
Supplementary Material: Explaining Deep Learning Models – A Bayesian
Non-parametric Approach

1 Implementation

1.1 Posterior Distribution

We present the full posterior of the proposed approach as follows. The following parameters are
updated via Gibbs Sampling. First,
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vector, where each element is yi whose subscript also belongs to the setOj . By the change of variable,
let sjl = τjl/(1− τjl) to ensure that τjl falls into the interval (0, 1), then we have
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The other three sets of variables σ2
1:J , λ1,1:K , λ2,1:K are updated by Metropolis-Hasting Sampling.

The posterior and proposal distribution of variables in each set are as follows. First,
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Then the proposed distribution follows
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For λ1,k and λ2,k,
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We use a truncated normal distribution to represent the proposed distribution, that is,

λ1,k ∼ TN(λ1,k, v1,N ), λ2,k ∼ TN(λ2,k, v2,N ) , (11)

where TN stands for truncated normal distribution, and v1,N and v2,N are the hyperparameters.
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1.2 Training Algorithm

The algorithm of estimate the parameters of the proposed model is shown in Table 1. We implement
the algorithm using R and the code is available at https://github.com/Henrygwb/dmm-men.

Algorithm: Customized MCMC for Parameter Inference
Input: Data Matrix X, corresponding prediction y, iteration number TT , mixture component

number J , elastic nets number K, hyper-parameters e, f , a, b, L, R, V .
Initialization: Sampling α(1), µ(1)

1:J−1, π(1)
1:J−1, z(1)1:n, λ(1)1,1:K , λ(1)2,1:K , w(1)

1:K , c(1)1:J , σ2
1:J

(1), β(1)
1:J ,

τ
(1)
1:J from the prior distributions introduced in the paper.

for tt = 2, ..., TT do
Updating the following parameters with Gibbs sampling:
z
(tt)
1:n ,
µ
(tt)
1:J−1,
π
(tt)
1:J−1,
α(tt),
c
(tt)
1:J ,
w

(tt)
1:K ,
β
(tt)
1:J ,
s
(tt)
1:J and τ (tt)

1:J .
Updating the following parameters by Metropolis-Hasting sampling:
σ2
1:J

(tt),
λ
(tt)
1,1:K and λ(tt)2,1:K .

end for
Output: α(TT ), µ(TT )

1:J−1, π(TT )
1:J−1, z(TT )

1:n , λ(TT )
1,1:K , λ(TT )

2,1:K , w(TT )
1:K , c(TT )

1:J , σ2
1:J

(TT ), β(TT )
1:J , τ (TT )

1:J .

Table 1: The proposed customized MCMC algorithm to train the DMM-MEN model. Note that the
details of posterior distributions for Gibbs sampling and the proposal distributions for Metropolis-
Hasting sampling can be found in the Section 1.1.
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Neural Network Structure Activation Optimizer Learning Rate Regularization Batch Epoch

DNN 784-512-512-10 Relu RMSprop 0.001 Dropout
(0.2) 128 50

CNN Shown in Table 3 Relu RMSprop 0.001 × 500 30

Table 2: Hyperparameters of DNN trained from MNIST and CNN trained from Fashion-MNIST.

Layer Type CNN Architecture
Convolotional 32 filters (5 × 5)
Max Pooling 2 × 2
Convolotional 64 filters (5 × 5)
Max Pooling 2 × 2
Softmax 10

Table 3: Architecture of CNN model. Note that we build the model according to one of baselines
shown in [3].

2 Hyperparameters

2.1 Hyperparameters of target models

The hyperparameters of the MLP trained on MNIST dataset and the CNNs trained to classify fashion
products in Fashion-MNIST dataset are shown in Table 2. Note that we trained the target deep
learning models to achieve the state-of-the-art classification performance on the original datasets, the
test accuracy of which are 98.32% on MNIST and 91.24% on Fashion-MNIST.

2.2 Hyperparameters of proposed technology

The hyperparameters of the proposed DMM-MEN on each target machine learning model are shown in
Table 4.

