
A Omitted Proofs

Proof of Thm. 1. Noting that Yi = Yi(Ti) =
Pm

t=1 �Titµt(Xi) + ✏i, let us rewrite ⌧̂W as

⌧̂W = 1
n

Pm
t=1

Pn
i=1 Wi�Titµt(Xi) +

1
n

Pn
i=1 Wi✏i.

Recalling that SAPE(⇡) = 1
n

Pn
i=1

Pm
t=1 ⇡t(Xi)µt(Xi) immediately yields the first result. To

obtain the second result note that SAPE(⇡) is measurable with respect to X1:n, T1:n so that
CMSE(⌧̂W ,⇡) = (E[⌧̂W | X1:n, T1:n]� SAPE(⇡))2 +Var(⌧̂W | X1:n, T1:n).

By Asn. 1
E[�Tit✏i | X1:n, T1:n] = �TitE[✏i | Xi] = �Tit(E[Yi(t) | Xi]� µt(Xi)) = 0.

Therefore,
E[⌧̂W | X1:n, T1:n] =

1
n

Pm
t=1

Pn
i=1 Wi�Titµt(Xi),

giving the first term of CMSE(⌧̂W ,⇡). Moreover, since
E[✏i✏i0 | X1:n, T1:n] = �ii0�2

Ti
,

we have
Var(⌧̂W | X1:n, T1:n) = E[(⌧̂W � E[⌧̂W | X1:n, T1:n])2 | X1:n, T1:n]

= 1
n2E[(

Pn
i=1 Wi✏i)2 | X1:n, T1:n] =

1
n2

Pn
i=1 W

2
i �

2
Ti
,

giving the second term.

Proof of Cor. 2. This follows from Thm. 1 after noting that ⌧̂W,µ̂ = ⌧̂W � B(W,⇡; µ̂) and that
Bt(W,⇡; µ̂t)�Bt(W,⇡; µ̂t) = Bt(W,⇡;µt � µ̂t).

Proof of Lemma 1. For the first statement, we have
E2(W,⇡; k · kp,K1:m,�1:m ,⇤) = supkvkp1,kftkKt�tvt(

Pm
t=1 Bt(W,⇡t; ft))2 +

1
n2WT⇤W

= supkvkp1(
Pm

t=1 supkftkKt�tvt Bt(W,⇡t; ft))2 +
1
n2WT⇤W

= supkvkp1(
Pm

t=1 vt�tBt(W,⇡t; k · kKt))
2 + 1

n2WT⇤W

= (
Pm

t=1 �
q
tB

q
t (W,⇡t; k · kKt))

2/q + 1
n2WT⇤W.

For the second statement, let zti = (Wi�Tit � ⇡t(Xi)) and note that since
E[(µt(Xi)� ft(Xi))(µs(Xj)� fs(Xj)) | X1:n, T1:n] = �tsKt(Xi, Xj), we have

CMSE(⌧̂W,f ,⇡) = E[(
Pm

t=1 Bt(W,⇡t;µt � ft))2 | X1:n, T1:n] +
1
n2WT⌃W

=
Pm

t,s=1

Pm
i,j=1 ztizsjE[(µt(Xi)� ft(Xi))(µs(Xj)� fs(Xj)) | X1:n, T1:n]

+ 1
n2WT⌃W

=
Pm

t=1

Pm
i,j=1 ztiztjKt(Xi, Xj) +

1
n2WT⌃W.

Proof of Thm. 3. Let Z = 1
n

Pn
i=1 ⇡Ti(Xi)/'Ti(Xi) and W̃i(⇡) =

1
Z⇡Ti(Xi)/'Ti(Xi) and note

that W̃ 2 W . Moreover, note that

Bt(W̃ ,⇡t; k · kKt) =
1
Z k 1

n

Pn
i=1(

�Tit

't(Xi)
� Z)⇡t(Xi)EXikKt

 1
Z k 1

n

Pn
i=1(

�Tit

't(Xi)
� 1)⇡t(Xi)EXikKt +

1
Z k 1

n

Pn
i=1(Z � 1)⇡t(Xi)EXikKt

 1
Z k 1

n

Pn
i=1(

�Tit

't(Xi)
� 1)⇡t(Xi)EXikKt +

|Z�1|
Z

1
n

Pn
i=1

p
Kt(Xi, Xi).

