
A Appendix

A.1 Data Processing

MNIST/CIFAR10. We use the original MNIST and CIFAR10 datasets with standard mean and
variance normalization, using 10% of the training split for validation.
UCI. We use standard mean and variance scaling on all datasets and use (80%, 10%, 10%) train,
validation and test splits.
COMPAS We preprocess the data by rescaling the ordinal variable Number_of_priors to the
range [0, 1]. The data contains several inconsistent examples, so we filter out examples whose label
differs from a strong (80%) majority of other identical examples.

A.2 Architectures

The architectures used for SENN in each task are summarized below, where CL/FC stand for
convolutional and fully-connected layers, respectively, and c denotes the number of concepts. Note
that in every case we use more complex architectures for the parametrizer than the concept encoder.

COMPAS/UCI MNIST CIFAR10

h( · ) h(x) = x CL(10, 20) ! FC(c) CL(10, 20) ! FC(c)
✓( · ) FC(10, 5, 5, 1) CL(10, 20) ! FC(c · 10) CL(26, 27, 28, 29, 29) ! FC(28, 27, c · 10)
g( · ) sum sum sum

In all cases, we train using the Adam optimizer with initial learning rate l = 2 ⇥ 10�4 and, whenever
learning h( · ), sparsity strength parameter ⇠ = 2 ⇥ 10�5.

A.3 Predictive Performance of SENN

MNIST. We observed that any reasonable choice of parameters in our model leads to very low
test prediction error (< 1.3%). In particular, taking � = 0 (the unregularized model) yields an
unconstrained model with an architecture slightly modified from LeNet, for which we obtain a
99.11% test set accuracy (slightly above typical results for a vanilla LeNet). On the other hand, for
the most extreme regularization value used (� = 1) we obtain an accuracy of 98.7%. All other values
interpolate between these two extremes. In particular, the actual model used in Figure 2 obtained
99.03% accuracy, just slightly below the unregularized one.
UCI. As with previous experiments, our models are able to achieve competitive performance on all
UCI datasets for most parameter configurations.
COMPAS. With default parameters, our SENN model achieves an accuracy of 82.02% on the test
set, compared to 78.54% for a baseline logistic classification model. The relatively low performance
of both methods is due to the problem of inconsistent examples mentioned above.
CIFAR10. With default parameters, our SENN model achieves an accuracy of 78.56% on the test
set, which is on par for models of that size trained with some regularization method (our method
requires no further regularization).

A.4 Implementation and dependency details

We used the implementations of LIME and SHAP provided by the authors. Unless otherwise stated,
we use default parameter configurations and n = 100 estimation samples for these two methods. For
the rest of the interpretability frameworks, we use the publicly available DeepExplain2 toolbox.

In our experiments, we compute L̂i for SENN models by minimizing a Lagrangian relaxation of (5)
through backpropagation. For all other methods, we rely instead on Bayesian optimization, via the
skopt3 toolbox, using a budget of 40 function calls for LIME (due to higher compute time) and 200
for all other methods.

2github.com/marcoancona/DeepExplain
3scikit-optimize.github.io
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A.5 Qualitative results on CIFAR10

Figure 6: Explaining a CNN classifier on CIFAR10. Top: The attribution scores for various inter-
pretability methods. Bottom: The concepts learnt by this SENN instance on CIFAR10 are charac-
terized by conspicuous dominating colors and patterns (e.g., stripes and vertical lines in Concept 5,
shown in the right-most column). All examples are correctly predicted by SENN, except the last one,
in which it predicts ship instead of deer. The explanation provided by the model suggests it was
fooled by a blue background which speaks against the deer class.
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A.6 Additional Results on Stability

Original Saliency Grad*Input Int.Grad. e-LRP Occlusion LIME SENN

P(7)=1.0000e+00 L̂ = 1.61 L̂ = 1.50 L̂ = 1.13 L̂ = 1.48 L̂ = 1.75 L̂ = 7.15 L̂ = 0.01

P(7)=9.9999e-01 L̂ = 1.42 L̂ = 1.44 L̂ = 1.04 L̂ = 1.43 L̂ = 1.73 L̂ = 7.27 L̂ = 0.01

P(7)=1.0000e+00 L̂ = 1.51 L̂ = 1.48 L̂ = 0.97 L̂ = 1.46 L̂ = 1.60 L̂ = 7.64 L̂ = 0.01

P(7)=9.9999e-01 L̂ = 1.61 L̂ = 1.49 L̂ = 1.06 L̂ = 1.48 L̂ = 1.83 L̂ = 8.09 L̂ = 0.02

P(7)=9.9999e-01 L̂ = 1.52 L̂ = 1.50 L̂ = 1.05 L̂ = 1.49 L̂ = 1.90 L̂ = 6.37 L̂ = 0.01

P(7)=9.9999e-01 L̂ = 1.86 L̂ = 1.71 L̂ = 1.28 L̂ = 1.69 L̂ = 1.90 L̂ = 5.96 L̂ = 0.01

Figure 7: The effect of gaussian perturbations on the explanations of various interpretability frame-
works. For every explainer fexpl, we show the relative effect of the perturbation in the explanation:
L̂ = kfexpl(x) � fexpl(x̃)k/kx � x̃k.

Figure 8: Left: The effect of gradient-regularization on explanation stability. The unregularized
version (second row) produces highly variable, sometimes contradictory, explanations for slight
perturbations of the same input. Regularization (� = 2 ⇥ 10�4) leads to more robust explanations.
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A.7 Adversarial Examples For Interpretability

We now show various examples inputs and their adversarial perturbation (accoring to (5)) on various
datasets.
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(A) Unregularized SENN (� = 0)
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(B) Gradient-regularized SENN (� = 5⇥ 10�2)

Figure 9: Prediction explanation for two individuals differing in only on the protected variable
(African_American) in the COMPAS dataset. The method trained with gradient regularization
(column B) yields more stable explanations, consistent with each other for these two individuals.

(A) SHAP (L = 6.78) (B) LIME (L = 8.36) (C) SENN (L = 0.57)

Figure 10: Adversarial examples (i.e., the maximizer argument in the discrete version of (5)) for
SHAP, LIME and SENN on COMPAS. Both are true examples are from the test fold.
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(A) SALIENCY (B) OCCLUSION (C) LIME

(D) E-LRP (E) GRAD*INPUT (F) INT.GRAD

(G) SALIENCY

Figure 11: Adversarial examples (i.e., the maximizer argument in (5)) for various interpretability
methods on MNIST.
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(A) SHAP on GLASS (B) LIME on GLASS (C) SENN on GLASS

(D) SHAP on WINE (E) LIME on WINE (F) SENN on WINE

(G) SHAP on DIABETES (H) LIME on DIABETES (I) SENN on DIABETES

Figure 12: Adversarial examples (i.e., the maximizer argument in (5)) for SHAP, LIME and SENN on
various UCI datasets.
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