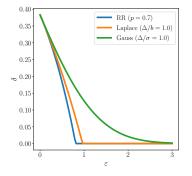
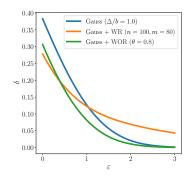
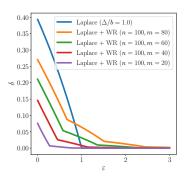
A Plots of Privacy Profiles



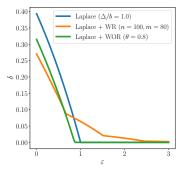
(a) Privacy profiles with mechanisms calibrated to provide the same δ at $\varepsilon = 0$. Profile expressions are given in Section 5 (RR), Theorem 3 (Laplace), and Theorem 4 (Gauss).



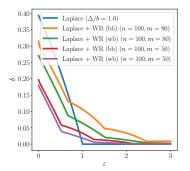
(b) Subsampled Gaussian mechanism. Comparison between sampling without replacement (Theorem 9) and with replacement (Theorem 10, with white-box group privacy), both with the same subsampled dataset sizes.



(d) Subsampled Laplace mechanism. Impact of group-privacy effect in sampling with replacement (white-box group privacy).



(c) Subsampled Laplace mechanism. Comparison between sampling without replacement (Theorem 9) and with replacement (Theorem 10, with white-box group privacy), both with the same subsampled dataset sizes.



(e) Subsampled Laplace mechanism. Impact of white-box vs. black-box group-privacy in sampling with replacement.

Figure 1: Plots of privacy profiles. Results illustrate the notion of privacy profile and the different subsampling bounds derived in the paper.

B Proofs from Section 3

Proof of Theorem 2. It suffices to check that for any $z \in Z$,

$$[\mu(z) - \alpha'\mu'(z)]_{+} = \eta \left[\mu_{1}(z) - \alpha \left((1 - \beta)\mu_{0}(z) + \beta \mu_{1}'(z)\right)\right]_{+}$$

Plugging this identity in the definition of $D_{\alpha'}$ we get the desired equality

$$D_{\alpha'}(\mu \| \mu') = \eta D_{\alpha}(\mu_1 \| (1 - \beta) \mu_0 + \beta \mu'_1) \quad .$$

Proof of Theorem 3. Suppose $x \simeq_X x'$ and assume without loss of generality that y = f(x) = 0 and $y' = f(x) = \Delta > 0$. Plugging the density of the Laplace distribution in the definition of α -divergence we get

$$D_{e^{\varepsilon}}(\mathsf{Lap}(b)\|\Delta + \mathsf{Lap}(b)) = \frac{1}{2b} \int_{\mathbb{R}} \left[e^{-\frac{|z|}{b}} - e^{\varepsilon} e^{-\frac{|z-\Delta|}{b}} \right]_{+} dz$$

Now we observe that the quantity inside the integral above is positive if and only if $|z - \Delta| - |z| \ge \varepsilon b$. Since $||z + \Delta| - |z|| \le \Delta$, we see that the divergence is zero for $\varepsilon > \Delta/b$. On the other hand, for $\varepsilon \in [0, \Delta/b]$ we have $\{z : |z - \Delta| - |z| \ge \varepsilon b\} = (-\infty, (\Delta - \varepsilon b)/2]$. Thus, we have

$$\frac{1}{2b} \int_{\mathbb{R}} \left[e^{-\frac{|z|}{b}} - e^{\varepsilon} e^{-\frac{|z-\Delta|}{b}} \right]_{+} dz = \frac{1}{2b} \int_{-\infty}^{(\Delta-\varepsilon b)/2} e^{-\frac{|z|}{b}} dz - \frac{e^{\varepsilon}}{2b} \int_{-\infty}^{(\Delta-\varepsilon b)/2} e^{-\frac{|z-\Delta|}{b}} dz$$

Now we can compute both integrals as probabilities under the Laplace distribution:

$$\begin{split} \frac{1}{2b} \int_{-\infty}^{(\Delta - \varepsilon b)/2} e^{-\frac{|z|}{b}} dz &= \Pr\left[\mathsf{Lap}(b) \leq \frac{\Delta - \varepsilon b}{2}\right] \\ &= 1 - \frac{1}{2} \exp\left(\frac{\varepsilon b - \Delta}{2b}\right) \ , \\ \frac{e^{\varepsilon}}{2b} \int_{-\infty}^{(\Delta - \varepsilon b)/2} e^{-\frac{|z - \Delta|}{b}} dz &= e^{\varepsilon} \Pr\left[\mathsf{Lap}(b) \leq \frac{-\Delta - \varepsilon b}{2}\right] \\ &= \frac{e^{\varepsilon}}{2} \exp\left(\frac{-\varepsilon b - \Delta}{2b}\right) \ . \end{split}$$

