
5 Appendix

5.1 SDTP and AO-SDTP algorithm details

In this section, we provide detailed algorithm description for both SDTP and its extension AO-SDTP
which can be found in Algorithm Box 1 and 2.

In the original DTP algorithm, autoencoder training is done via a noise-preserving loss. This is a
well principled choice for the algorithm on a computer [21], and our experiments with DTP use this
noise-preserving loss. However, in the brain, autoencoder training would necessarily be de-noising,
since uncontrolled noise is added downstream of a given layer (e.g. by subsequent spiking activity
and stochastic vesicle release). Therefore, in our experiments with SDTP and AO-SDTP we use
de-noising autoencoder training.

Algorithm 2 Augmented Output Simplified Difference Target Propagation
Propagate activity forward:
for l = 1 to L do
hl ← fl(hl−1; θl)

end for
Split network output: [o, z]← hL

Compute first target: ô← argminoL(o)
Compute target for the penultimate layer: ĥL−1 ← hL−1 − gL(o, z;λL) + gL(ô, z;λL)
Compute targets for lower layers:
for l = L− 2 to 1 do
ĥl ← hl − g(hl+1;λl+1) + g(ĥl+1;λl+1)

end for
Train inverse function parameters:
for l = L to 2 do

Generate corrupted activity h̃l−1 = hl−1 + ε, ε ∼ N (0, σ2)
Update parameters λl using SGD on loss Linv

l (λl)

Linv
l (λl) = ‖hl−1 − g(f(h̃l−1; θl−1);λl)‖22

end for
Train feedforward function parameters:
for l = 1 to L do

Update parameters θl using SGD on loss Ll(θl)

Ll(θl) = ‖f(hl; θl)− ĥl+1‖22 if l < L, else LL(θL) = L (task loss)
end for

One might expect the performance of AO-SDTP to depend on the size and the structure of the
auxiliary output. We investigated the effect of the auxiliary output size. The results are consistent
with the intuition that larger sizes generally lead to better performance, with improvements leveling
off once the output is large enough to encode information about the penultimate layer well (see
Figure 4).

5.2 Architecture details for all experiments

In this section we provide details on the architectures used across all experiments. The detailed
specifications can be found in Table 3.

All locally-connected architectures consist of a stack of locally-connected layers (each specified by:
receptive field size, number of output channels, stride), followed by one or more fully-connected
layers and an output softmax layer. All locally-connected layers use zero padding to ensure unchanged
shape of the output with stride = 1. One of our general empirical findings was that pooling operations
are not very compatible with TP and are better to be replaced with strided locally-connected layers.

The locally-connected architecture used for the ImageNet experiment was inspired by the ImageNet
architecture used in [37]. Unfortunately, the naive replacement of convolutional layers with locally-
connected layers would result in a computationally-prohibitive architecture, so we decreased number
of output channels in the layers and also removed layers with 1× 1 filters. We also slightly decreased
filters in the first layer, from 11× 11 to 9× 9. Finally, as in the CIFAR experiments, we replaced

12



Table 3: Architecture specification. The format for locally-connected layers is (kernel size, number
of output channels, stride).

DATASET FULLY-CONNECTED NETWORK LOCALLY-CONNECTED NETWORK

MNIST

FC 256
FC 256
FC 256
FC 256
FC 256

Softmax 10

(3× 3, 32, 2)
(3× 3, 64, 2)

FC 1024
Softmax 10

CIFAR

FC 1024
FC 1024
FC 1024

Softmax 10

(5× 5, 64, 2)
(5× 5, 128, 2)

(3× 3, 256)
FC 1024

Softmax 10

IMAGENET –

(9× 9, 48, 4)
(3× 3, 48, 2)
(5× 5, 96, 1)
(3× 3, 96, 2)
(3× 3, 192, 1)
(3× 3, 192, 2)
(3× 3, 384, 1)
Softmax 1000

all pooling operations with strided locally-connected layers and completely removed the spatial
averaging in the last layer that we previously found problematic when learning with TP.

