
Supplementary Material for
Towards Understanding Learning Representations:

To What Extent Do Different Neural Networks Learn
the Same Representation

Liwei Wang1,2 Lunjia Hu3 Jiayuan Gu1 Yue Wu1

Zhiqiang Hu1 Kun He4 John Hopcroft5
1Key Laboratory of Machine Perception, MOE, School of EECS, Peking University
2Center for Data Science, Peking University, Beijing Institute of Big Data Research

3Computer Science Department, Stanford University
4Huazhong University of Science and Technology

5Cornell University
wanglw@cis.pku.edu.cn lunjia@stanford.edu

{gujiayuan, frankwu, huzq}@pku.edu.cn
brooklet60@hust.edu.cn, jeh17@cornell.edu

A Omitted Proofs in Section 3

Lemma 2 (Union-Close Lemma). Let (X1, Y1) and (X2, Y2) be two ε-approximate matches in
(X ,Y). Then (X1 ∪X2, Y1 ∪ Y2) is still an ε-approximate match.

Proof. The lemma follows immediately from the definition of ε-approximate match.

Theorem 5 (Decomposition Theorem). Every match (X,Y) in (X ,Y) can be expressed as a union
of simple matches. Formally, there are simple matches (X̂i, Ŷi) satisfying X =

⋃
i

X̂i and Y =
⋃
i

Ŷi.

Proof. We prove by induction on the size of the match, |X ∪ Y |. When |X ∪ Y | is the smallest
among all non-empty matches, we know (X,Y) is itself a simple match, so the theorem holds. For
larger |X ∪ Y |, (X,Y) may not be a simple match, and in this case we know (X,Y) is the union of
smaller matches (Xi, Yi): Xi ∪ Yi (X ∪ Y and X =

⋃
i

Xi, Y =
⋃
i

Yi, and thus by the induction

hypothesis that every (Xi, Yi) is a union of simple matches, we know (X,Y) is a union of simple
matches.

Lemma 6 (Intersection-Close Lemma). Assume (zx)x∈X and (zy)y∈Y are both linearly independent.
Let (X1, Y1) and (X2, Y2) be exact matches in (X ,Y). Then, (X1 ∩X2, Y1 ∩ Y2) is still an exact
match.

Lemma 6 is a direct corollary of the following claim.

Claim A.1. Assume (zx)x∈X is linearly independent. Then ∀X1, X2 ⊆ X , span(zX1∩X2
) =

span(zX1
) ∩ span(zX2

).

Proof. span(zX1∩X2
) ⊆ span(zX1

) ∩ span(zX2
) is obvious. To show span(zX1

) ∩ span(zX2
) ⊆

span(zX1∩X2
), let’s consider a vector z ∈ span(zX1

)∩span(zX2
) ⊆ span(zX). Note that (zx)x∈X

is linearly independent, so there exists unique λx ∈ R for each x ∈ X s.t. z =
∑
x∈X

λxzx. The

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

uniqueness of λx and the fact that z ∈ span(zX1) shows that ∀x ∈ X\X1, λx = 0. Similarly,
∀x ∈ X\X2, λx = 0. Therefore, λx 6= 0 only when x ∈ X1 ∩X2, so z ∈ span(zX1∩X2).

Theorem 8. Assume (zx)x∈X and (zy)y∈Y are both linearly independent. Let (X∗, Y ∗) be the
maximum (exact) match in (X ,Y). ∀v ∈ X∗ ∪ Y ∗, the v-minimum match is a simple match, and
every simple match is the v-minimum match for some neuron v ∈ X∗ ∪ Y ∗.

Proof. We show that under the assumption of Theorem 8 the concept of v-minimum match and the
concept of v-minimal match (Definition 9) coincide so Theorem 8 is a special case of Theorem 10.

According to Lemma 6, ∀v ∈ X∗∪Y ∗ has a unique v-minimum match (Xv, Yv) being the intersection
of all the matches containing v. Therefore, for any v-minimal match (X ′v, Y

′
v), it holds that Xv ⊆

X ′v, Yv ⊆ Y ′v , and according to Definition 9 we have (Xv, Yv) = (X ′v, Y
′
v).

