
Supplementary Materials for
Mirrored Langevin Dynamics

Ya-Ping Hsieh Ali Kavis Paul Rolland Volkan Cevher

Laboratory for Information and Inference Systems (LIONS),
EPFL, Lausanne, Switzerland

{ya-ping.hsieh, ali.kavis, paul.rolland, volkan.cevher}@epfl.ch

A Proof of Theorem 2

We first focus on the convergence for total variation and relative entropy, since they are in
fact quite trivial. The proof for the 2-Wasserstein distance requires a bit more work.

A.1 Total Variation and Relative Entropy

Since h is strictly convex, ∇h is one-to-one, and hence

dTV(∇h#µ1,∇h#µ2) =
1

2
sup
E
|∇h#µ1(E)−∇h#µ2(E)|

=
1

2
sup
E

∣∣µ1

(
∇h−1(E)

)
− µ2

(
∇h−1(E)

)∣∣
= dTV(µ1, µ2).

On the other hand, it is well-known that applying a one-to-one mapping to distributions leaves
the relative entropy intact. Alternatively, we may also simply write (letting νi = ∇h#µi):

D(ν1‖ν2) =

∫
log

dν1
dν2

dν1

=

∫
log

(
dν1
dν2
◦ ∇h

)
dµ1 by (A.5) below

=

∫
log

dµ1

dµ2

dµ1 by (2.1)

= D(µ1‖µ2)

The “in particular” part follows from noticing that yt ∼ ∇h#xt and Y∞ ∼ ∇h#X∞.

A.2 2-Wasserstein Distance

Now, let h be ρ-strongly convex. The most important ingredient of the proof is Lemma 1
below, which is conceptually clean. Unfortunately, for the sake of rigor, we must deal with
certain intricate regularity issues in the Optimal Transport theory. If the reader wishes,
she/he can simply assume that the quantities (A.1) and (A.2) below are well-defined, which
is always satisfied by any practical mirror map, and skip all the technical part about the
well-definedness proof.

For the moment, assume h ∈ C5; the general case is given at the end. Every convex h
generates a Bregman divergence via Bh(x,x′) := h(x) − h(x′) − 〈∇h(x′),x − x′〉. The
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following key lemma allows us to relate guarantees in W2 between xt’s and yt’s. It can be
seen as a generalization of the classical duality relation (A.4) in the space of probability
measures.

Lemma 1 (Duality of Wasserstein Distances). Let µ1, µ2 be probability measures satisfying
Assumptions 2 and 3. If h is ρ-strongly convex and C5, then the (A.1) and (A.2) below
are well-defined:

WBh
(µ1, µ2) := inf

T :T#µ1=µ2

∫
Bh (x, T (x)) dµ1(x) (A.1)

and (notice the exchange of inputs on the right-hand side)

WBh? (ν1, ν2) := inf
T :T#ν1=ν2

∫
Bh? (T (y),y) dν1(y). (A.2)

Furthermore, we have

WBh
(µ1, µ2) =WBh? (∇h#µ1,∇h#µ2). (A.3)

Before proving the lemma, let us see that the relation in W2 is a simple corollary of Lemma
1. Since h is ρ-strongly convex, it is classical that, for any x and x′,

ρ

2
‖x− x′‖2 ≤ Bh(x,x′) = Bh?(∇h(x′),∇h(x)) ≤ 1

2ρ
‖∇h(x)−∇h(x′)‖2. (A.4)

Using Lemma 1 and the fact that yt ∼ ∇h#xt and Y∞ ∼ ∇h#X∞, we conclude
W2(xt,X∞) ≤ 1

ρW2(yt,X∞). It hence remains to prove Lemma 1 when h ∈ C5.

A.2.1 Proof of Lemma 1 When h ∈ C5

We first prove that (A.2) is well-defined by verifying the sufficient conditions in Theorem
3.6 of [7]. Specifically, we will verify (C0)-(C2) in p.554 of [7] when the transport cost is
Bh? .