5.3 Details of hyperparameter optimization

For DTP and SDTP we optimized over parameters of: (1) the forward model and inverse Adam
optimizers, (2) the learning rate α used to compute targets for hL−1 in DTP, and (3) the Gaussian
noise magnitude σ used to train inverses. For backprop we optimized only the forward model Adam
optimizer parameters. For all experiments the best hyperparameters were found by random searches
over 60 random configurations drawn from the ranges specified in table 4. We provide values for the
best configurations in table 5.

As we pointed out in section 3, the explored learning methods have different sensitivity to hyper-
parameters. We provide histograms of the best test accuracies reached by different hyperparameter
configurations on MNIST and CIFAR for each of the experiments (see Figure 5). We were not able

0 200 400 600 800 1000
Auxiliary output size

40

45

50

55

60

T
e
st

 e
rr

o
r

LC

FC

Figure 4: Auxiliary output size effect on CIFAR performance.

13



0.0

0.2

0.4

0.6

0.8

DTP parallel DTP alternating

0.0

0.2

0.4

0.6

0.8

SDTP parallel SDTP alternating

0.0

0.2

0.4

0.6

0.8

Backpropagation

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

FA

0.0 0.2 0.4 0.6 0.8 1.0

DFA

(a) MNIST, fully-connected networks.

0.0

0.2

0.4

0.6

0.8

DTP parallel DTP alternating

0.0

0.2

0.4

0.6

0.8

SDTP parallel SDTP alternating

0.0

0.2

0.4

0.6

0.8

BP BP convnet

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

FA

0.0 0.2 0.4 0.6 0.8 1.0

DFA

(b) MNIST, locally-connected networks.

0.0

0.2

0.4

0.6

0.8

DTP parallel DTP alternating

0.0

0.2

0.4

0.6

0.8

SDTP parallel SDTP alternating

0.0

0.2

0.4

0.6

0.8

Backpropagation

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

FA

0.0 0.1 0.2 0.3 0.4 0.5 0.6

DFA

(c) CIFAR, fully-connected networks.

0.0

0.2

0.4

0.6

0.8

DTP parallel DTP alternating

0.0

0.2

0.4

0.6

0.8

SDTP parallel SDTP alternating

0.0

0.2

0.4

0.6

0.8

BP BP ConvNet

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

FA

0.0 0.1 0.2 0.3 0.4 0.5 0.6

DFA

(d) CIFAR, locally-connected networks.

Figure 5: Distribution of test accuracies achieved under different hyperparameters.

14



Table 4: Hyperparameter search space used for the experiments

HYPERPARAMETER SEARCH DOMAIN

Learning rate of model Adam optimizer [10−5; 3× 10−4]
β1 parameter of model Adam optimizer Fixed to 0.9
β2 parameter of model Adam optimizer {0.99, 0.999}
ε parameter of model Adam optimizer {10−4, 10−6, 10−8}

Learning rate of inverse Adam optimizer [10−5; 3× 10−4]
β1 parameter of inverse Adam optimizer Fixed to 0.9
β2 parameter of inverse Adam optimizer {0.99, 0.999}
ε parameter of inverse Adam optimizer {10−4, 10−6, 10−8}

Learning rate α used to compute targets for hL−1 in DTP [0.01; 0.2]
Gaussian noise magnitude σ used to train inverses [0.01; 0.3]

to collect the results for each of the exploratory runs on the ImageNet due to prohibitive demand on
computation. In this case, we also started 60 random configurations but after 10 epochs we allowed
only the best performing job to continue thereafter.

These experiments demonstrate clearly that BP is the most stable algorithm. TP methods proved
to be the most sensitive to the choice of hyperparameters, likely due to complicated interactions
between updating forward and inverse weights. Finally, we note that within the TP based method,
the alternating update schedule not only reach the better accuracy, but overall led to more stable
convergence.

5.4 Implementation details for locally-connected architectures

Although locally-connected layers can be seen as a simple generalization of convolution layers,
their implementation is not entirely straightforward. First, a locally-connected layer has many
more trainable parameters than a convolutional layer with an equivalent specification (i.e. receptive
field size, stride and number of output channels). This means that a simple replacement of every
convolutional layer with a locally-connected layer can be computationally prohibitive for larger
networks. Thus, for large networks, one has to decrease the number of parameters to run experiments
using a reasonable amount of memory and compute. In our experiments we opted to decrease the
number of output channels in each layer by a given factor. Obviously, this can have a negative effect
on the resulting performance and more work needs to be done to scale locally-connected architectures.