Putting these two quantities together we finally get, for $\varepsilon \leq \Delta/b$:

$$D_{e^{\varepsilon}}(\mathsf{Lap}(b)\|\Delta + \mathsf{Lap}(b)) = 1 - \exp\left(\frac{\varepsilon}{2} - \frac{\Delta}{2b}\right) \ .$$

Proof of Theorem 6. Let $\varphi = \varphi_{\mathcal{M}}^{x,x'}$, $L = L_{\mathcal{M}}^{x,x'}$, $\tilde{\varphi} = \varphi_{\mathcal{M}}^{x',x}$, and $\tilde{L} = L_{\mathcal{M}}^{x',x}$. Recall that for any non-negative random variable z one has $\mathsf{E}[z] = \int_0^\infty \mathsf{Pr}[z > t] dt$. We use this to write the moment generating function of the corresponding privacy loss random variable for $s \ge 0$ as follows:

$$\begin{split} \varphi(s) &= \int_0^\infty \Pr[e^{sL} > t] dt \\ &= \int_0^\infty \Pr\left[\frac{p(\mathbf{z})}{q(\mathbf{z})} > t^{1/s}\right] dt \end{split}$$

where $\mathbf{z} \sim \mu$, and p and q represent the densities of μ and ν with respect to a fixed base measure. Next we observe the probability inside the integral above can be decomposed in terms of a divergence and a second integral with respect to q:

$$\begin{split} \Pr\left[\frac{p(\mathbf{z})}{q(\mathbf{z})} > t^{1/s}\right] &= \Pr[p(\mathbf{z}) > t^{1/s}q(\mathbf{z})] \\ &= \mathsf{E}_{\mu}\left[\mathbb{I}[p > t^{1/s}q]\right] \\ &= \int \mathbb{I}[p(z) > t^{1/s}q(z)]p(z)dz \\ &= \int \mathbb{I}[p(z) > t^{1/s}q(z)](p(z) - t^{1/s}q(z))dz + t^{1/s}\int \mathbb{I}[p(z) > t^{1/s}q(z)]q(z)dz \\ &= \int [p(z) - t^{1/s}q(z)]_{+}dz + t^{1/s}\int \mathbb{I}[p(z) > t^{1/s}q(z)]q(z)dz \\ &= D_{t^{1/s}}(\mu||\mu') + t^{1/s}\int \mathbb{I}[p(z) > t^{1/s}q(z)]q(z)dz \quad . \end{split}$$

Note the term $D_{t^{1/s}}(\mu \| \mu')$ above is not a divergence when $t^{1/s} < 1$. The integral term above can be re-written as a probability in terms of \tilde{L} as follows:

$$\begin{split} \int \mathbb{I}[p(z) > t^{1/s}q(z)]q(z)dz &= \Pr[p(\mathbf{z}') > t^{1/s}q(\mathbf{z}')] \\ &= \Pr\left[\frac{p(\mathbf{z}')}{q(\mathbf{z}')} > t^{1/s}\right] \\ &= \Pr\left[e^{-\tilde{L}} > t^{1/s}\right] \ , \end{split}$$

where $\mathbf{z}' \sim \mu'$. Thus, integrating with respect to t we get an expression for $\varphi(s)$ involving two terms that we will need to massage further:

$$\varphi(s) = \int_0^\infty D_{t^{1/s}}(\mu \| \mu') dt + \int_0^\infty t^{1/s} \Pr\left[e^{-\tilde{L}} > t^{1/s} \right] dt \ .$$

To compute the second integral in the RHS above we perform the change of variables $dt' = t^{1/s} dt$, which comes from taking $t' = t^{1+1/s}/(1+1/s)$, or, equivalently, $t = ((1+1/s)t')^{1/(1+1/s)}$. This allows us to introduce the moment generating function of \tilde{L} as follows:

$$\begin{split} \int_{0}^{\infty} t^{1/s} \Pr\left[e^{-\tilde{L}} > t^{1/s}\right] dt &= \int_{0}^{\infty} \Pr\left[e^{-\tilde{L}} > ((1+1/s)t')^{1/(s+1)}\right] dt' \\ &= \int_{0}^{\infty} \Pr\left[\frac{s}{s+1}e^{-(s+1)\tilde{L}} > t'\right] dt' \\ &= \frac{s}{s+1} \mathsf{E}\left[e^{-(s+1)\tilde{L}}\right] \\ &= \frac{s}{s+1}\tilde{\varphi}(-s-1) \ . \end{split}$$