Theorem 10. Let (X∗, Y ∗) be the maximum match in (X ,Y). ∀v ∈ X∗ ∪ Y ∗, every v-minimal
match is a simple match, and every simple match is a v-minimal match for some v ∈ X∗ ∪ Y ∗.

Proof. We start by showing the first half of the lemma. To prove by contradiction, let’s assume
that a v-minimal match (Xv, Yv) can be written as the union of smaller matches (Xi, Yi), i.e.,
(Xi ∪ Yi) ((Xv ∪ Yv), Xv =

⋃
i

Xi, Yv =
⋃
i

Yi. In this case, one of the matches (Xi, Yi) contains

v, which is contradictory with the definition of v-minimal match.

Now we show the second half of the lemma. For any neuron v in a simple match (X̂, Ŷ), we
consider one of the smallest matches (Xv, Yv) in (X̂, Ŷ) containing v. Here, “smallest” means that
|Xv∪Yv| is the smallest among all matches in (X̂, Ŷ) containing v. Note that (X̂, Ŷ) is itself a match
containing v, such a smallest match (Xv, Yv) indeed exists. The fact that (Xv, Yv) is the smallest
implies that it’s a v-minimal match. Now, trivially we have X̂ =

⋃
v∈X̂∪Ŷ

Xv and Ŷ =
⋃

v∈X̂∪Ŷ
Yv,

and since (X̂, Ŷ) is a simple match, one of (Xv, Yv) has to be equal to (X̂, Ŷ), which proves the
second half of the lemma.

Remark A.1. One important thing to note is that “v ∈ X∗ ∪ Y ∗” in the second half of Lemma

10 cannot be replaced by “v ∈ X∗”. For example, let zX = {(
√

1
2 ,
√

1
2 , 0), (

√
1
2 ,−

√
1
2 , 0)} and

zY = zX ∪{(
√
1− ε2, 0, ε)}. In this case, the entire match (X ,Y) cannot be expressed as a union of

x-minimal matches for x ∈ X because no x-minimal match contains the vector in zY\zX . However,
in the case of Theorem 8 when ε = 0 and (zx)x∈X , (zy)y∈Y are both linearly independent, we can
perform the replacement. That is because in this case, every match (X,Y) satisfies |X| = |Y |, so we
know X̂ =

⋃
v∈X̂

Xv and Ŷ ⊇
⋃
v∈X̂

Yv imply (X̂, Ŷ) = (
⋃
v∈X̂

Xv,
⋃
v∈X̂

Yv).

B Omitted Proofs in Section 4

Theorem 11. Algorithm 1 outputs the maximum match and runs in polynomial time.

Proof. Every time we delete a neuron x (or y) from X∗ (or Y ∗) at Line 7 (or Line 13), we make sure
that the activation vector zx (or zy) cannot be linearly expressed by zY ∗ (or zX∗) within error ε, so
(X∗, Y ∗) always contains the maximum match. On the other hand, when the algorithm terminates,
we know ∀x ∈ X∗, zx is linearly expressible by zY ∗ within error ε and ∀y ∈ Y ∗, zy is linearly
expressible by zX∗ within error ε, so (X∗, Y ∗) is a match by definition. Therefore, the output
(X∗, Y ∗) of Algorithm 1 is a match containing the maximum match, which has to be the maximum
match itself.

Before entering each iteration of the algorithm, we make sure that at least a neuron is deleted from
X∗ or Y ∗ in the last iteration, so there are at most |X ∪ Y | iterations. Therefore, the algorithm runs
in polynomial time.

Theorem 12. Algorithm 2 outputs one v-minimal match for the given neuron v. If ε = 0 (exact
match), the algorithm outputs the unique v-minimum match provided (zx)x∈X and (zy)y∈Y are both
linearly independent. Moreover, the algorithm always runs in polynomial time.

