
A Preliminaries

A.1 Contraction Lemmas

Lemma 1 (e.g. [25]). Let F be any scalar-valued function class and �
1

, . . . ,�n be any sequence of
functions where �t ∶ R→ R is L-Lipschitz. Then

E✏ sup
f∈F

n�
t=1 ✏t�t(f(xt)) ≤ L ⋅E✏ sup

f∈F
n�
t=1 ✏tf(xt). (9)

The following is a weighted generalization of the vector-valued Lipschitz contraction inequality.
Lemma 2. Let F ⊆ (X → RK), and let ht ∶ RK → R be a sequence of functions for t ∈ [n]. Suppose
each ht is 1-Lipschitz with respect to �z�At

∶=��z,Atz�, where At ∈ RK×K is positive semidefinite.
Then

E✏ sup
f∈F

n�
t=1 ✏tht(f(xt)) ≤√2E✏ sup

f∈F
n�
t=1�✏t,A

1�2
t f(xt)�. (10)

Proof sketch for Lemma 2. Same proof as Theorem 3 in [30], with the additional observation that
�z�At

= �A1�2
t z�

2

.

Lemma 3. Let G be a class of vector-valued functions whose output space forms M blocks of
vectors, i.e. each g ∈ G has the form g ∶ Z → Rd1+d2+�+dM , where g(z)i ∈ Rdi denotes the ith
block. Let ht ∶ Rd1+d2+�+dM → R, be a sequence of functions for t ∈ [n] that satisfy the following
block-wise Lipschitz property: For any assignment a

1

, . . . , aM with each ai ∈ Rdi , ht(a1, . . . , aM)
is Li-Lipschitz with respect to ai in the `

2

norm. Then

E✏ sup
g∈G

n�
t=1ht(g1(zt), . . . , gM(zt)) ≤√2M M�

i=1
LiE✏ sup

f∈F
n�
t=1�✏t, gi(zt)�.

Proof. Immediate consequence of Lemma 2, along with sub-additivity of the supremum.

A.2 Bound for Vector-Valued Random Variables

Definition 5. For any vector space V , a convex function  ∶ V → R is �-smooth with respect to a
norm �⋅� if

 (x) ≤  (y) + �∇ (y), x − y� + �
2

�x − y�2 ∀x, y ∈ V.
A norm �⋅� is said to be �-smooth if the function  (x) = 1

2

�x�2 is �-smooth with respect to �⋅�.
Theorem 7. Let �⋅� be any norm for which there exists  such that  (x) ≥ 1

2

�x�2,  (0) = 0, and  
is �-smooth with respect to �⋅�. Then

E✏� n�
t=1 ✏txt� ≤

�����
n�
t=1�xt�2.

The reader may consult [34] for a high-probability version of this theorem.
Fact 1. The following spaces and norms satisfy the preconditions of Theorem 7:

• (Rd, `p) for p ≥ 2, with � = p − 1 [19].

• (Rd, `∞), with � = O(log d) [19].

• (Rd1×d2 , �⋅��), with � = O(log(d
1

+ d
2

)) [22].

Proof of Theorem 7. Using Jensen’s inequality and the upper bound property of  we have

E✏� n�
t=1 ✏txt� ≤

����E✏� n�
t=1 ✏txt�

2 ≤√2 ⋅
����E✏ � n�

t=1 ✏txt�.
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Applying the smoothness property at time n, and using that ✏n is independent of ✏
1

, . . . , ✏n−1:����E✏ � n�
t=1 ✏txt� ≤

����E✏� �n−1�
t=1 ✏txt� + � �n−1�

t=1 ✏txt�, ✏nxn� + �
2

�xn�2� =
����E✏ �n−1�

t=1 ✏txt� + �
2

�xn�2.
The result follows by repeating this argument from time t = n − 1 to t = 1.

B Proofs from Section 2

Theorem 8 ([5], Theorem A.2/Lemma A.5). Let F ⊆ (Z → R) be a class of functions. Let
Z
1

, . . . , Zn ∼ D i.i.d. for some distribution D. Then with probability at least 1 − � over the draw of
Z
1∶n,

E sup

f∈F �EZ f(Z) − 1

n

n�
t=1 f(Zt)� ≤ 4E✏ sup

f∈F
1

n

n�
t=1 ✏tf(Zt) + 4 sup

f∈F sup

z∈Z �f(Z)� ⋅
log

�2
�
�

n
. (11)

Lemma 4 (Uniform convergence for vector-valued functions). Let G ⊆ {g ∶ Z →B} for arbitrary
set Z and vector space B. Let Z

1

, . . . , Zn ∼ D i.i.d. for some distribution D. Let a norm �⋅� over B
be fixed. Then with probability at least 1 − � over the draw of Z

1∶n,

E sup

g∈G�EZ g(Z) − 1

n

n�
t=1 g(Zt)� ≤ 4E✏ sup

g∈G�
1

n

n�
t=1 ✏tg(Zt)� + 4 sup

g∈G sup

Z∈Z�g(Z)� ⋅
log

�2
�
�

n
(12)

for some absolute constant c > 0.

Proof of Lemma 4. This follows immediately by applying Theorem 8 to the expanded function
class F ∶= {Z � �g(Z), v� � g ∈ G, �v�� ≤ 1}.
Proof of Proposition 1. This is a direct consequence of McDiarmid’s inequality. Consider any
vector-valued function class of functions G. Let Z

1

, . . . , Zn ∼ D i.i.d. for some distribution D. Then
McDiarmid’s inequality implies that with probability at least 1 − � over the draw of Z

1∶n,

sup

g∈G�EZ g(Z) − 1

n

n�
t=1 g(Zt)� ≤ E sup

g∈G�EZ g(Z) − 1

n

n�
t=1 g(Zt)� + c ⋅ sup

g∈G sup

Z∈Z�g(Z)� ⋅
���� log

�2
�
�

n
.

(13)

Proof of Proposition 2. This follows by applying the uniform convergence lemma, Lemma 4, to the
class G = {(x, y)� ∇`(w ;x, y) � w ∈W}.
Proof of Theorem 1. We write

E✏ sup
w∈W�

n�
t=1 ✏t∇(Gt(Ft(w)))� = E✏ sup

w∈W sup

v∈B�∶�v��≤1
n�
t=1 ✏t�∇(Gt(Ft(w))), v�,

Using the chain rule for differentiation we have

�∇(Gt(Ft(w))), v� = �(∇Gt)(Ft(w)), (�∇Ft,k(w), v�)k∈[K]�.
We now introduce new functions that relabel the quantities in this expression. Let h ∶ R2K → R be
given by h(a, b) = �a, b�, let f

1

∶W → RK be given by f
1

(w) = (∇Gt)(Ft(w)) and f
2

be given by
f
2

(w, v) = (�∇Ft,k(w), v�)k∈[K]. We apply the block-wise contraction lemma Lemma 3 with one
block for f

1

and one block for f
2

to conclude

E✏ sup
w∈W sup

v∈B�∶�v��≤1
n�
t=1 ✏th(f1(w), f2(w, v))

≤ 2LF E✏ sup
w∈W sup

v∈B�∶�v��≤1
n�
t=1�✏t, f1(w)� + 2LGE✏ sup

w∈W sup

v∈B�∶�v��≤1
n�
t=1�✏t, f2(w, v)�,

which establishes the result after expanding terms. All that must be verified is that the assumptions
on the norm bounds for ∇Gt and ∇Ft in the theorem statement ensure the the Lipschitz requirement
in the statement of Lemma 3 is met.
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C Proofs from Section 3

For all proofs in this section we adopt the notation s ∶= �w��
0

, and use c > 0 to denote an absolute
constant whose precise value depends on context.