Putting the derivations above together and substituting $\tilde{\varphi}(-s-1)$ for $\varphi(s)$ we see that

$$\varphi(s) = \frac{s}{s+1}\varphi(s) + \int_0^\infty D_{t^{1/s}}(\mu \| \mu') dt \ ,$$

or equivalently:

$$\varphi(s) = (s+1) \int_0^\infty D_{t^{1/s}}(\mu \| \mu') dt \ .$$

Now we observe that some terms in the integral above cannot be bounded using an α -divergence between μ and μ' , e.g. for $t \in (0, 1)$ the term $D_{t^{1/s}}(\mu \| \mu')$ is not a divergence. Instead, using the definition of $D_{t^{1/s}}(\mu \| \mu')$ we can see that these terms are equal to by $1 - t^{1/s} + t^{1/s}D_{t^{-1/s}}(\mu' \| \mu)$,

where the last term is now a divergence. Thus, we split the integral in the expression for $\varphi(s)$ into two parts and obtain

$$\begin{split} \varphi(s) &= (s+1) \int_0^1 \left(1 - t'^{1/s} + t'^{1/s} D_{t'^{-1/s}}(\mu' \| \mu) \right) dt' + (s+1) \int_1^\infty D_{t^{1/s}}(\mu \| \mu') dt \\ &= 1 + (s+1) \int_0^1 t'^{1/s} D_{t'^{-1/s}}(\mu' \| \mu) dt' + (s+1) \int_1^\infty D_{t^{1/s}}(\mu \| \mu') dt \ . \end{split}$$

Finally, we can obtain the desired equation by performing a series of simple changes of variables t' = 1/t, $\alpha = t^{1/s}$, and $\alpha = e^{\varepsilon}$:

$$\begin{split} \varphi(s) &= 1 + (s+1) \int_{1}^{\infty} t^{-2-1/s} D_{t^{1/s}}(\mu' \| \mu) dt + (s+1) \int_{1}^{\infty} D_{t^{1/s}}(\mu \| \mu') dt \\ &= 1 + s(s+1) \int_{1}^{\infty} \left(\alpha^{s-1} D_{\alpha}(\mu \| \mu') + \alpha^{-s-2} D_{\alpha}(\mu' \| \mu) \right) d\alpha \\ &= 1 + s(s+1) \int_{0}^{\infty} \left(e^{s\varepsilon} D_{e^{\varepsilon}}(\mu \| \mu') + e^{-(s+1)\varepsilon} D_{e^{\varepsilon}}(\mu' \| \mu) \right) d\varepsilon \quad . \end{split}$$

Proof of Theorem 7. The result follows from a few simple observations. The first observation is that for any coupling $\pi \in C(\nu, \nu')$ and $y \in \text{supp}(\nu')$ we have

$$\begin{split} \sum_{y'} \pi_{y,y'} \delta_{\mathcal{M},d(y,y')}(\varepsilon) &\geq \sum_{y'} \pi_{y,y'} \delta_{\mathcal{M},d(y,\mathsf{supp}(\nu'))}(\varepsilon) \\ &= \sum_{y} \nu_y \delta_{\mathcal{M},d(y,\mathsf{supp}(\nu'))}(\varepsilon) \ , \end{split}$$

where the first inequality follows from $d(y, y') \ge d(y, \operatorname{supp}(\nu'))$ and the fact that $\delta_{\mathcal{M},k}(\varepsilon)$ is monotonically increasing with k. Thus the RHS of (6) is always a lower bound for the LHS. Now let π be a d_Y -compatible coupling. Since the support of π only contains pairs (y, y') such that $d(y, y') = d(y, \operatorname{supp}(\nu'))$, we see that

$$\sum_{y,y'} \pi_{y,y'} \delta_{\mathcal{M},d(y,y')}(\varepsilon) = \sum_{y,y'} \pi_{y,y'} \delta_{\mathcal{M},d(y,\mathsf{supp}(\nu'))}(\varepsilon) = \sum_{y} \nu_y \delta_{\mathcal{M},d(y,\mathsf{supp}(\nu'))}(\varepsilon) \quad .$$

The result follows.