2

Proof. Clearly, Algorithm 2 runs in polynomial time. If there exist at least one v-minimal matches,
then v has to be in the maximum match and thus the algorithm doesn’t return “failure”. Therefore, the
remaining is to show that the match (Xv, Yv) returned by the algorithm is indeed a v-minimal match.

Clearly, the first requirement of v-minimal match that v ∈ Xv ∪ Yv is obviously satisfied by the
algorithm. Now we prove that the second requirement is also satisfied. Consider a match (X0, Y0)
with X0 ⊆ Xv and Y0 ⊆ Yv that satisfies v ∈ X0 ∪ Y0. We want to show that (X0, Y0) = (Xv, Yv).
To prove by contradiction, let’s suppose u ∈ (Xv ∪ Yv)\(X0 ∪ Y0). Let’s consider (X,Y) and
(X∗, Y ∗) at Line 11 in the iteration when u is being picked by the algorithm at Line 5. Since
u /∈ X0 ∪ Y0, we know X0 ⊆ Xv\{u} ⊆ X and Y0 ⊆ Yv\{u} ⊆ Y . In other words, (X0, Y0) is
a match in (X,Y). Moreover, since u ∈ Xv ∪ Yv, we know the “if” condition at Line 11 is not
satisfied, i.e., v /∈ (X∗, Y ∗). Therefore, (X0 ∪ X∗, Y0 ∪ Y ∗) is a match in (X,Y) that is strictly
larger than (X∗, Y ∗) (note that v ∈ X0 ∪ Y0), a contradiction with (X∗, Y ∗) being the maximum
match in (X,Y).

Theorem 13. Algorithm 3 outputs all the Nv different v-minimal matches in time LO(Nv). With
Algorithm 3, we can find all the simple matches by exploring all v ∈ X ∪ Y based on Theorem 10.

Proof. The fact that we remove all ui from X and Y in each iteration implies that every time
we put a match into S, the match is different from the existing matches in S. Moreover, every
time we put a match into S, the match is a v-minimal match, so |S| ≤ Nv during the whole
algorithm. Therefore, the running time of the algorithm is LO(Nv). The remaining is to show that S
returned by the algorithm contains all the v-minimal matches. To prove by contradiction, suppose
S = {(X1, Y1), (X2, Y2), · · · , (Xk, Yk)} while there exists a v-minimal match (Xk+1, Yk+1) that is
not in S. By the fact that (Xk+1, Yk+1) is minimal, we know Xi ∪ Yi is not a subset of Xk+1 ∪ Yk+1

for i = 1, 2, · · · , k. Therefore, there exists ui ∈ (Xi ∪ Yi)\(Xk+1 ∪ Yk+1) for i = 1, 2, · · · , k.
Consider the iteration when we pick (u1, u2, · · · , uk) at Line 7. We know the “if” condition at Line 14
is satisfied because of (Xk+1, Yk+1), which then implies that (Xk+1, Yk+1) ∈ S , a contradiction.

Theorem 14. Suppose ∃θ ∈ (0, π2] such that (zx)x∈X and (zy)y∈Y both satisfy θ-strong linear
independence and (ε, 2

sin θ + 1)-stability. Then, ∀v ∈ X ∪ Y, Nv ≤ 1. As a consequence, Algorithm
3 finds all the v-minimal matches in polynomial time, and we can find all the simple matches in
polynomial time by exploring all v ∈ X ∪ Y based on Theorem 10.

Theorem 14 is a direct corollary of the following lemma.

Lemma B.1. Suppose (zx)x∈X and (zy)y∈Y both satisfy θ-strong linear independence and (ε, 2
sin θ+

1)-stability. Let (X1, Y1), (X2, Y2) be two matches in (X ,Y). Then, (X1 ∩X2, Y1 ∩ Y2) is also a
match.