Since h is ρ-strongly convex, ∇h is injective, and hence ∇h? = (∇h)−1 is also injective,
which implies that h? is strictly convex. On the other hand, the strong convexity of h implies
∇2h? � 1

ρI, and hence Bh? is globally upper bounded by a quadratic function.

We now show that the conditions (C0)-(C2) are satisfied. Since we have assumed h ∈ C5,
we have Bh? ∈ C4. Since Bh? is upper bounded by a quadratic function, the condition (C0)
is trivially satisfied. On the other hand, since h? is strictly convex, simple calculation reveals
that, for any y′, the mapping y→ ∇y′Bh?(y,y′) is injective, which is (C1). Similarly, for
any y, the mapping y′ → ∇yBh?(y,y′) is also injective, which is (C2). By Theorem 3.6
in [7], (A.2) is well-defined.

We now turn to (A.3), which will automatically establish the well-definedness of (A.1). We
first need the following equivalent characterization of ∇h#µ = ν [12]:∫

fdν =

∫
f ◦ ∇hdµ (A.5)

for all measurable f . Using (A.5) in the definition of WBh? , we get

WBh? (∇h#µ1,∇h#µ2) = inf
T

∫
Bh? (T (y),y) d∇h#µ1(y)

= inf
T

∫
Bh?

(
(T ◦ ∇h)(x),∇h(x)

)
dµ1(x),

where the infimum is over all T such that T#(∇h#µ1) = ∇h#µ2. Using the classical duality
Bh(x,x′) = Bh?(∇h(x′),∇h(x)) and ∇h ◦ ∇h?(x) = x, we may further write

WBh? (∇h#µ1,∇h#µ2) = inf
T

∫
Bh

(
x, (∇h? ◦ T ◦ ∇h)(x)

)
dµ1(x) (A.6)
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where the infimum is again over all T such that T#(∇h#µ1) = ∇h#µ2. In view of (A.6),
the proof would be complete if we can show that T#(∇h#µ1) = ∇h#µ2 if and only if
(∇h? ◦ T ◦ ∇h)#µ1 = µ2.

For any two maps T1 and T2, we claim that

(T1 ◦ T2)#µ = T1# (T2#µ) . (A.7)

Indeed, for any Borel set E, we have, by definition of the push-forward,

(T1 ◦ T2)#µ(E) = µ
(
(T1 ◦ T2)−1(E)

)
= µ

(
(T−12 ◦ T−11 )(E)

)
.

On the other hand, recursively applying the definition of push-forward to T1# (T2#µ) gives

T1# (T2#µ) (E) = T2#µ
(
T−1(E)

)
= µ

(
(T−12 ◦ T−11 )(E)

)
which establishes (A.7).

Assume that T#(∇h#µ1) = ∇h#µ2. Then we have

(∇h? ◦ T ◦ ∇h)#µ1 = ∇h?#(T#(∇h#µ1)) by (A.7)

= ∇h?#(∇h#µ2) since T#(∇h#µ1) = ∇h#µ2

= (∇h? ◦ ∇h)#µ2 by (A.7) again

= µ2.

On the other hand, if (∇h? ◦ T ◦ ∇h)#µ1 = µ2, then composing both sides by ∇h and using
(A.7) yields T#(∇h#µ1) = ∇h#µ2, which finishes the proof.

A.2.2 When h is only C2

When h is only C2, we will directly resort to (A.4). Let T be any map such that T#(∇h#µ1) =
∇h#µ2, and consider the optimal transportation problem infT

∫
‖y − T (y)‖2d∇h#µ1(y).