C Proofs from Section 4

Proof of Theorem 8. Using the tools from Section 3, the analysis is quite straightforward. Given $x, x' \in 2^{\mathcal{U}}$ with $x \simeq_r x'$, we write $\omega = S_{\eta}^{\mathsf{wo}}(x)$ and $\omega' = S_{\eta}^{\mathsf{wo}}(x')$ and note that $\mathsf{TV}(\omega, \omega') = \eta$. Next we define $x_0 = x \cap x'$ and observe that either $x_0 = x$ or $x_0 = x'$ by the definition of \simeq_r . Let $\omega_0 = S_{\eta}^{\mathsf{po}}(x_0)$. Then the decompositions of ω and ω' induced by their maximal coupling have either $\omega_1 = \omega_0$ when $x = x_0$ or $\omega'_1 = \omega_0$ when $x' = x_0$. Noting that applying advanced joined convexity in the former case leads to an additional cancellation we see that the maximum will be attained when $x' = x_0$. In this case the distribution ω_1 is given by $\omega_1(y \cup \{v\}) = \omega_0(y)$. This observation yields an obvious d_{\simeq_r} -compatible coupling between ω_1 and $\omega_0 = \omega'_1$: first sample y' from ω_0 and then build y by adding v to y'. Since every pair of datasets generated by this coupling has distance one with respect to d_{\simeq_r} , Theorem 7 yields the bound $\delta_{\mathcal{M}'}(\varepsilon') \leq \eta \delta_{\mathcal{M}}(\varepsilon)$.

Proof of Theorem 9. The analysis proceeds along the lines of the previous proof. First we note that for any $x, x' \in \mathcal{Z}_n^{\mathcal{U}}$ with $x \simeq_s x'$, the total variation distance between $\omega = \mathcal{S}_m^{\text{wo}}(x)$ and $\omega' = \mathcal{S}_m^{\text{wo}}(x')$ is given by $\eta = \text{TV}(\omega, \omega') = m/n$. Applying advanced joint convexity (Theorem 2) with the decompositions $\omega = (1 - \eta)\omega_0 + \eta\omega_1$ and $\omega' = (1 - \eta)\omega_0 + \eta\omega_1'$ given by the maximal coupling, the analysis of $D_{e^{\varepsilon'}}(\omega M \| \omega' M)$ reduces to bounding the divergences $D_{e^{\varepsilon}}(\omega_1 M \| \omega_0 M)$ and $D_{e^{\varepsilon}}(\omega_1 M \| \omega_1' M)$. In this case both quantities can be bounded by $\delta_{\mathcal{M}}(\varepsilon)$ by constructing appropriate d_{\simeq_s} -compatible couplings and combining (5) with Theorem 7.

We construct the couplings as follows. Suppose $v, v' \in \mathcal{U}$ are the elements where x and x' differ: $x_v = x'_v + 1$ and $x'_{v'} = x_{v'} + 1$. Let $x_0 = x \cap x'$. Then we have $\omega_0 = S_m^{wo}(x_0)$. Furthermore, writing $\tilde{\omega}_1 = S_{m-1}^{wo}(x_0)$ we have $\omega_1(y) = \tilde{\omega}_1(y \cap x_0)$ and $\omega'_1(y) = \tilde{\omega}_1(y \cap x_0)$. Using these definitions we build a coupling $\pi_{1,1}$ between ω_1 and ω'_1 through the following generative process: sample y_0 from $\tilde{\omega}_1$ and then let $y = y_0 \cup \{v\}$ and $y' \cup \{v'\}$. Similarly, we build a coupling $\pi_{1,0}$ between ω_1 and ω_0 as follows: sample y_0 from $\tilde{\omega}_1$, sample u uniformly from $x_0 \setminus y_0$, and then let $y = y_0 \cup \{v\}$ and $y' = y_0 \cup \{v\}$ and $y' = y_0 \cup \{v\}$. It is obvious from these constructions that $\pi_{1,1}$ and $\pi_{0,1}$ are both d_{\simeq_s} -compatible. Plugging these observations together, we get $\delta_{\mathcal{M}'}(\varepsilon') \leq (m/n)\delta_{\mathcal{M}}(\varepsilon)$.