Proof. ∀x ∈ X1 ∩ X2, let |zx −
∑
y∈Y1

µyzy| ≤ ε|zx| and |zx −
∑
y∈Y2

µ′yzy| ≤ ε|zx|. There-

fore, |
∑

y∈Y1\Y2

µyzy + (
∑

y∈Y1∩Y2

(µy − µ′y)zy −
∑

y∈Y2\Y1

µ′yzy)| ≤ 2ε|zx|, which implies that

dist(
∑

y∈Y1\Y2

µyzy, span(zY2
)) ≤ 2ε|zx|. Note that by θ-strong linear independence, we have the an-

gle between span(zY1\Y2
) and span(zY2) is at least θ. Therefore, |

∑
y∈Y1\Y2

µyzy| sin θ ≤ 2ε|zx|, i.e.,

|
∑

y∈Y1\Y2

µyzy| ≤ 2ε|zx|
sin θ . Together with |zx −

∑
y∈Y1

µyzy| ≤ ε|zx|, we know |zx −
∑

y∈Y1∩Y2

µyzy| ≤

ε|zx|+ 2ε|zx|
sin θ = (2

sin θ +1)ε|zx|. By (ε, 2
sin θ +1)-stability, we know dist(zx, span(zY1∩Y2

)| ≤ ε|zx|.
Similarly, we can prove dist(zy, span(zX1∩X2

)) ≤ ε|zy| for every y ∈ Y1 ∩ Y2.

C Complicated Aspects of the Structure of Matches

Matches are not closed under the difference operation. Let’s consider the case where d =
2,X = {x1, x2},Y = {y1, y2}, zx1 = zy1 = (1, 0), zx2 = (0, 1), zy2 = (1, 1). When ε is
sufficiently small, there are two non-empty matches in total: ({x1}, {y1}) and ({x1, x2}, {y1, y2}).
The difference of the two matches, ({x2}, {y2}) is not a match.

3

A simple match might be a proper subset of another simple match. In the example given in
the last paragraph, ({x1}, {y1}) and ({x1, x2}, {y1, y2}) are both simple matches, while {x1} (
{x1, x2} and {y1} ({y1, y2}.

The decomposition of a match into a union of simple matches might not be unique. A trivial
example is a simple match (X̂1, Ŷ1) being a proper subset of another simple match (X̂2, Ŷ2), where
(X̂2, Ŷ2) can also be decomposed as the union of (X̂1, Ŷ1) and (X̂2, Ŷ2), a different decomposition
from the natural decomposition using only (X̂2, Ŷ2). A more non-trivial example is when X =
{x1, x2, x3},Y = {y1, y2, y3}, zx1

= (0, 1), zy1 = (1, 0), zx2
= zy2 = (1, 1), zx3

= zy3 =
(1,−1). When ε is sufficiently small, the entire match (X ,Y) can be decomposed as the union of
simple matches in two different ways: the union of ({x1, x2}, {y1, y2}) and ({x3}, {y3}), or the
union of ({x1, x3}, {y1, y3}) and ({x2}, {y2}).

D Instances without Strong Linear Independence or Stability

In this section, we prove Lemmas D.1 and D.2 to show that neither of the two assumptions in
Theorem 14 can be removed. Specifically, Lemma D.1 shows that we cannot remove the strong
linear independence assumption, even for ε = 0 where the stability assumption is trivial. Lemma
D.2 shows that we cannot remove the stability assumption, even when the instance satisfies π

2 -strong
linear independence (orthogonality).

Lemma D.1. There exist instances (zv)v∈X∪Y where there are more than polynomial number of
simple exact matches. Moreover, the number of linear subspaces formed by these simple exact
matches is also more than polynomial.

Proof. Suppose k, c ≥ 2 are positive integers and d >
(
ck
k

)
is the dimension of the space Rd

we are considering. Suppose we have a set S of d −
(
ck
k

)
+ ck subspaces of dimension d − 1 in

general position. In other words, the normal vectors ns for all s ∈ S are linearly independent.1

Let X = {x1, x2, · · · , xN} and Y = {y1, y2, · · · , yN} for N =
(d−(ckk)+ck
d−(ckk)+(c−1)k

)
. For each

(
d −(

ck
k

)
+ (c− 1)k

)
-sized subset Si ⊆ S, we independently pick two random unit vectors zxi , zyi in

the subspace ti :=
⋂
s∈Si

s, i.e., zxi , zyi are independently picked uniformly from B0(1) ∩ ti.