Datasets Target models J e f K R L V a b v1N v2N

’comp.sys’ Random Forest 5 1 1 3 4 1 1 0.5 0.5 2 2
SVM 5 5 1 3 5 1 1 1 1 2 2

MNIST MLP 6 5 1 3 2.5 1 1 0.5 0.5 2 2
Fashion-MNIST CNNs 10 5 1 3 2.5 1 1 0.5 0.5 2 2

ImageNet CNNs 10 5 1 3 2.5 1 1 0.5 0.5 2 2

Table 4: Hyperparameters of proposed methods for all the target models

In Table 4, J is the upper bound of the mixture components, e and f are the hyperparameters of
Gamma(e, f ) and a, b are the hyperparameters of Inv-Gamma(a, b). K is the total number of
elastic-net. R, L, V are the hyperparameters of Gamma(R, V/2) and Gamma(L, V/2). v1N and v2N
are the hyperparameters of the truncated normal distribution in (11).

2.3 Experimental Results on Image Recognition.

2.4 Scrutability

Figure 1 demonstrates the generalizable insights for all of the categories in MNIST and Fashion-
MNIST. Similar to Section 4, we highlights the most important 150 pixels in each category. Figure 7
shows the fidelity test results of all of the categories.

Figure 8 - Figure 10 showcase more examples of fidelity testing samples generated from MNIST
dataset. Samples generated from Fashion-MNIST are shown in Figure 11 - Figure 13. Actually,
we can automatically generate a large bunch of fidelity testing samples according to the method
introduced in the Section 4. These samples can not only be used to evaluate the fidelity of the
proposed approach, but also serve as adversarial samples (i.e., Bootstrapped positive samples shown
in 8 and 11) and pathology samples (i.e., Bootstrapped negative samples shown in 9 and 12 and new
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(a) Generalizable insights extracted from MLP.

(b) Generalizable insights extracted from CNNs.

Figure 1: The illustration of Generalizable insights extracted from the MLP trained for recognizing
handwritten digits and the CNNs for fitting the Fashion-MNIST dataset.

(a) Handwritten digits randomly selected from MNIST and Fashion-MNIST datasets.

(b) Most influential pixels highlighted by DMM-MEN.

(c) Most influential pixels highlighted by LIME.

(d) Most influential pixels highlighted by SHAP.

Figure 2: The examples explaining individual predictions obtained from MLP and CNN. It should
note that, to better illustrate the difference, we change pixels in gray if they are not selected.

testing samples shown in 10 and 13). To be specific, adversarial samples refer to samples that carry the
right semantics but be classified to the wrong class by the target learning models. Pathology samples
are samples that being correctly classified by the target learning models but do not contains the correct
objects. Note that both of these samples explore the weakness of the target models; meanwhile the
adversarial samples can be adopted to retrain the target model and improve its robustness.

2.5 Explainability

Figure 2 demonstrates more explanation results of MNIST and Fashion-MNIST datasets.

Note that in our evaluation, the LIME established better explanability than SHAP, which does not
align with the theoretical results in [2]. The reason is that SHAP guarantees the best results by
exploring nearly all of the possible feature combinations in the feature space. However, in practice,
this is extremely hard to accomplish. In their implementation, SHAP conduct a limit number of
combinations searching. It is highly likely that within this number of searching, SHAP is still not
able to identify optimal combination of important features.

It is known that Bayesian non-parametric models are computationally expensive. However, It does
not mean that we cannot use the proposed approach in the real-world applications. In fact, we have
recorded the latency of the proposed approach on explaining individual samples in three datasets. The
running times are for MNIST, Fashion-MNIST and ImageNet are 37.5s, 44s and 139.2s, respectively.
As to approximating the global decision boundary, the running times are 105 mins on MNIST and
115 mins on Fashion-MNIST. It is believed that the latency of our approach is still within the range
of normal training time for complex ML models.
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Random Forest SVM
‘ibm.pc.hardware’ ‘mac.hardware’ ‘ibm.pc.hardware’ ‘mac.hardware’

‘dos’ ‘mac’ ‘ide’ ‘mac’
‘controller’ ‘apple’ ‘gateway’ ‘Macintosh’

‘pc’ ‘quadra’ ‘dos’ ‘quadra’
‘windows’ ‘edu’ ‘pc’ ‘apple’

Table 5: The keywords that our approach extracts, indicating the features most influential upon
classifications.