C.1 Generalized Linear Models

Proof of Theorem 3. To begin, we apply Proposition 1 and Proposition 2 to conclude that whenever(↵, µ)-PL holds, with probability at least 1−� over the examples {(xt, yt)}nt=1, any learning algorithm
ŵalg ∈W satisfies

LD(ŵalg) −L� ≤ c ⋅ µ���∇L̂n(ŵalg)�↵ + ��
R�⋅�(∇` ○W ;x

1∶n, y1∶n)
n

+ 2C�R
�

log(1��)
n

�
�
↵�
�.
(14)

Here c > 0 is an absolute constant and we have used that �∇`(w ;xt, yt)� ≤ 2C�R.

Smooth high-dimensional setup For the general smooth norm pair setup in (14), Lemma 5 and
Lemma 7 imply

LD(ŵalg) −L� ≤ c ⋅ BC�
c�

�
��∇L̂n(ŵalg)� + ��BR2C2

�

�
�

n
+ 2C�R

�
log(1��)

n

�
�
�
�

= µh ⋅ �∇L̂n(ŵalg)� + Ch√
n
.

where we recall Ch = c ⋅ B2R2C3
�

�
�+2C2

�BR
�

log(1��)
c�

and µh = c ⋅ BC�

c�
.

Low-dimensional `
2

�`
2

setup For the low-dimension `
2

�`
2

pair setup in (14), Lemma 5 and
Lemma 7 imply

LD(ŵalg) −L� ≤ c ⋅ C�
4c3��min

(⌃)
����∇L̂n(ŵalg)�2 + ��BR2C2

�

�
1

n
+ 2C�R

�
log(1��)

n

�
�
2���

= µl

�
min

(⌃) ⋅ �∇L̂n(ŵalg)�2 + Cl

n ⋅ �
min

(⌃) ,
where we have used that the `

2

norm is 1-smooth in Lemma 7. Recall that Cl = c ⋅
2C5

�R
4B2+8C3

�R
2
log(1��)

4c3�
and µl = c ⋅ C�

4c3�
.

Sparse `∞�`1 setup For the sparse `∞�`1 pair setup in (14), Lemma 5 and Lemma 7 imply

LD(ŵalg) −L� ≤ c ⋅ C�s

c3� min

(⌃)
����∇L̂n(ŵalg)�2 + ��BR2C2

�

�
log d

n
+ 2C�R

�
log(1��)

n

�
�
2���

= µs ⋅ s
 
min

(⌃) ⋅ �∇L̂n(ŵalg)�2 + s

n
⋅ Cs

 
min

(⌃) ,
where we have used that the `∞ norm has the smoothness property with � = O(log(d)) in Lemma 7.
Recall that Cs = c ⋅ 2C5

�R
4B2

log(d)+8C3
�R

2
log(1��)

c3�
and µs = c ⋅ C�

c3�
.

Lemma 5 (GD condition for the GLM). Consider the generalized linear model setup of Section 3.

• When �⋅���⋅�� are any dual norm pair, we have �1, BC�

c�
�-GD:

LD(w) −LD(w�) ≤ BC�
c�
�∇LD(w)� ∀w ∈W . (15)
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• In the `
2

�`
2

setup, we have �2, C�

4c3��min(⌃)�-GD:

LD(w) −LD(w�) ≤ C�
4c3��min

(⌃)�∇LD(w)�22 ∀w ∈W . (16)

• In the sparse `∞�`1 setup, where �w��
0

≤ s, we have �2, C�s
c3� min(⌃)�-GD:

LD(w) −LD(w�) ≤ C�s

c3� min

(⌃)�∇LD(w)�2∞ ∀w ∈W . (17)

Proof of Lemma 5.
Upper bound for excess risk. We first prove the following intermediate upper bound:

LD(w) −LD(w�) ≤ C�
2c�
�∇LD(w),w −w��. (18)

Letting w ∈W be fixed, we have

�∇LD(w),w −w�� = 2E(x,y)[(�(�w,x� − y)�′(�w,x�)�w −w�, x�].
Using the well-specified assumption:

= 2Ex[(�(�w,x� − �(�w�, x�))�′(�w,x�)�w −w�, x�].
We now consider the term inside the expectation. Since � is increasing we have

�(�w,x�−�(�w�, x�))�′(�w,x�)�w −w�, x� = ��(�w,x� − �(�w�, x�))� ⋅ ��w −w�, x�� ⋅�′(�w,x�)
point-wise. We apply two lower bounds. First, �′(�w,x�) > c� by assumption. Second, Lipschitzness
of � implies ��(�w,x�) − �(�w�, x�)� ≤ C� ��w −w�, x��.
Combining these inequalities, we also obtain the following inequality in expectation over x:

Ex(�(�w,x�) − �(�w�, x�))2 ≤ C�
2c�
�∇LD(w),w −w��.

Lastly, since the model is well-specified we have

LD(w) −LD(w�) = Ex(�(�w,x�) − �(�w�, x�))2,
by a standard argument:

LD(w) −LD(w�) = Ex,y��2(�w,x�) + y2 − 2�(�w,x�)y − �2(�w�, x�) − y2 + 2�(�w�, x�)y�
= Ex��2(�w,x�) − 2�(�w,x�)�(�w�, x�) + �2(�w�, x�)�
= Ex(�(�w,x�) − �(�w�, x�))2.

Proving the GD conditions. With the inequality (18) established the various GD inequalities follow
in quick succession.

• �1, BC�

c�
�-GD:

To prove this inequality, simply user Hölder’s inequality to obtain the upper bound,

�∇LD(w),w −w�� ≤ 2B�∇LD(w)�.
• �2, C�

4c3��min(E[xx�])�-GD:

Resuming from (18) we have

LD(w) −LD(w�) ≤ C�
2c�
�∇LD(w),w −w��.
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Let PX denote the orthogonal projection onto span(E[xx�]). Note that ∇`(w ;x, y) is parallel to
x, we can thus introduce the projection matrix PX while preserving the inner product

= C�
2c�
�PX∇LD(w), PX (w −w�)�

Applying Cauchy-Schwarz:

≤ C�
2c�
�∇LD(w)�

2

⋅ �PX (w −w�)�
2

. (19)

What remains is to relate the gradient norm to the term �PX (w −w�)�
2

. We proceed with another
lower bound argument similar to the one used to establish (18),

�∇LD(w),w −w�� = 2E(x,y)[(�(�w,x� − y)�′(�w,x�)�w −w�, x�].
Using the well-specified assumption once more:

= 2Ex[(�(�w,x� − �(�w�, x�))�′(�w,x�)�w −w�, x�].
Monotonicity of �, implies the argument to the expectation is non-negative pointwise, so we have
the lower bound,

≥ 2c� Ex[(�(�w,x� − �(�w�, x�))�w −w�, x�].
Consider a particular draw of x and assume �w,x� ≥ �w�, x� without loss of generality. Using the
mean value theorem, there is some s ∈ [�w�, x�, �w,x�] such that

(�(�w,x� − �(�w�, x�))�w −w�, x� = �w −w�, x�2�′(s) ≥ = �w −w�, x�2c�.
Grouping terms, we have shown

�PX∇LD(w), PX (w −w�)� = �∇LD(w),w −w�� ≥ 2c2� E�w −w�, x�2
= 2c2��w −w�,E�xx��(w −w�)� (20)

≥ 2c2��min

�E�xx����PX (w −w�)�2
2

.