Here, the size of X and Y are both
(d−(ckk)+ck
d−(ckk)+(c−1)k

)
, which is roughly dk when d is very large. We

are going to show that, almost surely, there are roughly dck simple matches in this case. Note that c
and k are arbitrary at the very beginning and d can grow arbitrarily large for any fixed c and k, this
leads to the correctness of Lemma D.1.

First, for any S′ ⊆ S with size |S′| > d −
(
ck
k

)
, we show that the number of neurons x ∈ X with

zx ∈ h :=
⋂
s∈S′

s is almost surely less than d − |S′|, and by symmetry, this claim also holds for

neurons y ∈ Y . The claim is obvious for |S′| > d−
(
ck
k

)
+ (c− 1)k, because in this case, almost

surely, there isn’t any neuron x ∈ X with zx ∈ h, while d− |S′| ≥ d− |S| =
(
ck
k

)
− ck > 0. Now

we consider the case where d −
(
ck
k

)
< |S′| ≤ d −

(
ck
k

)
+ (c − 1)k. Let ` := |S′| − (d −

(
ck
k

)
) ∈

{1, 2, · · · , (c − 1)k}. According to our procedure, Si are d −
(
ck
k

)
+ (c − 1)k sized subsets of S,

so there are
(
ck−`
k

)
different Si containing S′. Therefore, almost surely, the number of neurons

x ∈ X with zx ∈ h is exactly
(
ck−`
k

)
. The rest is to show that

(
ck−`
k

)
< d − |S′|. In fact,

d−|S′|−
(
ck−`
k

)
= −`+

(
ck
k

)
−
(
ck−`
k

)
= −`+

`−1∑
i=0

(
ck−`+i
k−1

)
> −`+

`−1∑
i=0

1 = 0. The last inequality

is based on the fact that 0 < k − 1 < ck − `.

1Note that when k, c ≥ 2, we have d−
(
ck
k

)
+ ck < d.

4

The claim we showed above implies that for any S′ ⊆ S with size |S′| > d −
(
ck
k

)
, almost surely,

h :=
⋂
s∈S′

s is not the subspace formed by any match, because there are not enough vectors in h to

span the d− |S′| dimensional space h.

Next, we show that, almost surely, there is no match spanning a linear subspace of dimension
0 < ` <

(
ck
k

)
. Otherwise, by permuting the indices and considering only linearly indepen-

dent vectors in a match, we can assume without loss of generality that with non-zero probabil-
ity, ({x1, x2, · · · , x`}, {yσ(1), yσ(2), · · · , yσ(`)}) is a match spanning an ` dimensional space. In
our procedure, zxi is a unit vector randomly picked from the space ti =

⋂
s∈Si

s where Si is a
subset of S. Note that if ti is not a subspace of Ŷ := span({yσ(1), yσ(2), · · · , yσ(`)}), then al-
most surely, zxi

doesn’t belong to Ŷ . Therefore, ignoring the event of probability zero, we know

that with non-zero probability every ti is a subspace of Ŷ for i = 1, 2, · · · , `, i.e.,
∑̀
i=1

ti ⊆ Ŷ .

Here, the summation is over linear subspaces and the sum of linear subspaces is defined to be
the linear space spanned by the subspaces. Using the fact that A⊥ + B⊥ = (A ∩ B)⊥, we have

ti =
⋂
s∈Si

(s⊥)⊥ = (
∑
s∈Si

s⊥)⊥, so
∑̀
i=1

ti = (
⋂̀
i=1

∑
s∈Si

s⊥)⊥ = (
∑
s∈

⋂`
i=1 Si

s⊥)⊥. The correctness

of the last equality is because s⊥ = span({ns}) are linearly independent for different s (see Claim

A.1). Therefore,
∑̀
i=1

ti =
⋂
s∈

⋂`
i=1 Si

s, so the dimension of
∑̀
i=1

ti is d−|
⋂̀
i=1

Si| while the dimension

of Ŷ is `, and thus d− |
⋂̀
i=1

Si| ≤ ` <
(
ck
k

)
. According to the claim we showed before, the number

of neurons in X with zx belonging to
∑̀
i=1

ti is almost surely less than d− |
⋂̀
i=1

Si| ≤ `, which is a

contradiction.