By (A.4) and (A.5), we have

inf
T

∫
‖y − T (y)‖2d∇h#µ1(y) = inf

T

∫
‖∇h(x)− (T ◦ ∇h)(x))‖2dµ1(x)

≥ ρ2 inf
T

∫
‖x− (∇h? ◦ T ◦ ∇h)(x))‖2dµ1(x)

where the infimum is over all T such that T#(∇h#µ1) = ∇h#µ2. But as proven in
Appendix A.2.1, this is equivalent to (∇h? ◦ T ◦ ∇h)#µ1 = µ2. The proof is finished by
noting yt ∼ ∇h#xt and Y∞ ∼ ∇h#X∞.

B More Examples of Mirror Map and their Dual Distributions

In this section, we present more instances of mirror map other than on the simplex, and
their corresponding dual distributions.

B.1 Mirror map on the hypercube

On the hypercube [−1, 1]d, a possible mirror map is

h(x) =
1

2

d∑
i=1

(
(1 + xi) log(1 + xi) + (1− xi) log(1− xi)

)
.

It can easily be shown that

∂h

∂xi
= arctanh(xi),

∂2h

∂xi∂xj
=

δij
1− x2i

,
∂h∗

∂yi
= tanh(yi)
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which implies that h is 1-strongly convex.

Since the Hessian matrix of h is diagonal, we have:

log det∇2h(x) =

d∑
i=1

log

(
1

1− x2i

)
.

Then, using the definition of W , we obtain

W (y) = V ◦ ∇h∗(y) +

d∑
i=1

log

(
1

1− tanh2(yi)

)

= V ◦ ∇h∗(y) +

d∑
i=1

log

(
4

exp(2yi) + 2 + exp(−2yi)

)

= V ◦ ∇h∗(y) +

d∑
i=1

log

(
1

2
(1 + cosh(2yi))

)
.

B.2 Mirror map on the Euclidean ball

On the unit ball {x ∈ Rd : ‖x‖ ≤ 1}, where ‖ · ‖ denote the Euclidean norm, a possible
mirror map is

h(x) = − log(1− ‖x‖)− ‖x‖.

We can compute:

∂h

∂xi
=

xi
1− ‖x‖

,
∂2h

∂xi∂xj
=

δij
1− ‖x‖

+
xixj

‖x‖(1− ‖x‖)2
,

∂h∗

∂yi
=

yi
1 + ‖y‖

.

The Hessian matrix can thus be written as ∇2h(x) = 1
1−‖x‖I + 1

‖x‖(1−‖x‖)2xx
T , where I is

the identity matrix. Invoking the matrix determinant lemma, we get

det(∇2h(x)) =

(
1 +

x>x

‖x‖(1− ‖x‖))

)
det

(
1

1− ‖x‖
I

)
=

(
1

1− ‖x‖

)d+1

.

We thus obtain:

W (y) = V ◦ ∇h∗(y)− (d+ 1) log

(
1− ‖y‖

1 + ‖y‖

)
= V ◦ ∇h∗(y) + (d+ 1) log (1 + ‖y‖) .

C Proof of Thereom 3

In previous sections, we are given a target distribution e−V and a mirror map h, and we derive
the induced distribution e−W through the Monge-Ampère equation (2.1). The high-level
idea of this proof is to reverse the direction: We start with two good distributions e−V and
e−W , and we invoke deep results in Optimal Transport to deduce the existence of a good
mirror map h.

First, notice that if V has bounded domain, then the strong convexity of V implies V > −∞.
Along with the assumption that V is bounded away from +∞ in the interior, we see that
e−V is bounded away from 0 and +∞ in the interior of support.

Let dν(x) = e−W (x)dx be any distribution such that ∇2W � I. By Brenier’s polarization
theorem [1, 2] and Assumption 2, 3, there exists a convex function h? whose gradient
solves the W2 (ν, µ) optimal transportation problem. Caffarelli’s regularity theorem [3–5]
then implies that the Brenier’s map h? is in C2. Finally, a slightly stronger form of Caffarelli’s
contraction theorem [10] asserts:

∇2h? � 1

m
I, (C.1)
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which implies h = (h?)? is m-strongly convex.