In other words, by rearranging and applying Cauchy-Schwarz we have

�PX (w −w�)�
2

≤ 1

2c2��min

(E[xx�]) ⋅ �∇LD(w)�2.
Combining this inequality with (19), we have

LD(w) −LD(w�) ≤ C�
4c3��min

(E[xx�]) ⋅ �∇LD(w)�22.
• �2, C�s

c3� min(E[xx�])�-GD:

Using the inequality (20) from the preceeding GD proof, we have

�∇LD(w),w −w�� ≥ 2c2��w −w�,E�xx��(w −w�)�.
By the assumption that �w�

1

≤ �w��
1

, we apply Lemma 6 to conclude that 1) w−w� ∈ C(S(w�),1)
and 2) �w −w��

1

≤ 2√s�w −w��
2

. The first fact implies that

�w −w�,E�xx��(w −w�)� ≥  
min

(E�xx��)�w −w��2
2

.

Rearranging, we have

�w −w��
2

≤ 1

2c2� min

(E[xx�])
�∇LD(w),w −w���w −w��

2

≤ 1

2c2� min

(E[xx�])
�∇LD(w)�∞�w −w��1�w −w��

2

≤
√
s

c2� min

(E[xx�])�∇LD(w)�∞.
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On the other hand, from (18) we have

LD(w) −LD(w�) ≤ C�
2c�
�∇LD(w),w −w��

≤ C�
2c�
�∇LD(w)�∞�w −w��1

≤ C�
√
s

c�
�∇LD(w)�∞�w −w��2.

Combining this with the preceding inequality yields the result.

The following utility lemma is a standard result in high-dimensional statistics (e.g. [41]).

Lemma 6. Let w,w� ∈ Rd. If �w�
1

≤ �w��
1

then w − w� =∶ ⌫ ∈ C(S(w�),1). Furthermore,�⌫�
1

≤ 2��S(w�)��⌫�
2

.

Proof of Lemma 6. Let S ∶= S(w�). Then the constraint that �w�
1

≤ �w�� implies

�w��
1

≥ �w�
1

= �w� + ⌫�
1

= �w� + ⌫S�
1

+ �⌫SC �
1

≥ �w��
1

− �⌫S�
1

+ �⌫SC �
1

.

Rearranging, this implies �⌫SC �
1

≤ �⌫S�
1

, so the first result is established.

For the second result, ⌫ ∈ C(S,1) implies �⌫�
1

= �⌫S�
1

+ �⌫SC �
1

≤ 2�⌫S�
1

≤ 2

��S��⌫S�
2

≤
2

��S��⌫�
2

.

Lemma 7. Let the norm �⋅� satisfy the smoothness property of Theorem 7 with constant �. Then
the empirical loss gradient for the generalized linear model setting enjoys the normed Rademacher
complexity bound,

E✏ sup
w∈W�

n�
t=1 ✏t∇`(w ;xt, yt)� ≤ O�BR2C2

�

�
�n�. (21)

Proof of Lemma 7. Let Gt(s) = (�(s) − yt)2 and Ft(w) = �w,xt�, so that `(w ;xt, yt) =
Gt(Ft(w)).
Observe that G′t(s) = 2(�(s) − yt)�′(s) and ∇Ft(w) = xt, so our assumptions imply that that�G′t(s)� ≤ 2C� and �∇Ft(w)� ≤ R. We can thus apply Theorem 1 to conclude

E✏ sup
w∈W�

n�
t=1 ✏t∇`(w ;xt, yt)� ≤ 2RE✏ sup

w∈W
n�
t=1 ✏tG

′
t(�w,xt�) + 4C� E✏� n�

t=1 ✏txt�.
For the first term on the left-hand side, observe that for any s, �G′′t (s)� ≤ 2��′′(s)�+2��′(s)�2 ≤ 4C2

� , so
G′t is 4C2

�-Lipschitz. The classical scalar Lipschitz contraction inequality for Rademacher complexity
(Lemma 1) therefore implies

E✏ sup
w∈W

n�
t=1 ✏tG

′
t(�w,xt�) ≤ 4C2

� E✏ sup
w∈W

n�
t=1 ✏t�w,xt� = 4C2

�BE✏� n�
t=1 ✏txt�.

Finally, by our smoothness assumption on the norm, Theorem 7 implies

E✏� n�
t=1 ✏txt� ≤�2�R2n.
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C.2 Robust Regression

Proof of Theorem 4. This proof follows the same template as Theorem 3. We use Proposition 1 and
Proposition 2 to conclude that whenever (↵, µ)-PL holds, with probability at least 1 − � over the
examples {(xt, yt)}nt=1, any learning algorithm ŵalg satisfies

LD(ŵalg)−L� ≤ c ⋅µ���∇L̂n(ŵalg)�↵ + ��
R�⋅�(∇` ○W ;x

1∶n, y1∶n)
n

+C⇢R
�

log(1��)
n

�
�
↵�
�, (22)

where c > 0 is an absolute constant and we have used that �∇`(w ;xt, yt)� ≤ C⇢R with probability 1.

Smooth high-dimensional setup For the general smooth norm pair setup in (22), Lemma 8 and
Lemma 9 imply

LD(ŵalg) −L� ≤ c ⋅ BC⇢
c⇢

�
��∇L̂n(ŵalg)� + ��BR2C⇢

�
�

n
+C⇢R

�
log(1��)

n

�
�
�
�

= µh ⋅ �∇L̂n(ŵalg)� + Ch√
n
.

Where we recall Ch = c ⋅ B2R2C2
⇢

�
�+C2

⇢BR
�

log(1��)
c⇢

and µh = c ⋅ BC⇢

c⇢
.

Low-dimensional `
2

�`
2

setup For the low-dimension `
2

�`
2

pair setup in (22), Lemma 8 and
Lemma 9 imply

LD(ŵalg) −L� ≤ c ⋅ C⇢
2c2⇢�min

(⌃)
����∇L̂n(ŵalg)�2 + ��BR2C⇢

�
1

n
+C⇢R

�
log(1��)

n

�
�
2���

= µl

�
min

(⌃) ⋅ �∇L̂n(ŵalg)�2 + Cl

n ⋅ �
min

(⌃) ,
where we have used that the `

2

norm is 1-smooth in Lemma 7. Recall that Cl = c ⋅
C3

⇢R
4B2+C3

⇢R
2
log(1��)

c2⇢
and µl = c ⋅ C⇢

2c2⇢
.