Let ⇠i = (
�Tit

't(Xi)
�1)⇡t(Xi)EXi and note that E[⇠i] = E[(E[�Tit/'t(Xi) | Xi]� 1)⇡t(Xi)EXi ] =

0 and that ⇠1, ⇠2, . . . are iid. Therefore, letting ⇠01, ⇠
0
2, . . . be iid replicates of ⇠1, ⇠2, . . . (ghost sample)

and letting ⇢i be iid Rademacher random variables independent of all else, we have
E[k 1

n

Pn
i=1 ⇠ik2Kt

] = 1
n2E[k

Pn
i=1(E[⇠0i]� ⇠i)k2Kt

]  1
n2E[k

Pn
i=1(⇠

0
i � ⇠i)k2Kt

]

= 1
n2E[k

Pn
i=1 ⇢i(⇠

0
i � ⇠i)k2Kt

]  4
n2E[k

Pn
i=1 ⇢i⇠ik2Kt

]
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Note that k⇠1 � ⇠2k2Kt
+ k⇠1 + ⇠2k2Kt

= 2k⇠1k2Kt
+ 2k⇠2k2Kt

+ 2 h⇠1, ⇠2i � 2 h⇠1, ⇠2i = 2k⇠1k2Kt
+

2k⇠2k2Kt
. By induction,

P
⇢i2{�1,+1}n k

Pn
i=1 ⇢i⇠ik2Kt

= 2n
Pn

i=1 k⇠ik2Kt
. Since

E[k⇠ik2Kt
]  2E[ ⇡

2
T (X)

'2
T (X)

Kt(X,X)] + 2E[⇡2
t (X)Kt(X,X)]  4E[ ⇡

2
T (X)

'2
T (X)

Kt(X,X)] < 1,

we get E[k 1
n

Pn
i=1 ⇠ik2Kt

] = O(1/n) and therefore k 1
n

Pn
i=1 ⇠ik2Kt

= Op(1/n) by Markov’s inequal-
ity. Moreover, as E[⇡T (X)/'T (X)] = E[

Pm
t=1 E[�Tt | X]⇡t(X)/'t(X)] = E[

Pm
t=1 ⇡t(X)] = 1

and E[⇡2
T (X)/'T (X)2] < 1, by Chebyshev’s inequality, E[(Z � 1)2] = O(1/n) so that

(Z � 1)2 = Op(1/n) by Markov’s inequality. Similarly, as E[
p

Kt(X,X)] < 1, we
have 1

n

Pn
i=1

p
Kt(Xi, Xi) !p E[

p
Kt(X,X)]. Putting it all together, by Slutsky’s theorem,

B2
t (W̃ ,⇡t; k · kKt) = Op(1/n). Moreover, kW̃k22 = 1

Z2

Pn
i=1 ⇡

2
Ti
(Xi)/'2

Ti
(Xi) = Op(n). There-

fore, since ⇤n � I and since W ⇤
n is optimal and W̃ 2 W , we have

E2(W ⇤
n ,⇡; k · kp,K1:m,�n,1:m ,⇤n)  E2(W̃ ,⇡; k·kp,K1:m,�n,1:m

,⇤n)

 �2
⇣Pm

t=1 B
q
t (W̃ ,⇡t; k · kKt)

⌘2/q
+ 

n2 kW̃k22 = Op(1/n)

Therefore,

B2
t (W

⇤
n ,⇡t; k · kKt)  ��2E2(W ⇤

n ,⇡; k · k1:m, �n,1:m,⇤n) = Op(1/n),
1
n2 kW ⇤

nk22  1
n2W ⇤

n
T⇤nW ⇤

n  �1E2(W ⇤
n ,⇡; k · k1:m, �n,1:m,⇤n) = Op(1/n).