Inverse operations When training locally-connected layers with target propagation, one also needs
to implement the inverse computation in order to train the feedback weights. As in fully-connected
layers, the forward computation implemented by both locally-connected and convolutional layers can
be seen as a linear transformation y = Wx+ b, where the matrix W has a special, sparse structure
(i.e., has a block of non-zero elements, and zero-elements elsewhere), and the dimensionality of y is
not more than x.

The inverse operation requires computation of the form x = V y + c, where matrix V has the same
sparse structure as WT . However, given the sparsity of V , computing the inverse of y using V would
be highly inefficient [9]. We instead use an implementation trick often applied in deconvolutional
architectures. First, we instantiate a forward locally-connected computation z = Ax, where z and
A are dummy activities and sparse weights. We then express the transposed weight matrix as the
gradient of this feedforward operation:

V = AT =

(
dz

dx

)T
, and thus x = V y + c =

(
dz

dx

)T
y + c.

The gradient dz
dx (and its multiplication with y) can be very quickly computed by the means of

automatic differentiation in many popular deep learning frameworks. Hence one only needs to
define the forward locally-connected computation and the corresponding transposed operation is
implemented trivially. Note that this is strictly an implementation detail and does not introduce any
additional use of gradients or weight sharing in learning.

15



Table 5: Best hyperparameters found by the random search.

MNIST, FULLY-CONNECTED
DTP

PARALLEL
DTP

ALTERNATING
SDTP

PARALLEL
SDTP

ALTERNATING BP
BP

ConvNet FA DFA
M

O
D

E
L LR 0.000757 0.000308 0.000402 0.000301 0.000152 0.000168 0.001649

β1 0.99 0.99 0.99 0.9 0.9 0.9 0.9
β2 0.95 0.99 0.999 0.95 0.999 0.999 0.95
ε 10−3 10−4 10−8 10−4 10−8 10−4 10−3

IN
V

E
R

S
E LR 0.000768 0.004593 0.001101 0.009572

β1 0.99 0.99 0.99 0.9
β2 0.999 0.999 0.95 0.95
ε 10−4 10−4 10−6 10−3

α 0.15008 0.231758
σ 0.36133 0.220444 0.213995 0.118267

MNIST, LOCALLY-CONNECTED

M
O

D
E

L LR 0.000905 0.001481 0.000145 0.000651 0.000133 0.000297 0.000219 0.002462
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.99 0.99 0.99 0.99 0.99 0.99 0.999 0.99
ε 10−4 10−4 10−6 10−4 10−8 10−8 10−6 10−4

IN
V

E
R

S
E LR 0.001239 0.000137 0.001652 0.003741

β1 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.99
ε 10−4 10−6 10−4 10−4

α 0.116131 0.310892
σ 0.099236 0.366964 0.061555 0.134739

CIFAR, FULLY-CONNECTED

M
O

D
E

L LR 0.000012 0.000013 0.000129 0.000041 0.000019 0.000025 0.000050
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.99 0.99 0.999 0.99 0.99
ε 10−8 10−8 10−6 10−4 10−6 10−4 10−8

IN
V

E
R

S
E LR 0.000039 0.000114 0.000011 0.000014

β1 0.9 0.9 0.9 0.9
β2 0.99 0.99 0.99 0.99
ε 10−6 10−4 10−6 10−8

α 0.125693 0.172085
σ 0.169783 0.134811 0.273341 0.125678

CIFAR, LOCALLY-CONNECTED

M
O

D
E

L LR 0.000032 0.000036 0.000020 0.000109 0.000044 0.000133 0.000022 0.000040
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.99 0.99 0.99 0.99 0.999 0.99 0.999 0.999
ε 10−6 10−8 10−4 10−4 10−6 10−4 10−8 10−8

IN
V

E
R

S
E LR 0.000852 0.000389 0.000261 1.1e-05

β1 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.99
ε 10−4 10−8 10−6 10−8