Proof of Theorem 10. To bound the privacy profile of the subsampled mechanism $\mathcal{M}^{\mathcal{S}_m^{wr}}$ on $2_n^{\mathcal{U}}$ with respect to \simeq_s we start by noting that taking $x, x' \in 2_n^{\mathcal{U}}, x \simeq_s x'$, the total variation distance between $\omega = \mathcal{S}_m^{wr}(x)$ and $\omega' = \mathcal{S}_m^{wr}(x')$ is given by $\eta = \mathsf{TV}(\omega, \omega') = 1 - (1 - 1/n)^m$. To define appropriate mixture components for applying the advanced joint composition property we write v and v' for the elements where x and x' differ and $x_0 = x \cap x'$ for the common part between both datasets. Then we have $\omega_0 = \mathcal{S}_m^{wr}(x_0)$. Furthermore, ω_1 is the distribution obtained from sampling \tilde{y} from $\tilde{\omega}_1 = \mathcal{S}_{m-1}^{wr}(x)$ and building y by adding one occurrence of v to \tilde{y} . Similarly, sampling y' from ω'_1 corresponds to adding v' to a multiset sampled from $\mathcal{S}_{m-1}^{wr}(x')$.

Now we construct appropriate distance-compatible couplings. First we let $\pi_{1,1} \in \mathbb{P}(\mathbb{N}_m^{\mathcal{U}} \times \mathbb{N}_m^{\mathcal{U}})$ be the distribution given by sampling y from ω_1 as above and outputting the pair (y, y') obtained by replacing each v in y by v'. It is immediate from this construction that $\pi_{1,1}$ is a d_{\simeq_s} -compatible coupling between ω_1 and ω'_1 . Furthermore, using the notation from Theorem 7 and the construction of the maximal coupling, we see that for $k \ge 1$:

$$\omega_1(Y_k) = \frac{\omega(Y_k) - (1 - \eta)\omega_0(Y_k)}{\eta} = \frac{\Pr_{y \sim \omega}[y_v = k]}{\eta} = \frac{1}{\eta} \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k}$$

where we used $\omega_0(Y_k) = 0$ since ω_0 is supported on multisets that do not include v. Therefore, the distributions $\mu_1 = \omega_1 M$ and $\mu'_1 = \omega'_1 M$ satisfy

$$\eta D_{e^{\varepsilon}}(\mu_1 \| \mu_1') \le \sum_{k=1}^m \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k} \delta_{\mathcal{M},k}(\varepsilon) \quad .$$

$$\tag{7}$$

On the other hand, we can build a d_{\simeq_s} -compatible coupling between ω_1 and ω_0 by first sampling y from ω_1 and then replacing each occurrence of v by an element picked uniformly at random from x_0 . Again, this shows that $D_{e^{\varepsilon}}(\mu_1 || \mu_0)$ is upper bounded by the right hand side of (7).

Therefore, we conclude that

$$\delta_{\mathcal{M}'}(\varepsilon') \leq \sum_{k=1}^{m} {m \choose k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k} \delta_{\mathcal{M},k}(\varepsilon) \quad .$$

Proof of Theorem 11. Suppose $x \simeq_r x'$ with |x| = n and |x'| = n - 1. This is the worst-case direction for the neighbouring relation like in the proof of Theorem 8. Let $\omega = S_m^{wr}(x)$ and $\omega = S_m^{wr}(x')$. We have $\eta = \text{TV}(\omega, \omega') = 1 - (1 - 1/n)^m$, and the factorization induced by the maximal coupling has $\omega_0 = \omega'_1 = \omega'$ and ω_1 is given by first sampling \tilde{y} from $S_{m-1}^{wr}(x)$ and then producing y by adding to \tilde{y} a copy of the element v where x and x' differ. This definition of ω_1 suggests the following coupling between ω_1 and ω_0 : first sample y from ω_1 , then produce y' by replacing each copy of v with a element from x' sampled independently and uniformly. By construction we see that this coupling is d_{\simeq_s} -compatible, so we can apply Theorem 7. Using the same argument as in the proof of Theorem 10 we see that $\eta \omega_1(Y_k) = {m \choose k} (1/n)^k (1 - 1/n)^{m-k}$. Thus, we finally get

$$D_{e^{\varepsilon'}}(\mathcal{M}^{\mathcal{S}_m^{wr}}(x) \| \mathcal{M}^{\mathcal{S}_m^{wr}}(x')) = \eta D_{e^{\varepsilon}}(\omega_1 M \| \omega_0 M)$$

$$\leq \eta \sum_{k=1}^m \omega_1(Y_k) \delta_{\mathcal{M},k}(\varepsilon)$$

$$= \sum_{k=1}^m \binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k} \delta_{\mathcal{M},k}(\varepsilon) .$$