Now consider case (a). By assumption k⌃k2  �2 < 1 for all n. Then we have

CMSE(⌧̂W⇤
n
,⇡)  m

Pm
t=1 kµtk2Kt

B2
t (W

⇤
n ,⇡t; k · kKt) +

�2

n2 kW ⇤
nk22 = Op(1/n).

Letting Dn =
p
n
��⌧̂W⇤

n
� SAPE(⇡)

�� and G be the sigma algebra of X1, T1, X2, T2, . . . , Jensen’s
inequality yields E[Dn | G] = Op(1) from the above. We proceed to show that Dn = Op(1),
yielding the first result. Let ⌫ > 0 be given. Then E[Dn | G] = Op(1) says that there exist N,M
such that P(E[Dn | G] > M)  ⌫/2 for all n � N . Let M0 = max{M, 2/⌫} and observe that, for
all n � N ,

P(Dn > M2
0 ) = P(Dn > M2

0 ,E[Dn | G] > M0) + P(Dn > M2
0 ,E[Dn | G]  M0)

= P(Dn > M2
0 ,E[Dn | G] > M0) + E[P(Dn > M2

0 | G)I [E[Dn | G]  M0]]

 ⌫/2 + E[E[Dn|G]
M2

0
I [E[Dn | G]  M0]]  ⌫/2 + 1/M0  ⌫

Now consider case (b). We first show that Bt(W ⇤
n ,⇡t;µt) = op(1). Fix t 2 [m] and ⌘ >

0, ⌫ > 0. Because Bt(W ⇤
n ,⇡t; k · kKt) = Op(n�1/2) = op(n�1/4) and kW ⇤

nk2 = Op(
p
n),

there are M,N such that for all n � N both P(n1/4Bt(W ⇤
n ,⇡t; k · kKt) >

p
⌘)  ⌫/3

and P(n�1/2kW ⇤
nk2 > M

p
⌘)  ⌫/3. Next, fix ⌧ =

p
⌫⌘/3/M . By existence of sec-

ond moment, there is g00 =
P`

i=1 �iISi with (E
⇥
(µt(X)� g00(X))2

⇤
)1/2  ⌧/2 where IS(x)

are the simple functions IS(x) = I [x 2 S] for S measurable. Let i = 1, . . . , `. Let
Ui � Si open and Ei ✓ Si compact be such that P (X 2 Ui\Ei)  ⌧2/(4` |�i|)2. By
Urysohn’s lemma [36], there exists a continuous function hi with support Ci ✓ Ui com-
pact, 0  hi  1, and hi(x) = 1 8x 2 Ei. Therefore, (E

⇥
(ISi(X)� hi)2

⇤
)1/2 =

(E
⇥
(ISi(X)� hi)2I [X 2 Ui\Ei]

⇤
)1/2  (P (X 2 Ui\Ei))1/2  ⌧/(4` |�i|). By C0-

universality, 9gi =
Pm

j=1 ↵jKt(xj , ·) such that supx2X |hi(x)� gi(x)| < ⌧/(4` |�i|). Because
E
⇥
(hi � gi)2

⇤
 supx2X |hi(x)� gi(x)|2, we have

p
E [(IS0(X)� gi)2]  ⌧/(2` |�i|). Let

µ̃t =
P`

i=1 �igi. Then (E
⇥
(µt(X)� µ̃t(X))2

⇤
)1/2  ⌧/2 +

P`
i=1 |�i| ⌧/(2` |�i|) = ⌧ and

kµ̃tkKt
< 1. Let �n =

q
1
n

Pn
i=1(µt(Xi)� µ̃t(Xi))2 so that E�2n  ⌧2. Now, because we have

Bt(W ⇤
n ,⇡t;µt) = Bt(W ⇤

n ,⇡t; µ̃t) +Bt(W ⇤
n ,⇡t;µt � µ̃t)

 kµ̃tkKtBt(W ⇤
n ,⇡t; k · kKt) +

q
1
n

Pn
i=1(W

⇤
ni�Tit � ⇡t(Xi))2�n

 kµ̃tkKtBt(W ⇤
n ,⇡t; k · kKt) + (n�1/2kW ⇤

nk2 + 1)�n,
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letting N 0 = max{N, 2dkµ̃tk4Kt
/⌘2e}, we must then have, for all n � N 0, by union bound and by