α 0.189828 0.208141
σ 0.146728 0.094869 0.299769 0.023804

IMAGENET, LOCALLY-CONNECTED
DTP

PARALLEL
DTP

ALTERNATING
SDTP

PARALLEL BP
BP

ConvNet FA

M
O

D
E

L LR 0.000217 0.000101 0.000011 0.000024 0.000049 0.000043
β1 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.99 0.99 0.999 0.999 0.99 0.99
ε 10−6 10−8 10−6 10−8 10−8 10−4

IN
V

E
R

S
E LR 0.000234 0.000064 0.000170

β1 0.9 0.9 0.9
β2 0.999 0.999 0.999
ε 10−6 10−8 10−8

α 0.163359 0.03706
σ 0.192835 0.097217 0.168522

16



0 100 200 300 400 500
Epoch

0.005

0.010

0.015

0.020

R
e
co

n
st

ru
ct

io
n
 e

rr
o
r

DTP parallel

SDTP parallel

BP

Figure 6: Train (solid) and test (dashed) reconstruction errors on MNIST.

O
ri

g
in

a
l

R
e
co

n
st

ru
ct

io
n

SDTP parallel

O
ri

g
in

a
l

R
e
co

n
st

ru
ct

io
n

DTP parallel

O
ri

g
in

a
l

R
e
co

n
st

ru
ct

io
n

BP

Figure 7: MNIST reconstructions obtained by different learning methods. Even though SDTP
produces more artifacts, the visual quality is comparable due to the presence of diverse targets.

5.5 Autoencoding and target diversity

Since one of the main limitations of SDTP is target diversity for the penultimate layer, it may be
instructive to compare different learning methods on a task that involves rich output targets. A natural
choice for such a task is learning an autoencoder with the reconstruction error as a loss.

We set a simple fully-connected architecture for the autoencoder of the following structure 28× 28−
512 − 64 − 512 − 28 × 28 and trained it on MNIST using squared L2 reconstruction error. The
training curves can be found in Figure 6. SDTP still demonstrated a tendency to underfit, and did not
match performance of DTP and backpropagation. But, visual inspection of reconstructions on the test
set of MNIST did not show a significant difference in the quality of reconstructions (see Figure 7),
which supports the hypothesized importance of target diversity for SDTP performance.

17



0 50 100 150 200 250 300
Epoch

0

1

2

3

4

5

E
rr

o
r 

(%
)

Fully-connected network

0 50 100 150 200 250 300
Epoch

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
rr

o
r 

(%
)

Locally-connected network

Figure 8: Train (dashed) and test (solid) classification errors on MNIST.

5.6 Backpropagation as a special case of target propagation

Even though difference target propagation is often contrasted with back-propagation, it is inter-
esting to note that these procedures have a similar functional form. One can ask the following
question: that should the targets be in order to make minimization of the learning loss equivalent to a
backpropagation update?

Formally, we want to solve the following equation for ĥl:

d

dθl

Ll
2

=
d

dθl
L.

Here we divided the learning loss by 2 to simplify the following calculations. Transforming both
sides of the equation, we obtain

dhl
dθl

(hl − ĥl) =
dhl
dθl

dLy
dhl

,

from which it follows that
dLy
dhl

= hl − ĥl and ĥl = hl −
dLy
dhl

.

We now expand the latter equation to express ĥl through ĥl+1:

ĥl = hl −
dhl+1

dhl

dLy
dhl+1

= hl −
dhl+1

dhl
(hl+1 − ĥl+1).

Finally, if we define g(h̃l+1) = gbp(h̃l+1) = dhl+1

dhl
h̃l+1, then a step on the local learning loss in TP

will be equivalent to a gradient descent step on the global loss.

The question remains whether this connection might be useful for helping us to think about new
learning algorithms. For example, one could imagine an algorithm that uses hybrid targets, e.g.
computed using a convex combination of the differential and the pseudo-inverse g-functions:

g(h̃l+1) = αgbp(h̃l+1) + (1− α)gtp(h̃l+1), 0 ≤ α ≤ 1.

Continuing the analogy between these two methods, is it possible that the inverse loss could be a useful
regularizer when used with gbp? Practically that would mean that we want to regularize parameters
of the forward computation f indirectly through its derivatives. Interestingly, in the one-dimensional
case (where hl and f(hl) are scalars) the inverse loss is minimized by f(hl) = ±

√
h2l + b.

18