Theorem 14. Let $\mathcal{M} : 2^{\mathcal{U}} \to \mathbb{P}(Z)$ be a mechanism with privacy profile $\delta_{\mathcal{M}}$ with respect to \simeq_s . Then the privacy profile with respect of \simeq_s of the subsampled mechanism $\mathcal{M}' = \mathcal{M}^{S^{\mathsf{po}}_{\gamma}} : 2^{\mathcal{U}}_n \to \mathbb{P}(Z)$ on datasets of size n satisfies the following:

$$\delta_{\mathcal{M}'}(\varepsilon') \leq \gamma \beta \delta_{\mathcal{M}}(\varepsilon) + \gamma (1-\beta) \left(\sum_{k=1}^{n-1} \tilde{\gamma}_k \delta_{\mathcal{M}}(\varepsilon_k) + \tilde{\gamma}_n \right) ,$$

where $\varepsilon' = \log(1 + \gamma(e^{\varepsilon} - 1)), \beta = e^{\varepsilon'}/e^{\varepsilon}, \varepsilon_k = \varepsilon + \log(\frac{\gamma}{1-\gamma}(\frac{n}{k} - 1)), \text{ and } \tilde{\gamma}_k = \binom{n-1}{k-1} \gamma^{k-1} (1 - \gamma)^{n-k}.$

Proof of Theorem 14. Suppose $x, x' \in 2_n^{\mathcal{U}}$ are sets of size n related by the substitution relation \simeq_s . Let $\omega = S_{\eta}^{po}(x)$ and $\omega' = S_{\eta}^{po}(x')$ and note that $\mathsf{TV}(\omega, \omega') = \eta$. Let $x_0 = x \cap x'$ and $v = x \setminus x_0$, $v' = x' \setminus x_0$. In this case the factorization induced by the maximal coupling is obtained by taking $\omega_0 = S_{\eta}^{\mathsf{po}}(x_0), \omega_1(y \cup \{v\}) = \omega_0(y), \text{ and } \omega_1'(y \cup \{v'\}) = \omega_0(y).$ From this factorization we see it is easy to construct a coupling $\pi_{1,1}$ between ω_1 and ω'_1 that is $d_{\sim *}$ -compatible. Therefore we have $D_{e^{\varepsilon}}(\omega_1 M \| \omega_1' M) \le \delta_{\mathcal{M}}(\varepsilon).$

Since we have already identified that no d_{\simeq_s} -compatible coupling between ω_1 and ω_0 can exist, we shall further decompose these distributions "by hand". Let $\nu_k = S_k^{\text{wo}}(x_0)$ and note that ν_k corresponds to the distribution ω_0 conditioned on |y| = k. Similarly, we define $\tilde{\nu}_k$ as the distribution corresponding to sampling \tilde{y} from $\mathcal{S}_{k-1}^{\mathsf{wo}}(x_0)$ and outputting the set y obtained by adding v to \tilde{y} . Then $\tilde{\nu}_k$ equals the distribution of ω_1 conditioned on |y| = k. Now we write $\gamma_k = \Pr_{y \sim \omega_0}[|y| = k] = {\binom{n-1}{k}}\gamma^k(1-\gamma)^{n-1-k}$ and $\tilde{\gamma}_k = \Pr_{y \sim \omega_1}[|y| = k] = {\binom{n-1}{k-1}}\gamma^{k-1}(1-\gamma)^{n-k}$. With these notations we can write the decompositions $\omega_0 = \sum_{k=0}^{n-1} \gamma_k \nu_k$ and $\omega_1 = \sum_{k=1}^n \tilde{\gamma}_k \tilde{\nu}_k$. Further, we observe that the construction of $\tilde{\nu}_k$ and ν_k shows there exist $d_{\simeq s}$ -compatible couplings between these pairs of distributions when $1 \le k \le n-1$, leading to $D_{e^{\varepsilon}}(\tilde{\nu}_k M \| \nu_k M) \le \delta_{\mathcal{M}}(\varepsilon)$. To exploit this fact we first write

$$D_{e^{\varepsilon}}(\omega_1 M \| \omega_0 M) = D_{e^{\varepsilon}} \left(\sum_{k=1}^{n-1} \tilde{\gamma}_k \tilde{\nu}_k M + \tilde{\gamma}_n \tilde{\nu}_n M \right\| \gamma_0 \nu_0 M + \sum_{k=1}^{n-1} \gamma_k \nu_k M \right) .$$