Sparse `∞�`1 setup For the sparse `∞�`1 pair setup in (22), Lemma 8 and Lemma 9 imply

LD(ŵalg) −L� ≤ c ⋅ 2C⇢s

c2⇢ min

(⌃)
����∇L̂n(ŵalg)�2 + ��BR2C⇢

�
log d

n
+C⇢R

�
log(1��)

n

�
�
2���

= µs ⋅ s
 
min

(⌃) ⋅ �∇L̂n(ŵalg)�2 + s

n
⋅ Cs

 
min

(⌃) ,
where we have used that the `∞ norm has the smoothness property with � = O(log(d)) in Lemma 7.

Recall that Cs = c ⋅ 4C3
⇢R

4B2
log(d)+4C3

⇢R
2
log(1��)

c2⇢
and µs = c ⋅ 2C⇢

c2⇢
.

Lemma 8 (GD condition for robust regression). Consider the robust regression setup of Section 3.

• When �⋅���⋅�� are any dual norm pair, we have �1, BC⇢

c⇢
�-GD:

LD(w) −LD(w�) ≤ BC⇢
c⇢
�∇LD(w)� ∀w ∈W . (23)
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• In the `
2

�`
2

setup, we have �2, C⇢

2c2⇢�min(⌃)�-GD:

LD(w) −LD(w�) ≤ C⇢
2c2⇢�min

(⌃)�∇LD(w)�22 ∀w ∈W . (24)

• In the sparse `∞�`1 setup, where �w��
0

≤ s, we have �2, 2C⇢s

c2⇢ min(⌃)�-GD:

LD(w) −LD(w�) ≤ 2C⇢s

c2⇢ min

(⌃)�∇LD(w)�2∞ ∀w ∈W . (25)

Proof of Lemma 8.
Excess risk upper bound. To begin, smoothness of ⇢ implies that for any s, s� ∈ S we have

⇢(s) − ⇢(s�) ≤ ≤ ⇢′(s�)(s − s�) + C⇢
2

(s − s�)2.
Since this holds point-wise, we use it to derive the following in-expectation bound

LD(w) −LD(w�) ≤ Ex,y[⇢(�w�, x� − y)�w −w�, x�] + C⇢
2

E�w −w�, x�2
= �∇LD(w�),w −w�� + C⇢

2

E�w −w�, x�2.
Note however that ∇LD(w�) = Ex,⇣[⇢′(−⇣)x] = 0,
since ⇣ is conditionally symmetric and ⇢′ is odd. We therefore have

LD(w) −LD(w�) ≤ C⇢
2

E�w −w�, x�2.
On the other hand, using the form of the gradient we have

�LD(w),w −w�� = Ex[E⇣ ⇢′(�w −w�, x� − ⇣)�w −w�, x�]= Ex[h(�w −w�, x�)�w −w�, x�].
To lower bound the term inside the expectation, consider a particular draw of x and assume�w −w�, x� ≥ 0; this is admissible because h, like ⇢′, is odd. Then we have

h(�w −w�, x�)�w −w�, x� = h(�w −w�, x�)
�w −w�, x� �w −w�, x�2 ≥ c⇢�w −w�, x�2,

where the last line follows because h(0) = 0 and h′(0) > c⇢. Since this holds pointwise, we simply
take the expectation to show that

�∇LD(w),w −w�� ≥ c⇢Ex�w −w�, x�2, (26)

and consequently the excess risk is bounded by

LD(w) −LD(w�) ≤ C⇢
2c⇢
�∇LD(w),w −w��. (27)

Proving the GD conditions. We now use (27) to establish the GD condition variants.

• �1, BC⇢

c⇢
�-GD:

Use Hölder’s inequality to obtain the upper bound,

�∇LD(w),w −w�� ≤ 2B�∇LD(w)�.
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• �2, C⇢

2c2⇢�min(⌃)�-GD:

Begin with

LD(w) −LD(w�) ≤ C⇢
2c⇢
�∇LD(w),w −w��.

Using the same reasoning as in Lemma 5, this is upper bounded by

≤ C⇢
2c⇢
�∇LD(w)�

2

⋅ �PX (w −w�)�
2

, (28)

where PX denotes the orthogonal projection onto span(⌃).
Recalling (26), it also holds that

�PX∇LD(w), PX (w −w�)� = �∇LD(w),w −w�� ≥ c⇢Ex�w −w�, x�2
= c⇢�w −w�,Ex�xxT �(w −w∗)�
= c⇢�w −w�,⌃(w −w�)� (29)

≥ c⇢�min

(⌃)�PX (w −w�)�2
2

.

Rearranging and applying Cauchy-Schwarz, we have

�PX (w −w�)�
2

≤ 1

c⇢�min

(⌃) ⋅ �∇LD(w)�2.
Combining this inequality with (28), we have

LD(w) −LD(w�) ≤ C⇢
2c2⇢�min

(⌃) ⋅ �∇LD(w)�22.
• �2, 2C⇢s

c2⇢ min(⌃)�-GD:

Using the inequality (29) from the `
2

�`
2

GD condition proof above

�∇LD(w),w −w�� ≥ c⇢�w −w�,⌃(w −w�)�.
By the assumption that �w�

1

≤ �w��
1

, we apply Lemma 6 to conclude that 1) w−w� ∈ C(S(w�),1)
and 2) �w −w��

1

≤ 2√s�w −w��
2

, and so

�w −w�,⌃(w −w�)� ≥  
min

(⌃)�w −w��2
2

.

Rearranging, and applying the �w −w��
1

≤ 2√s�w −w��
2

inequality:

�w −w��
2

≤ 1

c⇢ min

(⌃)
�∇LD(w),w −w���w −w��

2

≤ 1

c⇢ min

(⌃)
�∇LD(w)�∞�w −w��1�w −w��

2

≤ 2

√
s

c⇢ min

(⌃)�∇LD(w)�∞.
Finally, from (27) we have

LD(w) −LD(w�) ≤ C⇢
2c⇢
�∇LD(w),w −w��

≤ C⇢
2c⇢
�∇LD(w)�∞�w −w��1

≤ C⇢
√
s

c⇢
�∇LD(w)�∞�w −w��2.

Combining the two inequalities gives the final result.
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Lemma 9. Let the norm �⋅� satisfy the smoothness property (see Theorem 7) with constant �. Then
the gradient for robust regression satisfies the following normed Rademacher complexity bound:

E✏ sup
w∈W�

n�
t=1 ✏t∇`(w ;xt, yt)� ≤ O�BR2C⇢

�
�n�. (30)

Proof of Lemma 9. Let Gt(s) = ⇢(s − yt) and Ft(w) = �w,xt�, so that `(w ;xt, yt) = Gt(Ft(w)).
Then G′t(s) = ⇢′(s − yt) and ∇Ft(w) = xt, so our assumptions imply that that �G′t(s)� ≤ C⇢ and�∇Ft(w)� ≤ R. We apply Theorem 1 to conclude

E✏ sup
w∈W�

n�
t=1 ✏t∇`(w ;xt, yt)� ≤ 2RE✏ sup

w∈W
n�
t=1 ✏tG

′
t(�w,xt�) + 2C⇢E✏� n�

t=1 ✏txt�.
For the first term on the left-hand side, we have that for any s, �G′′t (s)� = 2�⇢′′(s − yt)� ≤ 2C⇢, so G′t
is 2C�-Lipschitz. Then the by scalar contraction for Rademacher complexity (Lemma 1),

E✏ sup
w∈W

n�
t=1 ✏tG

′
t(�w,xt�) ≤ 2C⇢E✏ sup

w∈W
n�
t=1 ✏t�w,xt� = 2C⇢BE✏� n�

t=1 ✏txt�.
Finally, the smoothness assumption on the norm (via Theorem 7) implies

E✏� n�
t=1 ✏txt� ≤�2�R2n.