Let us consider the discretized MLD (3.3) corresponding to the mirror map h. Invoking
Theorem 3 of [6], the convergence rate of the discretized Langevin dynamics yT for

µ is such that D(yT ‖ν) = Õ (d/T), which in turn implies W2(yT , ν) = Õ
(√

d/T
)

and

dTV(yT , ν) = Õ
(√

d/T
)
. Theorem 2 then completes the proof.

D Proof of Lemma 1

Straightforward calculations in convex analysis shows

∂h

∂xi
= log

xi
xd+1

,
∂2h

∂xi∂xj
= δijx

−1
i + x−1d+1,

h?(y) = log

(
1 +

d∑
i=1

eyi

)
,

∂h?

∂yi
=

eyi

1 +
∑d
i=1 e

yi
, (D.1)

which proves that h is 1-strongly convex.

Let µ = e−V (x)dx be the target distribution and define ν = e−W (y)dy := ∇h#µ. By (2.1),
we have

W ◦ ∇h = V + log det∇2h. (D.2)

Since ∇2h(x) = diag[x−1i ] + x−1d+111
> where 1 is the all 1 vector, the well-known matrix

determinant lemma “det(A+ uv>) = (1 + v>A−1u) detA” gives

log det∇2h(x) = log

(
1 + x−1d+1

d∑
i=1

xi

)
·
d∏
i=1

x−1i

= −
d+1∑
i=1

log xi = −
d∑
i=1

log xi − log

(
1−

d∑
i=1

xi

)
. (D.3)

Composing both sides of (D.2) with ∇h? and using (D.1), (D.3), we then finish the proof by
computing

W (y) = V ◦ ∇h?(y)−
d∑
i=1

yi + (d+ 1) log

(
1 +

d∑
i=1

eyi

)

= V ◦ ∇h?(y)−
d∑
i=1

yi + (d+ 1)h?(y).

E Proof of Lemma 2

The proof relies on rather straightforward computations.

1. In order to show e−(W+C) = ∇h#e−V for some constant C, we will verify the
Monge-Ampère equation:

e−V = e−(W◦∇h+C)det∇2h (E.1)

for V =
∑N
i=1 Vi and W =

∑N
i=1Wi, where Wi is defined via (4.2). By (4.2), it

holds that
1

Ci
e−NVi = e−NWi◦∇h det∇2h, Ci :=

1∫
e−NVi

. (E.2)

Multiplying (E.2) for i = 1, 2, ..., N , we get

N∏
i=1

1

Ci
e−NV = e−NW◦∇h

(
det∇2h

)N
. (E.3)

The first claim follows by taking the N th root of (E.3).
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2. The second claim directly follows by (E.2).

3. Trivial.

4. By (E.1) and (E.2) and using ∇h? ◦ ∇h(x) = x, we get

Wi = Vi ◦ ∇h? +
1

N
log det∇2h(∇h?)− logCi, (E.4)

W = V ◦ ∇h? + log det∇2h(∇h?)− C, (E.5)

which implies N∇Wi − ∇W = ∇2h? (N∇Vi ◦ ∇h? −∇V ◦ ∇h?). Since h is 1-
strongly convex, h? is 1-Lipschitz gradient, and therefore the spectral norm of ∇2h?

is upper bounded by 1. In the case of b = 1, the final claim follows by noticing

E‖∇̃W −∇W‖2 =
1

N

N∑
i=1

‖N∇Wi −∇W‖2 (E.6)

=
1

N

N∑
i=1

‖∇2h? (N∇Vi ◦ ∇h? −∇V ◦ ∇h?) ‖2 (E.7)

≤
‖∇2h?‖2spec

N

N∑
i=1

‖N∇Vi ◦ ∇h? −∇V ◦ ∇h?‖2 (E.8)

≤ E‖∇̃V −∇V ‖2. (E.9)

The proof for general batch-size b is exactly the same, albeit with more cumbersome
notation.

F Proof of Theorem 4

The proof is a simple combination of the existing result in [8] and our theory in Section 3.