RF SVM

Original 94.20% 93.47%

mac 10.80% 0.01%

apple 13.00% 1.72%

quadra 16.60% 0.41%

Macintosh 58.00% 0.24%

edu 19.70% 60.47%

From: ab245@cleveland.Freenet.Edu (Sam Latonia) 
Subject: Re: Heatsink needed 
Organization: Case Western Reserve University, Cleveland, Ohio (USA)
 Lines: 9
NNTP-Posting-Host: slc10.ins.cwru.edu
Andrew,
You can get the heat sinks at Digi-Key 1-800-344-4539 part #HS157-ND $4.10  size 1.89"L x 
1.89"W x .600"H  comes with clips to install it.
…
…
Gosh..I think I just installed a virus..It was called MS dos… Don\'t copy that floppy.. BURN 
IT… I just love Windows...CRASH...

Figure 3: An example text snippet categorized into ‘ibm.pc.hardware’ by random forest (RF) and
SVM (SVM). The percentages shown in the table indicate the confidence of being categorized in
‘ibm.pc.hardware’.

RF SVM

Original 99.40% 99.90%

dos 18.20% 0.87%

controller 20.00% 9.51%

pc 25.40% 1.58%

ide 28.60% 0.02%

gateway 29.92% 0.14%

windows 26.45% 35.36%

feilimau@leland.Stanford.EDU (Christopher Yale Lin)
Subject: Mac IIsi Power Limitations Summary: What are they?
Organization: DSG, Stanford University, CA 94305, USA
Lines: 9
I own a Mac IIsi and am considering upgrades (cards, hard drive, etc). Can you tell me what 
the power limitations are for 1) the PDS slot and 2) the hard drive power feed.
…
….
felix lin,
feilimau@leland.stanford.edu

Figure 4: An example text snippet categorized into ‘mac.hardware’ by random forest (RF) and
SVM (SVM). The percentages shown in the table indicate the confidence of being categorized in
‘mac.hardware’.

3 Experimental Results on Text Mining.

Besides the experiments on MLP and CNNs shown in the Section 4 of our paper, we also applied our
method to machine learning models that are self explainable (i.e., random forest and support vector
machines) on text mining. Similar with Section 4, we first introduce the dataset used to train the
random forest and support vector machines (SVM) models. Then, we demonstrate the scrutability
and explainablity of our proposed method. Note that since these target models are self explainable,
we donot need to test the fidelity of our proposed method by experiments. Actually, the fidelity of our
model can be evaluated by simply comparing the important features extracted by our method with
those identified from original models.

The dataset we use is a subset of news20 newsgroups dataset [1]:

‘comp.sys’ newsgroups dataset [1]: It is a collection of newsgroups posts containing 1,945 samples
across 2 topics. The newsgroups posts are split into training and testing datasets based on the dates
they have been posted.
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3.1 Scrutability

Since SVM and random forest models are explainable by nature, we leverage this case to quantify
our solution’s faithfulness to a target model. To be specific, we identify top four influential words
for each of the classification task using our solution, which are shown in Table 5, and compare them
with the top four most weighted features in the original model. While the order of top four influential
words vary slightly in our comparison against SVM, the words that our solution identifies match
perfectly with those revealed in SVM and random forest model.

Figure 3 shows one classification example, in which both learning models classify the snippet
into ‘ibm.pc.hardware’ with high confidence (94.20% and 93.47% for random forest and SVM,
respectively). We replace word ‘dos’ – important for both classifiers – with the words shown in
Figure 3, and test each of the newly crafted snippets against both classifiers. The value shown
in Figure 3 indicates the confidences of categorizing new snippets into ‘ibm.pc.hardware’. We
notice that by replacing ‘dos’ with words that our solution deems important for another class (i.e.,
‘mac.hardware’), we dramatically reduce the ML model’s confidence in classifying the snippet
under investigation as ’ibm.pc.hardware’. This again verifies the patterns that our approach extracts
accurately reflect what are learned by both ML classifiers.

We also take an text snippet belonging to ‘mac.hardware’ – shown in Figure 4. In this example,
both learning models classify the snippet into ‘mac.hardware’ with high confidence (99.40% and
99.90% for random forest and SVM, respectively). The words shown in Figure 4 are used to replace
word ‘Mac’. We also test each of the newly crafted snippets against both classifiers. The value
shown in Figure 4 indicates the confidences of categorizing new snippets into ‘ibm.pc.hardware’.
Similar to the results of ’mac.hardware’, by replacing ‘Mac’ with words that our solution deems
important for ‘mac.hardware’, the confidences of being classified to ’ibm.pc.hardware’ by ML
model’s are dramatically reduced. This again also verifies the important words that our approach
extracts accurately reflect what are learned by both ML classifiers.