Proof of Proposition 3. Observe that Assumption 1 and Assumption 2 respectively imply that�∇LD(w�)� = 0 for the GLM and RR settings. Begin by invoking Theorem 3. It is immediate that
any algorithm that guarantees E�∇L̂n(ŵalg)� ≤ 1�√n will obtain the claimed sample complexity
bound (the high-probability statement Theorem 3 immediately yields an in-expectation statement
due to boundedness), so all we must do is verify that such a point exists. Proposition 2 along with
Lemma 7 and Lemma 9 respectively indeed imply that �∇L̂n(w�)�

2

≤ C�√n for both settings.

For completeness, we show below that both models indeed have Lipschitz gradients, and so standard
smooth optimizers can be applied to the empirical loss.

Generalized Linear Model. Observe that for any (x, y) pair we have

�∇`(w ;x, y) −∇`(w′ ;x, y)�
2

= 2�x�
2

�(�(�w,x�) − y)�′(�w,x�) − (�(�w′, x�) − y)�′(�w′, x�)�.
Letting f(s) = (�(s) − y)�′(s), we see that the assumption on the loss guarantees �f ′(s)� ≤ 3C2

� , so
we have

�∇`(w ;x, y) −∇`(w′ ;x, y)�
2

≤ 6C2

�R��w −w′, x�� ≤ ≤ 6C2

�R
2�w −w′�

2

,

so smoothness is established.

Robust Regression. Following a similar calculation to the GLM case, we have

�∇`(w ;x, y) −∇`(w′ ;x, y)�
2

= �x�
2

�⇢′(�w,x� − y) − ⇢′(�w′, x� − y)�
≤ C⇢�x�

2

��w −w�, x��
≤ C⇢�x�2

2

�w −w��
2≤ C⇢R2�w −w��

2

.

Now let f(s) = (�(s) − y)�′(s), and observe that �f ′(s)� ≤ 3C2

� , so we have

�∇`(w ;x, y) −∇`(w′ ;x, y)�
2

≤ 6C2

�R��w −w′, x�� ≤ ≤ 6C2

�R
2�w −w′�

2

.
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C.3 Further Discussion

Detailed comparison with [31] We now sketch in more detail the relation between the rates of
Theorem 3 and Theorem 4 and those of [31]. We focus on the fast rate regime, and on the case
R =√d (e.g., when x ∼N (0, Id×d)).

• Uniform convergence. Their uniform convergence bounds scale as O(⌧�d�n), where ⌧ is
the subgaussian parameter for the data x, whereas our uniform convergence bounds scale
as O(R2

�
1�n). When R = √d both bounds scale as O(d�1�n), but our bounds do not

depend on d when R is constant, whereas their bound always pays
√
d.

• Parameter convergence. The final result of [31] is a parameter convergence bound of the

form �ŵalg −w∗�
2

≤ O� ⌧
�⌧2

�
d
n
� (see Theorem 4/6; Eqs. (106) and (96)). Our main result

for the “low-dimensional” setup in Theorem 3 and Theorem 4 is an excess risk bound of the
form LD(ŵalg) −LD(w∗) ≤ O� R4

�min(⌃)n� which implies a parameter convergence bound

of �ŵalg −w∗�
2

≤ R2

�min(⌃)√n
(using similar reasoning as in the proof of Lemma 5 and

Lemma 8). With ⌧ = R = √d and Assumptions 6 and 9 in [31], we have �
min

(⌃) = �⌧2,

and so again both the bounds resolve to O� d
�min(⌃)√n

�.
Analysis of regularized stationary point finding for high-dimensional setting Here we show
that any algorithm that finds a stationary point of the regularized empirical loss generically succeeds
obtains optimal sample complexity in the high-dimensional/norm-based setting. We focus on the
generalized linear model in the Euclidean setting.

Let r(w) = �
2

�w�2
2

. Define L�D(w) = LD(w) + r(w) and L̂�n(w) = L̂n(w) + r(w). We consider
any algorithm that returns a point ŵ with ∇L̂�n(ŵ) = 0, i.e. any stationary point of the regularized
empirical risk.

Theorem 9. Consider the generalized linear model setting. Let ŵ be any point with ∇L̂�n(ŵ) = 0.
Suppose that �w��

2

= 1 and C�,R > 1. Then there is some absolute constant c > 0 such that for any
fixed � > 0, if the regularization parameter � satisfies

� > c ⋅
����R4C6

�

c2�
⋅ log(log (C�Rn)��)

n
,

then with probability at least 1 − �,

LD(ŵ) −LD(w�) ≤ O��
R2C4

�

c2�
⋅
�

log(log (C�Rn)��)
n

�
�.

Theorem 9 easily extends to the robust regression setting by replacing invocations of Lemma 7 with
Lemma 9 and use of (18) with (27).

Proof of Theorem 9. Recall that w� minimizes the unregularized population risk, and that�w��
2

= 1. The technical challenge is to apply Lemma 7 even though we lack a good a-priori upper
bound on the norm of ŵ. We proceed by splitting the analysis into two cases. The idea is that if�ŵ�

2

≤ �w��
2

we can apply Lemma 7 directly with no additional difficulty. On other hand, when�ŵ�
2

≥ �w��
2

the regularized population risk satisfies the (2,O(1��))-GD inequality, which is
enough to show that excess risk is small even though �ŵ�

2

could be larger than �w��
2

.

Case 1: �ŵ�
2

≥ �w��
2

.

Let �W = �w ∈ Rd � �w�
2

≥ �w��
2

�, so that ŵ ∈ �W . Observe that since r(w) is �-strongly
convex it satisfies r(w) − r(w�) ≤ �∇r(w),w −w�� − �

2

�w −w��2
2

for all w. Moreover, if w ∈�W ,
we have

�∇r(w),w −w�� ≥ r(w) − r(w�) + �
2

�w −w��2
2

≥ 0.
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Using (18) and the definition of w�, along with the strong convexity of r, we get

L�D(w) −L�D(w�) ≤ C�
2c�
�∇LD(w),w −w�� + �∇r(w),w −w�� − �

2

�w −w��2
2

.

Since �∇LD(w),w −w�� ≥ 0, this is upper bounded by

L�D(w) −L�D(w�) ≤ C�
c�
�∇LD(w),w −w�� + �∇r(w),w −w�� − �

2

�w −w��2
2

.

Using the non-negativity of �∇r(w),w −w�� over�W , and that C��c� > 1, this implies

L�D(w) −L�D(w�) ≤ C�
c�
�∇L�D(w),w −w�� − �

2

�w −w��2
2

∀w ∈�W.

Applying Cauchy-Schwarz:

≤ C�
c�
�∇L�D(w)�

2

�w −w��
2

− �
2

�w −w��2
2

∀w ∈�W.

Using the AM-GM inequality:

≤ C2

�

c2��
�∇L�D(w)�2

2

∀w ∈�W.