Markov’s inequality, that

P(Bt(W ⇤
n ,⇡t;µt) > ⌘) P(n�1/4kµ̃tkKt >

p
⌘) + P(n1/4Bt(W ⇤

n ,⇡t; k · kKt) >
p
⌘)

+ P(n�1/2kW ⇤
nk2 > M

p
⌘)  ⌫/3 + P(�n >

p
⌘/M)

0 + ⌫/3 + ⌫/3 + ⌫/3 = ⌫.

Following the same logic as in case (a), we get CMSE(⌧̂W⇤
n
,⇡) = op(1), so letting Dn =��⌧̂W⇤

n
� SAPE(⇡)

�� and G be as before, we have E[Dn | G] = op(1) by Jensen’s inequality. Let
⌘ > 0, ⌫ > 0 be given. Let N be such that P(E[Dn | G] > ⌫⌘/2)  ⌫/2. Then for all n � N :

P(Dn > ⌘) = P(Dn > ⌘,E[Dn | G] > ⌘⌫/2) + P(Dn > ⌘,E[Dn | G]  ⌘⌫/2)

= P(Dn > ⌘,E[Dn | G] > ⌘⌫/2) + E[P(Dn > ⌘ | G)I [E[Dn | G]  ⌘⌫/2]]

 ⌫/2 + E[E[Dn|G]
⌘ I [E[Dn | G]  ⌘⌫/2]]  ⌫/2 + ⌫/2  ⌫,

showing that Dn = op(1) and completing the proof.

Proof of Cor. 4. Case (a) follows directly from the proof of Thm. 3 noting that the bias term now
disappears at rate op(1)Op(1/

p
n) = op(1/

p
n). For Case (b), observe that by Cauchy-Schwartz and

Slutsky’s theorem |Bt(W,⇡t;µ� µ̂n)|  (n�1/2kW ⇤
nk2 + 1)( 1n

Pn
i=1(µ̂n(Xi) � µ(Xi))2)1/2 =

Op(rn). For cases in cases (c) and (d) we treat Bt(W,⇡t;µ� µ̂n) as in the proof of Thm. 3 noting
that kµt� µ̂ntkKt  kµtkKt +kµ̂ntkKt and that, in case (c), kµ̂ntkKt = Op(1) implies by Markov’s
inequality that kµ̂ntkKt = Op(1). The rest follows as in the proof of Thm. 3.

Proof of Thm. 5. First note that because our problem is a quadratic program, the KKT conditions
are necessary and sufficient and we can always choose an optimizer where strict complementary
slackness holds.

Ignore previous definitions of some symbols, consider any linearly constrained parametric nonlinear
optimization problem in standard form: z(x) 2 argminy�0,By=b f(x, y) where x 2 Rn, y 2 Rm,
and b 2 R`. KKT says there exist µ(x) 2 Rm,�(x) 2 Rl such that (a) ryf(x, z(x)) = µ(x) +
BT�(x), (b) Bz(x) = b, (c) z(x) � 0, (d) µ(x) � 0, and (e) µ(x) � z(x) = 0, where � is the
Hadamard product. Suppose strict complementary slackness holds in that (f) µ(x) + z(x) > 0. By
(a), we have that

rxyf(x, z(x)) +ryyf(x, z(x))rxz(x) = rxµ(x) +BTrx�(x),

and hence, letting H = ryyf(x, z(x)) and J = rxyf(x, z(x)),

rz(x) = H�1(rxµ(x) +BTr�(x)� J).

By (b), we have that Brz(x) = 0 so that

BH�1rxµ(x) +BH�1BTr� = BH�1J,

and hence if the columns of F form a basis for the null space of B and H̃ = �F (FTHF )�1FT ,

rxz(x) = (H�1BT (AH�1AT )�1AH�1 �H�1)(J �rxµ(x)) = H̃(J �rxµ(x)).