Then, we show that, almost surely, (zx)x∈X for X ⊆ X with size |X| ≤
(
ck
k

)
is linearly independent,

and by symmetry this also holds for Y ⊆ Y . Otherwise, the smallest subset X making (zx)x∈X
not linearly independent with non-zero probability has size ` ≤

(
ck
k

)
. Without loss of generality, we

assume X = {x1, x2, · · · , x`}. X has the minimum size implies that, almost surely conditioned on
(zx)x∈X being not linearly independent, zxi ∈ span({zx : x ∈ X\{xi}}) = span({zx : x ∈ X})
for every 1 ≤ i ≤ `. According to our procedure, zxi is randomly picked from ti, and as before,
we know that every ti is a subspace of span({zx : x ∈ X\{xi}}) = span({zx : x ∈ X})
for i = 1, 2, · · · , ` with non-zero probability. Therefore, we know with non-zero probability,∑̀
i=1

ti ⊆ span({zx : x ∈ X}) has dimension at most ` − 1 <
(
ck
k

)
, which leads to the same

contradiction as before.

Finally, for any S′ ⊆ S with size |S′| = d −
(
ck
k

)
, we show that, almost surely, h :=

⋂
s∈S′

s is the

subspace spanned by a match. In this case, the dimension of h is
(
ck
k

)
and there are

(
ck
k

)
vectors

in (vx)x∈X (and in (vy)y∈Y) belonging to h according to our procedure. These vectors are almost
surely linearly independent as we have shown before, so they span h, forming a match.

As we showed above, almost surely, every S′ ⊆ S with size |S′| = d−
(
ck
k

)
is a simple match, so

there are
(d−(ckk)+ck

d−(ckk)

)
simple matches, which is roughly dck when d is very large.

The following lemma shows that we cannot remove the stability assumption, even when the instance
satisfies π

2 -strong linear independence (orthogonality).

Lemma D.2. ∀ε ∈ (0, 13), there exist instances (zv)v∈X∪Y satisfying π
2 -strong linear independence

with exponential number of simple ε-approximate matches.

Proof. Let X = {x1, x2, · · · , xn} and Y = {y1, y2, · · · , yn}. Suppose the dimension d is equal
to n. (If we want d > n, we can append zeros to the coordinate of every vector.) Let zxi

=

5

(0, 0, · · · , 0︸ ︷︷ ︸
i−1

, 1, 0, 0, · · · , 0︸ ︷︷ ︸
n−i

) ∈ Rn. Before we construct zyi , we first consider a sequence of matrices

A20 , A21 , A22 , · · · defined in the following way:

1. A1 = [1];

2. A2m =

[
Am Am
−ATm ATm

]
.

We choose n to be a power of 2. It’s easy to show by induction that AnATn = ATnAn = nI,An +
ATn = 2I and every element on the diagonal of An is 1. Now we define wi ∈ Rn to be the vector
whose coordinate is the ith column of An for i = 1, 2, · · · , n. We have the following:

1. |wi| =
√
n;

2. wi ·wj = 0 for i 6= j;

3. wizxi
= 1;

4. wizxj = ±1;

5. wizxj
+wjzxi

= 0 for i 6= j.

Let δ =
√

2ε2

n . We define zyi = (
√

1− (n− 1)δ2 − δ)zxi
+ δwi. Now we have the following:

1. |zyi | = 1;

2. zyi · zyj = 0 for i 6= j;

3. zxi
· zyi =

√
1− (n− 1)δ2;

4. zxi
· zyj = ±δ for i 6= j.