Using that ŵ ∈�W , and that ∇L̂�n(ŵ) = 0, we have

L�D(ŵ) −L�D(w�) ≤ C2

�

c2��
�∇L�D(ŵ) −∇L̂�n(ŵ)�2

2

. (31)

Observe that since ŵ is a stationary point of the empirical risk, ∇L̂n(ŵ) = −�ŵ, and so �ŵ�
2

≤
1

�
�∇L̂n(ŵ)�

2

≤ 2C�R
�

with probability 1. Thus, if we apply Lemma 10 with B
max

= 2C�R
�

, we get
that with probability at least 1 − �,

�∇L�D(ŵ) −∇L̂�n(ŵ)�
2

≤ O���ŵ�2R2C2

�

�
1

n
+C�R

�
log(log(C�R��)��)

n

�
�,

where we have used additionally that the regularization term does not depend on data. Combining
this bound with (31), and using that ŵ ∈�W and the elementary inequality (a + b)2 ≤ 2(a2 + b2), we
see that there exist constants c, c′ > 0 such that

L�D(ŵ) −L�D(w�) ≤ c ⋅ �ŵ�2
2

⋅ R4C6

�

�c2�
⋅ 1
n
+ c′ ⋅ R2C4

�

�c2�
⋅ log(log(C�R��)��)

n
.

Expanding the definition of the regularized excess risk, this is equivalent to

LD(ŵ) −LD(w�) ≤ � + �ŵ�2
2

⋅ �c ⋅ R4C6

�

�c2�
⋅ 1
n
− �� + c′ ⋅ R2C4

�

�c2�
⋅ log(log(C�R��)��)

n
.

Observe that if � >�c ⋅ R4C6
�

c2�
⋅ 1
n

the middle term in this expression is at most zero. We choose

� >
����c ⋅ R4C6

�

c2�
⋅ log(log (C�Rn)��)

n
.

Substituting choice this into the expression above leads to a final bound of

LD(ŵ) −LD(w�) ≤ O��
R2C3

�

c�
⋅
�

log(log (C�Rn)��)
n

�
�.

24



Case 2: �ŵ�
2

≤ �w��
2

.

Recall that ∇L̂�n(ŵ) = 0. This implies ∇L̂n(ŵ) = −�ŵ, and so �∇L̂n(ŵ)�
2

≤ ��ŵ�
2

≤ �.
Using (18) we have

LD(ŵ) −LD(w�) ≤ C�
2c�
�∇LD(ŵ), ŵ −w�� ≤ C�

c�
�∇LD(ŵ)�

2

.

Using the bound on the empirical gradient above, we get

�∇LD(ŵ)�
2

≤ � + �∇LD(ŵ) −∇L̂n(ŵ)�
2

.

Using (12), (13), and Lemma 7, applied with B = 1, we have that with probability at least 1 − �,

�∇LD(ŵ) −∇L̂n(ŵ)�
2

≤ O��R2C2

�

�
log(1��)

n

�
�,

and so

LD(ŵ) −LD(w�) ≤ O���
C�
c�
+ R2C3

�

c�

�
log(1��)

n

�
�.

Substituting in the choice for �:

≤ O��
R2C4

�

c2�
⋅
�

log(log (C�Rn)��)
n

�
�.

Lemma 10. Let LD and L̂n be the population and empirical risk for the generalized linear model
setting. Let a parameter B

max

≥ 1 be given. Then with probability at least 1 − �, for all w ∈ Rd with
1 ≤ �w�

2

≤ B
max

,

�∇LD(w) −∇L̂n(w)�
2

≤ O���w�2R2C2

�

�
1

n
+C�R

�
log(log(B

max

)��)
n

�
�,

where all constants are as in Assumption 1.

Proof. (12), (13), and Lemma 7 imply that for any fixed B, with probability at least 1 − �,

sup

w∶�w�2≤B
�∇LD(w) −∇L̂n(w)� ≤ O���BR2C2

�

�
1

n
+C�R

���� log

�1
�
�

n

���.
Define Bi = ei−1 for 1 ≤ i ≤ �log(B

max

)� + 1. The via a union bound, we have that for all i
simultaneously,

sup

w∶�w�2≤Bi

�∇LD(w) −∇L̂n(w)� ≤ O��BiR
2C2

�

�
1

n
+C�R

�
log(log(B

max

)��)
n

�
�.

In particular, for any fixed w with 1 ≤ �w�
2

≤ B
max

, if we take i to be the smallest index for which�w�
2

≤ Bi, the expression above implies

�∇LD(w) −∇L̂n(w)�
2

≤ O���w�2R2C2

�

�
1

n
+C�R

�
log(log(B

max

)��)
n

�
�,

since Bi ≤ e�w�
2

.
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Analysis of mirror descent for high-dimensional setting. Here we show that mirror descent
obtains optimal excess risk for the norm-based/high-dimensional regime in Theorem 3 and Theorem 4.

Our approach is to run mirror descent with  � as the regularizer. Observe that  � is 1

�
-strongly

convex with respect to the dual norm �⋅��, and that we have �∇`(w ;x, y)� ≤ 2C�R for the GLM
setting and �∇`(w ;x, y)� ≤ C⇢R for the RR setting.

Focusing on the GLM, if we take a single pass over the entire dataset {(xt, yt)}nt=1 in order, the
standard analysis for mirror descent starting at w

1

= 0 with optimal learning rate tuning [15]
guarantees that the following inequality holds deterministically:

1

n

n�
t=1�∇`(wt ;xt, yt),wt −w�� ≤ O��RBC�

�
�

n

�
�.

Since each point is visited a single time, this leads to the following guarantee on the population loss
in expectation

E� 1
n

n�
t=1�∇LD(wt),wt −w��� ≤ O��RBC�

�
�

n

�
�.

Consequently, if we define ŵ to be the result of choosing a single time t ∈ [n] uniformly at random
and returning wt, this implies that

E[�∇LD(ŵ), ŵ −w��] ≤ O��RBC�

�
�

n

�
�.

Combining this inequality with (18), we have

E[LD(ŵ) −LD(w�)] ≤ O��RB
C2

�

c�

�
�

n

�
�.

Likewise, combining the mirror descent upper bound with (27) leads to a rate of O�RB
C2

⇢

c⇢

�
�
n
� for

robust regression. Thus, when all parameters involved are constant, it suffices to take n = 1

"2
to obtain

O(") excess risk in both settings.

D Proofs from Section 4

Proof of Theorem 5. Let B ∈ Rd×d be a matrix for which the ith row Bi is given by Bi = 1√
d
(1−ei).

We first focus on the more technical case where n ≥ d.

Let n = N ⋅ d for some odd N ∈ N. We partition time into d consecutive segments: S
1

= {1, . . . ,N},
S
2

= {N + 1, . . . ,2N} and on. The sequence of instances x
1∶n we will use will be to set xt = Bi for

t ∈ Si. Note that �Bi�
2

≤ 1, so this choice indeed satisfies the boundedness constraint.

For simplicity, assume that yt = −1 for all t ∈ [n]. Then it holds that

E✏ sup
w∈W�

n�
t=1 ✏t∇`(w ;xt, yt)�

2

= E✏ sup
w∈W�

n�
t=1 ✏t {�w,xt� ≥ 0}xt�

2

= E✏ sup
w∈W
�����������

d�
i=1
{�w,Bi� ≥ 0} �

t∈Si

✏txt

�����������2
We introduce the notation 'i = ∑t∈Si

✏t.