By (e), we have that
zi(x)rxµi(x) + µi(x)rxzi(x) = 0,

and then by (f), letting A = diag(I [z1(x) > 0, . . . , zm(x) > 0]) we have

Arxµ(x) = 0, (I �A)rxz(x) = 0,

and therefore
Arxµ(x)� (I �A)H̃(J �rxµ(x)) = 0

yielding finally that

rxz(x) = H̃(I � (A+ (I �A)H̃)�1(I �A)H̃)J.

The rest of the theorem is then begotten by applying this result and using chain rule.
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Proof of Thm. 6. Let Z(⇡) = 1
n

Pn
i=1 ⇡Ti(Xi)/'Ti(Xi) and W̃i(⇡) =

1
Z(⇡)⇡Ti(Xi)/'Ti(Xi) and

note that W̃ 2 W . Moreover, note that

sup⇡2⇧Bt(W̃ ,⇡t; k · kKt) = sup⇡2⇧,kftkKt1
1

Z(⇡)
1
n

Pn
i=1(

�Tit

't(Xi)
� Z(⇡))⇡t(Xi)ft(Xi)

 (sup
⇡2⇧

Z(⇡)�1) sup
⇡t2⇧t,kftkKt1

1
n

Pn
i=1(

�Tit

't(Xi)
� 1)⇡t(Xi)ft(Xi) + � sup

⇡2⇧

��1� Z(⇡)�1
�� .

We first treat the random variable

⌅t(X1:n, T1:n) = sup⇡t2⇧t,kftkKt1
1
n

Pn
i=1(

�Tit

't(Xi)
� 1)⇡t(Xi)ft(Xi).

Fix x1:n, t1:n, x0
1:n, t

0
1:n such that x0

i = xi, t0i = ti 8i 6= i0 and note that

⌅t(x1:n, t1:n)� ⌅t(x0
1:n, t

0
1:n)  sup⇡t2⇧t,kftkKt1

�
1
n

Pn
i=1(

�tit
't(xi)

� 1)⇡t(xi)ft(xi)

� 1
n

Pn
i=1(

�t0it
't(x0

i)
� 1)⇡t(x0

i)ft(x
0
i)
�

= 1
n sup⇡t2⇧t,kftkKt1((

�ti0 t
't(xi0 )

� 1)⇡t(xi0)ft(xi0)� (
�t0

i0 t

't(x0
i0 )

� 1)⇡t(x0
i0)ft(x

0
i0))  2

n↵�.

By McDiarmid’s inequality, P (⌅t(X1:n, T1:n) � E[⌅t(X1:n, T1:n)] + ⌘)  e�n⌘2↵�2��2/2. Let
⇠i(⇡t, ft) = (

�Tit

't(Xi)
� 1)⇡t(Xi)ft(Xi) and note that for all ⇡t, ft we have E[⇠i(⇡t, ft)] =

E[(E[�Tit/'t(Xi) | Xi]� 1)⇡t(Xi)ft(Xi)] = 0 and that ⇠1(·, ·), ⇠2(·, ·), . . . are iid. Therefore,
letting ⇠01(·, ·), ⇠02(·, ·), . . . be iid replicates of ⇠1(·, ·), ⇠2(·, ·), . . . (ghost sample) and letting ⇢i be iid
Rademacher random variables independent of all else, we have

E[⌅t(X1:n, T1:n)] = E[sup⇡t2⇧t,kftkKt1
1
n

Pn
i=1(E[⇠0i(⇡t, ft)]� ⇠i(⇡t, ft))]

 E[sup⇡t2⇧t,kftkKt1
1
n

Pn
i=1(⇠

0
i(⇡t, ft)� ⇠i(⇡t, ft))]

= E[sup⇡t2⇧t,kftkKt1
1
n

Pn
i=1 ⇢i(⇠

0
i(⇡t, ft)� ⇠i(⇡t, ft))]

 2E[sup⇡t2⇧t,kftkKt1
1
n

Pn
i=1 ⇢i⇠i(⇡t, ft)].

Note that by bounded kernel we have kKt(x, ·)kKt =
p
Kt(x, x)  � and therefore

supkftkKt1,x2X ft(x) = supkftkKt1,x2X hft,Kt(x, ·)i  supkftkKt1,kgkKt� hft, gi = �.