By Theorem 2, we only need to prove that the inequality (4.3) holds for D(ỹT ‖e−W (y)dy),
where ỹT is to be defined below. By assumption, W is unconstrained and satisfies LI �
∇2W � 0. By Lemma 2, the stochastic gradient ∇̃W is unbiased and satisfies

E‖∇̃W −∇W‖2 ≤ E‖∇̃V −∇V ‖2 = σ2.

Pick a random index1 t ∈ {1, 2, ..., T} and set ỹT := yt. Then Corollary 18 of [8] with
D2 = σ2 and M2 = 0 implies D(ỹT ‖e−W (y)dy) ≤ ε, provided

β ≤ min

{
ε

2 (Ld+ σ2)
,

1

L

}
, T ≥ W

2
2 (y0, e−W (y)dy)

βε
. (F.1)

Solving for T in terms of ε establishes the theorem.

G Stochastic Gradients for Dirichlet Posteriors

In order to apply SMLD, one must have, for each term Vi, the corresponding dual Wi defined
via (4.2). In this appendix, we derive a closed-form expression in the case of the Dirichlet
posterior (3.6).

Recall that the Dirichlet posterior (3.6) consists of a Dirichlet prior and categorical data

observations [9]. Let N :=
∑d+1
`=1 n`, where n` is the number of observations for category

`, and suppose that the parameters α`’s are given. If the ith data is in category ci ∈
{1, 2, ..., d+ 1}, then we can define Vi(x) := −

∑d+1
`=1 I{`=ci} log x` − 1

N

∑d+1
`=1 (α` − 1) log x`

1The analysis in [8] provides guarantees on the probability measure νT := 1
N

∑T
t=1 νt where

yt ∼ νt. The ỹT defined here has law νT .
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(a) Synthetic data, 8th dimension. (b) LDA on Wikipedia corpus.

Figure 1: LDA for Wikipedia, 50 topics.

so that Assumption 4 holds. In view of Lemma 1, The corresponding dual Wi is, up to a
constant, given by

Wi(y) = −
d∑
`=1

I{`=ci}y` −
d∑
`=1

α`
N
y` + h? +

(
d+1∑
`=1

α`
N

)
h?(y). (G.1)

Similarly, if we take a mini-batch B of the data with |B| = b, then

N

b
W̃ (y) :=

N

b

∑
i∈B

Wi(y) = −
d∑
`=1

(
Nm`

b
+ α`

)
y` +

(
N +

d+1∑
`=1

α`

)
h?(y), (G.2)

where m` is the number of observations of category ` in the set B. Apparently, the gradient
of (G.2) is (4.4).

H More on Experiments

H.1 Synthetic Data

Figure 1(a) reports the total variation error along the 8th dimension of the synthetic
experiment in Section 5.1. Compared to Figure 1(a) in the main text, it is evident that MLD
achieves an even stronger performance than SGRLD, especially in the saturation error phase.

H.2 Comparison against SGRHMC for Latent Dirichlet Allocation

The only difference between the experimental setting of [11] and the main text is the number
of topics (50 vs. 100). In this appendix, we run SMLD-approximate under the setting of [11]
and directly compare against the results reported in [11]. We have also included the SGRLD
as a baseline.

Figure 1(b) reports the perplexity on the test data. According to [11], the best perplexity
achieved by SGRHMC up to 10,000 documents is approximately 1400, which is worse than
the 1323 by SMLD-approximate. Moreover, from Figure 3 of [11], we see that the SGRHMC
yields comparable performance as SGRLD for 2 out 3 independent runs, especially in the
beginning phase, whereas the SMLD-approximate has sizeable lead over SGRLD at any stage
of the experiment. The potential reason for this improvement is, similar to SGRLD, that the
SGRHMC exploits the Riemannian Hamiltonian dynamics, which is more complicated than
MLD and hence more sensitive to the discretization error.
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