= E' sup

w∈W�
d�
i=1
{�w,Bi� ≥ 0}'iBi�

2

= E' sup

w∈W�
d�
i=1
{�w,Bi� ≥ 0}'i

1√
d
(1 − ei)�

2
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Using triangle inequality:

≥ E' sup

w∈W�
d�
i=1
{�w,Bi� ≥ 0}'i

1√
d
1�

2

− 1√
d
E'

d�
i=1
�'i�

= E' sup

w∈W�
d�
i=1
{�w,Bi� ≥ 0}'i� − 1√

d
E'

d�
i=1
�'i�

≥ E' sup

w∈W�
d�
i=1
{�w,Bi� ≥ 0}'i� −O(√n).

Now, for a given draw of ', we choose w ∈ W such that sgn(�w,Bi�) = sgn('i). The key trick
here is that B is invertible, so for a given sign pattern, say � ∈ {±1}d, we can set w̃ = B−1� and
then w = w̃��w̃�

2

to achieve this pattern. To see that B is invertible, observe that we can write it
as B = 1√

d
(11� − I). The identity matrix can itself be written as 1

d
11� +A⊥, where 1 ∉ span(A⊥),

so it can be seen that B = 1√
d
�(1 − 1

d
)11� −A⊥�, and that the 11� component is preserved by this

addition.

We have now arrived at a lower bound of E'�∑d
i=1 {sgn('i) ≥ 0}'i�. This value is lower bounded

by

E'� d�
i=1
{sgn('i) ≥ 0}'i�

= E' d�
i=1
{sgn('i) ≥ 0}�'i�

Now, observe that since N is odd we have sgn('i) ∈ {±1}, and so {sgn('i) ≥ 0} = (1+sgn('i))�2.
Furthermore, since 'i is symmetric, we may replace sgn('i) with an independent Rademacher
random variable �i

= E'E� 1

2

d�
i=1
(1 + �i)�'i�

= E' 1

2

d�
i=1
�'i�.

Lastly, the Khintchine inequality implies that E'i �'i� ≥ �N�2, so the final lower bound is
⌦(d√N) = ⌦(√dn).
In the case where d ≥ n, the argument above easily yields that E✏ supw∈W�∑n

t=1 ✏t∇`(w ;xt, yt)�
2

=
⌦(n).

D.1 Proof of Theorem 6

Before proceeding to the proof, let us introduce some auxiliary definitions and results. The following
functions will be used throughout the proof. They are related by Lemma 11.

⇠D(w,�) = Ex∼D � ��w,x���w��x� ≤ ��,
⇠̂n(w,�) = 1

n

n�
t=1 �

��w,xt���w��xt� ≤ ��.
Lemma 11. With probability at least 1 − �, simultaneously for all w ∈W and all � > 0,

⇠D(w,�) ≤ ⇠̂n(w,2�) + 4

�
√
n
+
�

2 log(log
2

(4��)��)
n

,

⇠̂n(w,�) ≤ ⇠D(w,2�) + 4

�
√
n
+
�

2 log(log
2

(4��)��)
n

.
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Proof sketch for Lemma 11. We only sketch the proof here as it follows standard analysis (see
Theorem 5 of [20]). The key technique is to introduce a Lipschitz function ⇣�(t):

⇣�(t) =
�����������
1 �t� ≤ �
2 − �t��� � < �t� < 2�
0 �t� ≥ 2� .

Observe that ⇣� satisfies {�t� > �} ≤ ⇣�(t) ≤ {�t� > 2�} for all t. This sandwiching allows us to
bound supw∈W�⇠D(w,�) − ⇠̂n(w,2�)� (and supw∈W�⇠̂n(w,�) − ⇠D(w,2�)� ) by instead bound-
ing the difference between the empirical and population averages of the surrogate ⇣� . This is achieved
easily using the Lipschitz contraction lemma for Rademacher complexity, and by noting that the
Rademacher complexity of the class {x� �w,x� � �w�

2

≤ 1} is at most
√
n whenever data satisfies�xt�

2

≤ 1 for all t. Finally, a union bound over values of � in the range [0,1] yields the statement.

Proof of Theorem 6. Let the margin function � and � > 0 be fixed. Define functions  (⋅), �
1

(⋅),
and �

2

(⋅) as follows:

 (�) = 4

�
√
n
+
�

2 log(log
2

(4��)��)
n

�
1

(�) = �(2�) +  (�)
�
2

(�) = �(4�) + 2 (2�).
Now, conditioning on the events of Lemma 11, we have that with probability at least 1 − �,

W(�, D̂n) ⊆W(�1,D) ⊆W(�2, D̂n). (32)

Consequently, we have the upper bound
sup

w∈W(�,D̂n)
�∇LD(w) −∇L̂n(w)�

2

≤ sup

w∈W(�1,D)
�∇LD(w) −∇L̂n(w)�

2

≤ 4E✏ sup

w∈W(�1,D)
� 1
n

n�
t=1 ✏t∇`(w ;xt, yt)� + 4

�
log(2��)

n

≤ 4E✏ sup

w∈W(�2,D̂n)
� 1
n

n�
t=1 ✏t∇`(w ;xt, yt)� + 4

�
log(2��)

n
,

(33)
where the second inequality holds with probability at least 1−� using Lemma 4. They key here is that
we are able to apply the standard symmetrization result because we have replacedW(�, D̂n) with a
set that does not depend on data. Next, invoking the chain rule (Theorem 1), we split the Rademacher
complexity term above as:

E✏ sup

w∈W(�2,D̂n)
� 1
n

n�
t=1 ✏t∇`(w ;xt, yt)� ≤ 2E✏ sup
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1

n

n�
t=1 ✏t {yt�w,xt� ≤ 0}
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n
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t=1 ✏txt�
2

.

(34)

The second term is controlled by Theorem 7, which gives 1

n
E✏�∑n

t=1 ✏txt�
2

≤ 1√
n

. For the first term,
we appeal to the fat-shattering dimension and the �

2

-soft-margin assumption.

Controlling (�). Observe that for any fixed �̃ > 0, we can split (�) as
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1

n

n�
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1

n
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w∈W(�2,D̂n)
1

n
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For (��), the definition ofW(�
2

, D̂n) implies

E✏ sup

w∈W(�2,D̂n)
1

n

n�
t=1 ✏t �yt�w,xt� ≤ 0 ∧ ��w,xt���w�2�xt�2 < �̃� ≤ sup

w∈W(�2,D̂n)
1

n

n�
t=1 �

��w,xt���w�2�xt�2 < �̃� ≤ �2(�̃).
(35)

The quantity (�) can be bounded by writing it as

E✏ sup
v∈V

1

n

n�
t=1 ✏tvt,

where V is a boolean concept class defined as V =
�(v

1

(w), . . . , vn(w)) ∈ {0,1}n � w ∈W(�2, D̂n)�, where vi(w) ∶= �yi �w,xi��w�2�xi�2 ≤ 0� ⋅� ��w,xi���w�2�xi�2 ≥ �̃�. The standard Massart finite class lemma (e.g. [32]) implies

E✏ sup
v∈V

1

n

n�
t=1 ✏tvt ≤

�
2 log�V �

n
.