Now, let’s consider an ε-approximate match (X,Y) in (X ,Y). Suppose yi ∈ Y . We show by
contradiction that xi ∈ X . Suppose xi /∈ X . Then dist(zyi , span(zX)) =

√
1− |X|δ2 ≥√

1− nδ2 =
√
1− 2ε2 > ε, which is a contradiction. Therefore, as long as yi ∈ Y , we know

xi ∈ X . For the same reason, as long as xi ∈ X , we know yi ∈ Y . Therefore, ∃S ⊆ {1, 2, · · · , n}
s.t. X = {xi : i ∈ S}, Y = {yi : i ∈ S}.
Now we show that ({xi : i ∈ S}, {yi : i ∈ S}) is an ε-approximate match if and only if |S| ≥ n

2 .
Actually, we have ∀j ∈ S,dist(zxj

, span({zyi : i ∈ S})) = dist(zyj , span({zxi
: i ∈ S})) =√

(n− |S|)δ2 =
√

2(n−|S|)
n ε, and we know

√
2(n−|S|)

n ε ≤ ε if and only if |S| ≥ n
2 . Therefore, the

number of simple matches is
(
n
dn2 e
)
, which is exponential in n.

E Additional Experiment Results

E.1 Different Architectures

Besides ResNet18, VGG16 and ResNet34, we also train differently initialized neural networks like
VGG11 and VGG13. Figure 1 shows the maximum matching similarities of all the layers of VGG13
and ResNet10. The result is similar to what is mentioned in Section 5, which implies that our
conclusions might apply on most modern deep networks.

6

(a) CIFAR10-VGG11 (b) CIFAR10-VGG13

(c) CIFAR10-VGG16

Figure 1: Maximum matching similarities of all the layers of different architectures under various ε.

(a) Two untrained networks using the same distribution
for random initialization (b) Untrained vs. Fine-Trained

Figure 2: Maximum match similarity between networks at different stages. Figure(a) shows the
similarity of two untrained network. Figure(b) shows the similarity of the same network at different
stages.

E.2 Details of Architecture

VGG stage1(64) stage2(128) stage3(256) stage4(512) stage5(512) accuracy
vgg11 conv×1 conv×1 conv×1 conv×1 conv×1 91.10%
vgg13 conv×2 conv×2 conv×2 conv×2 conv×2 92.78%
vgg16 conv×2 conv×2 conv×3 conv×3 conv×3 92.84%
ResNet stage1(64) stage2(128) stage3(256) stage4(512) accuracy
resnet18 block×2 block×2 block×2 block×2 94.24%
resnet34 block×3 block×4 block×6 block×3 95.33%
Table 1: Structure of architecture (fully connected layers are omitted) and validation accuracy

7

Figure 3: Visualization of neurons in fc2. Each row includes top 9 images that maximize the activation
of one neuron. The neurons in the same network are illustrated on the same side.

E.3 Max Match during Training

As can be seen in Figure 2, after initialization, two untrained networks show similarity to some extent,
while the untrained network and the trained network are much more different with each other. We
believe the similarity between two untrained networks is due to the fact that the initialized networks
take all its parameters from the same distributions like Xaiver initialization. Since we have many
neurons that can be seen as drawn from the same distribution, we may observe phenomenon like this.
Meanwhile, after training, the network turns to be quite different.

E.4 Neuron Visualization

Our experiments show that there exist a few simple matches of small size. We randomly choose a
pair of networks to produce two simple matches for two fully connected layers and visualize them
following the common practice. Figure 3 and 4 visualize top 9 images that maximize the activation
of each neuron in simple matches.

8

Figure 4: Visualization of neurons in fc1. Each row includes top 9 images that maximize the activation
of one neuron. The neurons in the same network are illustrated on the same side.

9

	Omitted Proofs in Section 3
	Omitted Proofs in Section 4
	Complicated Aspects of the Structure of Matches
	Instances without Strong Linear Independence or Stability
	Additional Experiment Results
	Different Architectures
	Details of Architecture
	Max Match during Training
	Neuron Visualization