As before, k⇠1 � ⇠2k2Kt
+ k⇠1 + ⇠2k2Kt

= 2k⇠1k2Kt
+ 2k⇠2k2Kt

+ 2 h⇠1, ⇠2i � 2 h⇠1, ⇠2i = 2k⇠1k2Kt
+

2k⇠2k2Kt
implies by induction that

P
⇢i2{�1,+1}n k

Pn
i=1 ⇢i⇠ik2Kt

= 2n
Pn

i=1 k⇠ik2Kt
. Hence,

E[k 1
n

Pn
i=1 ⇢iEXikKt

] (E[k 1
n

Pn
i=1 ⇢iEXik2Kt

])1/2 = ( 1
n2

Pn
i=1 E[kEXik2Kt

])1/2  �/
p
n.

Note that | �Tit

't(Xi)
� 1|  ↵, that x2 is 2b-Lipschitz on [�b, b], and that ab = 1

2 ((a+ b)2 � a2 � b2).
Therefore, by the Rademacher comparison lemma [28, Thm. 4.12], we have

E[⌅t(X1:n, T1:n)] 2↵E[sup⇡t2⇧t,kftkKt1
1
n

Pn
i=1 ⇢i⇡t(Xi)ft(Xi)]

↵E[sup⇡t2⇧t,kftkKt1
1
n

Pn
i=1 ⇢i(⇡t(Xi) + ft(Xi))2]

+ ↵E[sup⇡t2⇧t

1
n

Pn
i=1 ⇢i⇡t(Xi)2] + ↵E[supkftkKt1

1
n

Pn
i=1 ⇢ift(Xi)2]

4�↵E[sup⇡t2⇧t,kftkKt1
1
n

Pn
i=1 ⇢i(⇡t(Xi) + ft(Xi))]

+ 2↵E[sup⇡t2⇧t

1
n

Pn
i=1 ⇢i⇡t(Xi)] + 2�↵E[supkftkKt1

1
n

Pn
i=1 ⇢ift(Xi)]

6�↵(Rn(⇧t) + �/
p
n).

Next, let !ti(⇡t) = (�Tit/'Tit � 1)⇡t(Xi) and ⌦t(X1:n, T1:n) = sup⇡t2⇧t

1
n

Pn
i=1 !ti(⇡t). Note

that sup⇡2⇧(Z(⇡) � 1) 
Pm

t=1 ⌦t(X1:n, T1:n). Fix x1:n, t1:n, x0
1:n, t

0
1:n such that x0

i = xi, t0i =
ti 8i 6= i0 and note that

⌦t(x1:n, t1:n)� ⌦t(x0
1:n, t

0
1:n)  1

n sup⇡t2⇧t
((

�ti0 t
't(xi0 )

� 1)⇡t(xi0)� (
�t0

i0 t

't(x0
i0 )

� 1)⇡t(x0
i0))  2

n↵
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By McDiarmid’s inequality, P (⌦t(X1:n, T1:n) � E[⌦t(X1:n, T1:n)] + ⌘)  e�n⌘2↵�2/2. Note that
E[!ti(⇡t)] = 0 for all ⇡t and that !t1(·),!t2(·), . . . are iid. Using the same argument as before,
letting ⇢i be iid Rademacher random variables independent of all else, we have

E[⌦t(X1:n, T1:n)]  2E[sup⇡t2⇧t

1
n

Pn
i=1 ⇢i!ti(⇡t)]  2↵Rn(⇧t).

With a symmetric argument, letting � = 3m⌫/(3m+ 2), with probability at least 1� 2�/3, we have
sup⇡2⇧ |1� Z(⇡)|  2↵Rn(⇧) + ↵

p
2 log(3m/�)/n  2↵Rn(⇧) + ↵

p
2 log(4m/⌫)/n  1/2.