All that remains is to bound the cardinality of V . To this end, note that we can bound �V � by
first counting the number of realizations of � � ��w,x1���w�2�x1�2 ≥ �̃�, . . . , � ��w,xn���w�2�xn�2 ≥ �̃�� as we vary

w ∈W(�
2

, D̂n). This is at most � n
n�2(�̃)� ≤ nn�2(�̃), since the number of points with margin smaller

than �̃ is bounded by n�
2

(�̃) via (32).

Next, we consider only the points xt for which � ��w,xt���w�2�x1�2 ≥ �̃� = 1. On these points, on which we

are guaranteed to have a margin at least �̃, we count the number of realizations of �yt �w,xt��w�2�xt�2 ≤ 0�.
This is bounded by n

O� 1
�̃2 � due to the Sauer-Shelah lemma (e.g. [39]). The fat-shattering dimension

at margin �̃ coincides with the notion of shattering on these points, and [4] bound the fat-shattering
dimension at scale �̃ by O� 1

�̃2 �. Hence, the cardinality of V is bounded by

�V � ≤ nn�2(�̃)nO� 1
�̃2 �. (36)

Final bound. Assembling equations (33), (34), (35), and (36) yields
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+ 1√

�̃n1�4
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� .

The chain of inequalities above follows by observing that �
2

(�̃) = �(4�̃) + 2 (2�̃) is bounded and
thus �

2

(�) ≤ c��
2

(�) for some constant c independent of �̃. We get the desired result by optimizing
over �̃.

E Additional Results

Theorem 10 (Second-order chain rule for Rademacher complexity). Let two sequences of twice-
differentiable functions Gt ∶ RK → R and Ft ∶ Rd → RK be given, and let Ft,i(w) denote the ith of
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coordinate of Ft(w). Suppose there are constants LF,1, LF,2, LG,1, LG,2 such that for all 1 ≤ t ≤ n,

�∇Gt�
2

≤ LG,1,
�∑i,j�(∇Ft,i)(∇Ft,j)��2� ≤ LF,1, �∇2Gt�

2

≤ LG,2 and
�∑K

k=1�∇2Ft,k�2� ≤
LF,2. Then,

1

2
E✏ sup

w∈W�
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t=1
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t=1
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i=1,j=1

✏̃t,i,j∇Ft,i(w)∇Ft,j(w)�������������,

where for all i ∈ [K], ∇Ft,i(w) denotes the ith column of the Jacobian matrix ∇Ft ∈ Rd×K ,
∇2Ft,i ∈ Rd×d denotes the ith slice of the Hessian operator ∇2Ft ∈ Rd×d×K , and ✏ ∈ {±1}n,k and
˜✏ ∈ {±1}n×K×K are matrices of Rademacher random variables.

As an application of Theorem 10, we give a simple proof of dimension-independent Rademacher
bound for the generalized linear model setting.
Lemma 12. Assume in addition to Assumption 1 assume that ��′′′(s)� ≤ C� for all s ∈ S, and
suppose �⋅� is any �-smooth norm. Then the empirical loss Hessian for the generalized linear model
setting enjoys the normed Rademacher complexity bound,

E✏ sup
w∈W�

n�
t=1 ✏t∇

2`(w ;xt, yt)�
�

≤ O��BR3C2

�

�
� +C2

�R
2

�
log(d)�√n�. (37)

It is easy to see that the same approach leads to a normed Rademacher complexity bound for the
Hessian in the robust regression setting as well. We leave the proof as an exercise.
Lemma 13. Assume in addition to Assumption 2 that �⇢′′′(s)� ≤ C⇢ for all s ∈ S, and suppose �⋅�
is any �-smooth norm. Then the empirical loss Hessian for the robust regression setting enjoys the
normed Rademacher complexity bound:

E✏ sup
w∈W�

n�
t=1 ✏t∇

2`(w ;xt, yt)�
�

≤ O��BR3C⇢
�
� +C⇢R2

�
log(d)�√n�. (38)

Proof of Theorem 10. We start by writing

E✏ sup
w∈W�

n�
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�
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Using the chain rule for differentiation, we have for any u ∈ Rn

u�∇2(Gt(Ft(w)))u = �∇Ft(w), u�� ∇2Gt(Ft(w)) �∇Ft(w), u� + �∇Gt(Ft(w)),∇2Ft(w)[u,u]�,
where ∇Gt(Ft(w)) and ∇2Gt(Ft(w)) denote the gradient and Hessian of Gt at Ft(w), and∇2Ft(w)[u,u] ∈ RK is a vector for which the ith coordinate is the evaluation of the Hessian operator

for Ft,i at (u,u). Using this identity along with (39), we get
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We bound the two terms separately.
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1. First Term: We introduce a new function that relabels the quantities in the expression. Let
h
1

∶ R2K → R be defined as h
1

(a, b) = �a, b�, let f
1

∶W×Rd → RK be given by f
1

(w,u) =∇Gt(Ft(w)) and f
2
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2
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apply the block-wise contraction lemma Lemma 3 with one block for f

1
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2. Second Term: Let us first simplify as

�∇Ft(w), u�� ∇2Gt(Ft(w)) �∇Ft(w), u� = K�
i,j=1
�∇Ft(w), u�i∇2Gt(Ft(w))i,j�∇Ft(w), u�j

= K�
i,j=1
�u�∇Ft,i(w)� × @2Gt

@zi@zj
× �∇Ft,j(w)�u�

= K�
i,j=1

@2Gt

@zi@zj
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where ∇Ft,j(w) ∶= ∇Ft(w)[∶, j] ∈ Rd, and the last equality follows by observing that
@2Gt

@zi@zj
is scalar. We thus have
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Similar to the first part, we introduce a new function that relabels the quantities in the
expression. Let h

2

∶ R2K2 → R be defined as h
2

(a, b) = ∑K
i,j=1 ai,jbi,j . Let f

1

∶W ×Rd →
RK2

be given by f
1

(w,u) = (∇2Gt)(Ft(w)) and f
2

∶ W × Rd → RK2

be given by
f
2

(w,u) = (u�∇Ft,i(w)∇Ft,j(w)�u)i,j∈[K]. We apply block-wise contraction (Lemma 3)
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with one block for f
1

and one block for f
2

to conclude
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Combining the two terms gives the desired chain rule.

Proof of Lemma 12. As in Lemma 7, let Gt(s) = (�(s) − yt)2 and Ft(w) = �w,xt�, so that
`(w ;xt, yt) = Gt(Ft(w)).
Observe that G′t(s) = 2(�(s) − yt)�′(s), ∇Ft(w) = xt, ∇2Ft = 0, G′′t (s)(s) = 2(�′(s))2 +
2yt�

′′(s), and G′′′(s) = 4�′(s)�′′(s) + 2yt�
′′′(s), which implies that �G′′′t (s)� ≤ 6C2

�. Using
Theorem 10 with constants LF,1 = R2, LF,2 = 0, LG,1 = 2C2

� and LG,2 = 4C2

� , we get
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applying Lemma 3,
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Invoking Theorem 7 and Fact 1, we have E✏�∑n
t=1 ✏txt� ≤ �2�R2n and E✏�∑n

t=1 ✏txtx
�
t �� ≤�

2 log(d)R4n.
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