Now we use that α -divergences can be applied to arbitrary non-negative measures, which are not necessarily probability measures, using the same definition we have used so far. Under this relaxation, given non-negative measures $\nu_i, \nu'_i, i = 1, 2$, on a measure space Z we have $D_{\alpha}(\nu_1 + \nu_2 \|\nu'_1 + \nu_2\|\nu'_1)$ $v'_{2} \leq D_{\alpha}(v_{1}\|v'_{1}) + D_{\alpha}(v_{2}\|v'_{2}), D_{\alpha}(av_{1}\|bv_{2}) = aD_{\alpha b/a}(v_{1}\|v_{2}) \text{ for } a \geq 0 \text{ and } b > 0, \text{ and } b$ $D_{\alpha}(\nu_1 \| 0) = \nu_1(Z)$. Using these properties on the decomposition above we see that

$$D_{e^{\varepsilon}}(\omega_{1}M\|\omega_{0}M) \leq \sum_{k=1}^{n-1} \tilde{\gamma}_{k} D_{e^{\varepsilon_{k}}}(\tilde{\nu}_{k}M\|\nu_{k}M) + \tilde{\gamma}_{n}$$
$$\leq \sum_{k=1}^{n-1} \tilde{\gamma}_{k} \delta_{\mathcal{M}}(\varepsilon_{k}) + \tilde{\gamma}_{n} ,$$

where $e^{\varepsilon_k} = (\gamma_k / \tilde{\gamma}_k) e^{\varepsilon} = (\gamma / (1 - \gamma))(n/k - 1) e^{\varepsilon}$.

Proofs from Section 5 D

where

Proof of Lemma 12. We start by observing that for any $x \in X$ the distribution $\mu = \mathcal{M}_{v,p}^{\mathcal{S}}(x)$ must be a mixture $\mu = (1 - \theta)\nu_0 + \theta\nu_1$ for some $\theta \in [0, 1]$. This follows from the fact that there are only two possibilities ν_0 and ν_1 for $\mathcal{M}_{v,p}(y)$ depending on whether $v \notin y$ or $v \in y$. Similarly, taking $x \simeq_X x'$ we get $\mu' = \mathcal{M}_{v,p}^{\mathcal{S}}(x')$ with $\mu' = (1 - \theta')\nu_0 + \theta'\nu_1$ for some $\theta' \in [0, 1]$. Assuming (without loss of generality) $\theta \ge \theta'$, we use the advanced joint convexity property of D_{α} to get

$$D_{e^{\varepsilon'}}(\mu \| \mu') = \theta D_{e^{\varepsilon}}(\nu_1 \| (1 - \theta'/\theta)\nu_0 + (\theta'/\theta)\nu_1)$$

$$\leq \theta (1 - \theta'/\theta) D_{e^{\varepsilon}}(\nu_1 \| \nu_0) = (\theta - \theta')\psi_p(\varepsilon) \leq \theta \psi_p(\varepsilon) ,$$

where $\varepsilon' = \log(1 + \theta(e^{\varepsilon} - 1))$ and $\beta = e^{\varepsilon'}/e^{\varepsilon}$, and the inequality follows from joint convexity. Now note the inequalities above are in fact equalities when $\theta' = 0$, which is equivalent to the fact $v \notin x'$ because S is a natural subsampling mechanism. Thus, observing that the function $\theta \mapsto \theta \psi_p(\log(1 + (e^{\varepsilon'} - 1)/\theta))$ is monotonically increasing, we get

$$\sup_{x \simeq_X x'} D_{e^{\varepsilon'}}(\mathcal{M}_{v,p}^{\mathcal{S}}(x) \| \mathcal{M}_{v,p}^{\mathcal{S}}(x')) = \sup_{x \simeq_X x', v \notin x'} \theta \psi_p(\log(1 + (e^{\varepsilon'} - 1)/\theta))$$
$$= \eta \psi_p(\log(1 + (e^{\varepsilon'} - 1)/\eta)) = \eta \psi_p(\varepsilon) .$$