Since kW̃k2 
p
n↵/Z(⇡), we get that, with probability at least 1��, both sup⇡2⇧ kW̃k2  2↵

p
n

and for all t 2 [m]

sup⇡2⇧ Bt(W̃ ,⇡t; k · kKt) ↵�(12Rn(⇧t) + 2Rn(⇧) + 12�/
p
n+ 3

p
2 log(3m/�)/n).

Therefore, with probability at least 1� �, using twice that `1 is the biggest p-norm,

E = sup⇡2⇧ E(W ⇤
n ,⇡; k · kp,K1:m,�n,1:m ,⇤n)  sup⇡2⇧ E(W̃ ,⇡; k·kp,K1:m,�n,1:m

,⇤n)


Pm

t=1 �t sup⇡2⇧ Bt(W̃ ,⇡t; k · kKt) +

n sup⇡2⇧ kW̃k2

 8↵��mRn(⇧) +
2↵+12↵�2�m+3↵��m

p
2 log(3m/�)p

n
.

Consider case (a). Note that sup⇡2⇧

Pm
t=1 |Bt(W ⇤

n ,⇡t;µt)|  kµk E and sup⇡2⇧ kW ⇤
nk2  �1E .

Since E[
Pn

i=1 Wi✏i | X1:n, T1:n] = 0, ✏i 2 [�B,B] and Wi✏0i � Wi✏00i  2BWi for ✏0i, ✏
00
i 2

[�B,B], by McDiarmid’s inequality (conditional on X1:n, T1:n), we have that with probability at
least 1� �0, |

Pn
i=1 W

⇤
ni✏i|  kW ⇤

nk2B
p
2 log(2/�). Therefore, letting �0 = 2⌫/(3m+ 2) so that

3m/� = 2/�0 = (3m+ 2)/⌫  4m/⌫, with probability at least 1� ⌫, we have

sup⇡2⇧ |⌧W⇤
n
� SAPE(⇡)|  8↵��m(kµk+

p
2 log(4m/⌫)�1B)Rn(⇧)

+
2↵kµk+12↵�2�mkµk+(2↵�1B+12↵�2�m�1B+3↵��mkµk)

p
2 log(4m/⌫)+6↵��m�1Blog(4m/⌫)p

n
.

This gives the first result in case (a). The second is given by noting that, by McDiarmid’s inequality,
with probability at least 1� ⌫/(4m), Rn(⇧t)  bRn(⇧t) + 4

p
2 log(4m/⌫). Case (b) is given by

following a similar argument as in the proof of Thm. 3(b).

Proof of Cor. 7. These results follow directly from the proof of Thm. 6, the convergence in partic-
ular of E2(W ⇤(⇡),⇡; k · k,⇤), the decomposition of the DR estimator in Thm. 1, and a standard
Rademacher complexity argument concentrating SAPE(⇡) uniformly around PAPE(⇡).

B IPW and DR weight SVM details

To reduce training a deterministic linear policy using IPW evaluation to weighted SVM classification,
we add multiples of

Pn
i=1 ⇡Ti(Xi)/�̂Ti(Xi) (1 in expectation) and note that

1
B (⌧̂ IPW(⇡)� C

Pn
i=1

⇡Ti (Xi)

�̂Ti (Xi)
�
Pn

i=1
Yi�C

�̂Ti (Xi)
) =

Pn
i=1

C�Yi

B�̂Ti (Xi)
(1� ⇡Ti(Xi))

=
Pn

i=1
C�Yi

B�̂Ti (Xi)
I[Ti 6= T̃⇡(Xi)].

Choosing C sufficiently large so that all coefficients are nonnegative and choosing B so that all
coefficients are in [0, 1], we replace the indicators I[Ti 6= T̃⇡(Xi)] with their convex envelope hinges
to come up with a weighted version of Crammer and Singer [12]’s multiclass SVM.

For the DR version, we replace ⇡t(Xi) with I[t = T̃⇡(Xi)] and we do the above with but using ✏̂i and
also add multiples of ⌧̂ direct(1(·)) =

Pn
i=1

Pm
t=1 µt(Xi) to make all indicators be 0-1 loss and have

nonnegative coefficients. Replacing indicators with hinge functions, we get a weighted multiclass
SVM with different weights for each observation and each error type.
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