Existing schemes either unfold the point estimation
through optimization [Domkel 2012, [Hershey et al.,[2014} (Chen et al.,|2015} [Belanger et al., 2017,
Chien and Lee, 2018, or expectation-maximization [|Greff et al.,[2017]], or loopy BP [Stoyanov et al.,
2011]). In contrast, the we exploit optimization embedding through a flow pointwisely, so that it
handles the distribution in a nonparametric way and ensures enough flexibility for approximation.

S Experiments

In this section, we justify the benefits of the proposed coupled variational Bayes in terms of the
flexibility and the efficiency in sample complexity empirically. We also illustrate its generative ability.
The algorithms are executed on the machine with Intel Core 17-4790K CPU and GTX 1080Ti GPUs.
Additional experimental results, including the variants of CVB to discrete latent variable models and
more results on real-world datasets, can be found in Appendix [D] We The implementation is released
athttps://github.com/Hanjun-Dai/cvb,

5.1 Flexibility in Posterior Approximation

We first justify the flexibility of the opti-
mization embedding in CVB on the simple
synthetic dataset [Mescheder et al., 2017]].
It contains 4 data points, each representing
a one-hot 2 x 2 binary image with non-
zero entries at different positions. The
generative model is a multivariate inde-
pendent Bernoulli distribution with Gaus-
sian distribution as prior, i.e., pg (x|z) =
[1;_, mi (2)" and p(z) = N (0,1) with (1) vanilla VAE (2) CVB
z € R?, and 7; (2) is parametrized by 4-
layer fully-connected neural networks with
64 hidden units in each latent layer. For
CVB, we set f (z) = z in optimization embedding. We emphasize the optimization embedding is non-
parametric and generated automatically via mirror descent. The dual function v (z, z) is parametrized

Figure 1: Distribution of the latent variables for VAE
and CVB on synthetic dataset.
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Figure 2: Convergence speed comparison in terms of number epoch on MNIST. We report the
objective values of each method on held-out test set. The CVB achieves faster convergence speed
comparing the other competitors in both » = 8 and r» = 32 cases.

by a (4 4 2)-64-64-1 neural networks. The number of steps 7" in optimization embedding is set to be
5 in this case.

To demonstrate the flexibility of the optimization embedding, we compare the proposed CVB with
the vanilla VAE with a diagonal Gaussian posterior. A separate encoder in VAE is parametrized
by reversing the structure of the decoder. We visualize the obtained posterior by VAE and CVB
in Figure[T} While VAE generates a mixture of 4 Gaussians that is consistent with the parametrization
assumption, the proposed CVB divides the latent space with a complex distribution. Clearly, this
yields that CVB is more flexible in terms of approximation ability.

5.2 Efficiency in Sample Complexity

To verify the sample efficiency of CVB, we compare the performance of CVB on static binarize
MNIST dataset to the current state-of-the-art algorithms, including VAE with inverse autoregressive
flow (VAE+IAF) [Kingma et al.|[2016], adversarial variational Bayes (AVB) [Mescheder et al., 2017],
and the vanilla VAE with Gaussian assumption for the posterior distribution (VAE) [Kingma and
Welling, 2013]]. In this experiment, we use the Gaussian as the initialization in CVB. We follow
the same setting as AVB [Mescheder et al., 2017], where conditional generative model P(z|z) is a
Bernoulli that is parameterized with 3-layer convolutional neural networks (CNN), and the inference
model is also a CNN which is parametrized reversely as the generative model. Experiments for AVB
and VAE+IAF are conducted based on the codes provided by |[Mescheder et al. [2017E|, where the
default neural network structure are adopted. For all the methods, in each epoch, the batch size is set
to be 100 while the initial learning rate is set to 0.0001.

We illustrate the convergence speed  Table 1: The log-likelihood comparison between CVB and
of testing objective values in terms of  competitors on MNIST dataset. We can see that the proposed

number epoch in Figure[2} As we can  CVB achieves comparable performance on MNIST dataset.
see, in both cases with the dimension

of latent variable » = 8 and r = 32, Methods log p(z) ~

the proposed CVB, represented by the CVB (8-dim) 935

red curve, converges to a lower test CVB (32-dim) -840
objective value in a much faster speed. AVB + AC (8-d1f11) —89.6 [Mescheder et al|[2017]

We also compare the final approxi- AVB + AC (32-dim) —80.2 [Mescheder et al.}[2017]
mated log likelihood evaluated by Im- DRAW + VGP —79.9 [Tran et al|[2015]
portance Sampling, with the best base- VAE + IAF —79.1 [Kingma et al | 2016]

line results reported in the original pa- VAE + NF (T" = 80) —85.1 [Rezende and Mohamed, 2015]
pers in Table [T} In this case, the objec- convVAE + HVI (T = 16) —81.9 [Salimans et al} 2015]

tive function becomes too optimistic VAE + HVI (T = 16) —85.5 [Salimans etal) 2015]

about the actual likelihood. It could

be caused by the Monte Carlo estimation of the Fenchel-Dual of K L-divergence, which is noisy
comparing to the K L-divergence with closed-form in vanilla VAE. We can see that the proposed
CVB still performs comparable with other alternatives. These results justify the benefits of parameters
coupling through optimization embedding, especially in high dimension.

3The code can be found on https://github.com/LMescheder/AdversarialVariationalBayes,
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5.3 Generative Ability

We conduct experiments on real-world datasets, MNIST and CelebA, for demonstrating the generative
ability of the model learned by CVB. For additional generated images, please refer to Appendix [D]

MNIST We use the model that is specified in Section[5.2] The generated images and reconstructed
images by the variant of CVB in Appendix [B.T] learned model versus the training samples are
illustrated in the first row of Figure[3]

CelebA We use the variant of CVB in Appendix [B.4]to train a generative model with deep decon-
volution network on CelebA-dataset for a 64-dimension latent space with A/ (0, 1) prior [Mescheder
et al.Ll 20177]]. we use convolutional neural network architecture similar to DCGAN. We illustrate the
results in the second row of Figure 3]

We can see that the learned models can produces realistic images and reconstruct reasonably in both
MNIST and CelebA datasets.
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Figure 3: The training data, random generated images and the reconstructed images by the CVB
learned models on MNIST and CelebA dataset. In the reconstruction column, the odd rows correspond
to the test samples, and even rows correspond the reconstructed images.

6 Conclusion

We propose the coupled variational Bayes, which is designed based on the primal-dual view of ELBO
and the optimization embedding technique. The primal-dual view of ELBO allows to bypass the
difficulty with computing the Jacobian for non-invertible transformations and makes it possible to
apply arbitrary transformation for variational inference. The optimization embedding technique,
automatically generates a nonparametric variational distribution and couples it with the original
parameters in generative models, which plays a key role in reducing the sample complexity. Numerical
experiments demonstrates the superiority of CVB in approximate ability, computational efficiency,
and sample complexity.

We believe the optimization embedding is an important and general technique, which is the first of the
kind in literature and could be of independent interest. We provide several variants of the optimization
embedding in Appendix [B] It can also be applied to other models, e.g., generative adversarial model
and adversarial training, and deserves further investigation.
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