3.2 Explainablity

From: noah@apple.com (Noah Price)         
Subject: Re: How long do RAM SIMM's last?                       
Distribution: usa         
Organization: (not the opinions of) Apple Computer, Inc
Lines: 12
In article <1993Apr11.234818.1755@ultb.isc.rit.edu>, 
jek5036@ultb.isc.rit.edu (J.E. King) wrote:
Doesn't a 1 MB SIMM have about 1024 * 1024 * 8 moving flip-flops?
…..
…..
…..
…..
noah 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
noah@apple.com                             Macintosh Hardware Design
...!{sun,decwrl}!apple!noah   (not the opinions of) Apple Computer, Inc.

Random 
Forest

SVM

DMM-MEN mac
apple

quadra
edu

mac
Macintosh

quadra
apple

LIME Macintosh
edu

apple
Re

apple
SIMM

Macintosh
about

SHAP mac
Macintosh

edu
apple

mac
apple

Macintosh
noah

Figure 5: The examples explaining individual predictions obtained from random forest and SVM
trained for classifying ‘mac.hardware’ news posts. Note that the text in bold indicate top-4 keywords
most influential upon text classification.
Similar to what we observe in image recognition cases, our approach also outperforms LIME and
SHAP in the context of text classification. Figure 5 illustrates one such example: the words highlighted
are the most influential indicators for determining if the text snippet belongs to the category of ‘mac
hardware’. By applying both our approach, LIME and SHAP to the random forest and SVM classifiers,
we can observe that the keywords highlighted by our approach is intuitively more distinguishable
than those identified by LIME and SHAP.

Figure 6 demonstrates another examples. The words highlighted are the most important words for
‘ibm.pc.hardware’. Results also indicate that proposed technology provides more distinguishable
key words than those identified by LIME and SHAP. For example, ‘SCSI’ is a kind of computer
interface, which also has been used to Macintosh. Therefore, it can not be treated as an indicator of
’ibm.pc.hardware’.
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From: guyd@austin.ibm.com (Guy Dawson)                                                                         
Subject: Re: IDE vs SCSI                                  
Originator: guyd@pal500.austin.ibm.com                   
rganization: IBM Austin     
Lines: 35     
In article <1qlbrlINN7rk@dns1.NMSU.Edu>, bgrubb@dante.nmsu.edu (GRUBB) 
writes: In PC Magazine 
April 27, 1993:29 "Although SCSI is twice as fasst as ESDI, 20% faster than IDE, and 
support up to 7 devices its acceptance …
....
....
....
....
I beleive this last bit is just plain wrong! SCSI-1 intergration is sited as another part of 
the MicroSoft Plug and play program.
Guy Dawson - Hoskyns Group Plc.

Random 
Forest

SVM

DMM-MEN dos
controller

pc
windows

ide
gateway

dos
pc

LIME ide
dos

controller
pc

ide
SCSI

pc
windows

SHAP dos
controller

            ide
pc     

ide
dos

           pc
      windows

Figure 6: The examples explaining individual predictions obtained from random forest and SVM
trained for classifying ‘ibm.pc.hardware’ news posts.
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(a) Bootstrapped positive samples.
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(b) Bootstrapped negative samples.
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(c) New testing cases.

Figure 7: Results of fidelity validation on each category of MNIST and Fashion-MNIST. PCR in y-axis denotes
positive classification rate and NFeature in x-axis refers to number of features. In the legend, B indicates
selecting features through our Bayesian approach and R represents selecting features through random pick. M
and FM denote datasets MNIST and Fashion-MNIST respectively.
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Figure 8: Bootstrapped positive samples of MNIST.
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Figure 9: Bootstrapped negative samples of MNIST.
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Figure 10: New testing cases of MNIST.
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Figure 11: Bootstrapped positive samples of Fashion-MNIST.
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Figure 12: Bootstrapped negative samples of Fashion-MNIST.
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Figure 13: New testing cases of of Fashion-MNIST.
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