
A Plots of Privacy Profiles
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(a) Privacy profiles with mechanisms calibrated to
provide the same δ at ε = 0. Profile expressions
are given in Section 5 (RR), Theorem 3 (Laplace),
and Theorem 4 (Gauss).
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(b) Subsampled Gaussian mechanism. Compari-
son between sampling without replacement (The-
orem 9) and with replacement (Theorem 10, with
white-box group privacy), both with the same sub-
sampled dataset sizes.
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(c) Subsampled Laplace mechanism. Compari-
son between sampling without replacement (The-
orem 9) and with replacement (Theorem 10, with
white-box group privacy), both with the same sub-
sampled dataset sizes.
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(d) Subsampled Laplace mechanism. Impact of
group-privacy effect in sampling with replacement
(white-box group privacy).
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Figure 1: Plots of privacy profiles. Results illustrate the notion of privacy profile and the different
subsampling bounds derived in the paper.
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B Proofs from Section 3

Proof of Theorem 2. It suffices to check that for any z ∈ Z,

[µ(z)− α′µ′(z)]+ = η [µ1(z)− α ((1− β)µ0(z) + βµ′1(z))]+ .

Plugging this identity in the definition of Dα′ we get the desired equality

Dα′(µ‖µ′) = ηDα(µ1‖(1− β)µ0 + βµ′1) .

Proof of Theorem 3. Suppose x 'X x′ and assume without loss of generality that y = f(x) = 0
and y′ = f(x) = ∆ > 0. Plugging the density of the Laplace distribution in the definition of
α-divergence we get

Deε(Lap(b)‖∆ + Lap(b)) =
1

2b

∫

R

[
e−
|z|
b − eεe− |z−∆|

b

]
+
dz .

Now we observe that the quantity inside the integral above is positive if and only if |z−∆|− |z| ≥ εb.
Since ||z + ∆| − |z|| ≤ ∆, we see that the divergence is zero for ε > ∆/b. On the other hand, for
ε ∈ [0,∆/b] we have {z : |z −∆| − |z| ≥ εb} = (−∞, (∆− εb)/2]. Thus, we have

1

2b

∫

R

[
e−
|z|
b − eεe− |z−∆|

b

]
+
dz =

1

2b

∫ (∆−εb)/2

−∞
e−
|z|
b dz − eε

2b

∫ (∆−εb)/2

−∞
e−
|z−∆|
b dz .

Now we can compute both integrals as probabilities under the Laplace distribution:

1

2b

∫ (∆−εb)/2

−∞
e−
|z|
b dz = Pr

[
Lap(b) ≤ ∆− εb

2

]

= 1− 1

2
exp

(
εb−∆

2b

)
,

eε

2b

∫ (∆−εb)/2

−∞
e−
|z−∆|
b dz = eεPr

[
Lap(b) ≤ −∆− εb

2

]

=
eε

2
exp

(−εb−∆

2b

)
.

Putting these two quantities together we finally get, for ε ≤ ∆/b:

Deε(Lap(b)‖∆ + Lap(b)) = 1− exp

(
ε

2
− ∆

2b

)
.

Proof of Theorem 6. Let ϕ = ϕx,x
′

M , L = Lx,x
′

M , ϕ̃ = ϕx
′,x
M , and L̃ = Lx

′,x
M . Recall that for any

non-negative random variable z one has E[z] =
∫∞

0
Pr[z > t]dt. We use this to write the moment

generating function of the corresponding privacy loss random variable for s ≥ 0 as follows:

ϕ(s) =

∫ ∞

0

Pr[esL > t]dt

=

∫ ∞

0

Pr

[
p(z)

q(z)
> t1/s

]
dt ,

where z ∼ µ, and p and q represent the densities of µ and ν with respect to a fixed base measure.
Next we observe the probability inside the integral above can be decomposed in terms of a divergence
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and a second integral with respect to q:

Pr

[
p(z)

q(z)
> t1/s

]
= Pr[p(z) > t1/sq(z)]

= Eµ
[
I[p > t1/sq]

]

=

∫
I[p(z) > t1/sq(z)]p(z)dz

=

∫
I[p(z) > t1/sq(z)](p(z)− t1/sq(z))dz + t1/s

∫
I[p(z) > t1/sq(z)]q(z)dz

=

∫
[p(z)− t1/sq(z)]+dz + t1/s

∫
I[p(z) > t1/sq(z)]q(z)dz

= Dt1/s(µ‖µ′) + t1/s
∫

I[p(z) > t1/sq(z)]q(z)dz .

Note the term Dt1/s(µ‖µ′) above is not a divergence when t1/s < 1. The integral term above can be
re-written as a probability in terms of L̃ as follows:

∫
I[p(z) > t1/sq(z)]q(z)dz = Pr[p(z′) > t1/sq(z′)]

= Pr

[
p(z′)
q(z′)

> t1/s
]

= Pr
[
e−L̃ > t1/s

]
,

where z′ ∼ µ′. Thus, integrating with respect to t we get an expression for ϕ(s) involving two terms
that we will need to massage further:

ϕ(s) =

∫ ∞

0

Dt1/s(µ‖µ′)dt+

∫ ∞

0

t1/sPr
[
e−L̃ > t1/s

]
dt .

To compute the second integral in the RHS above we perform the change of variables dt′ = t1/sdt,
which comes from taking t′ = t1+1/s/(1 + 1/s), or, equivalently, t = ((1 + 1/s)t′)1/(1+1/s). This
allows us to introduce the moment generating function of L̃ as follows:

∫ ∞

0

t1/sPr
[
e−L̃ > t1/s

]
dt =

∫ ∞

0

Pr
[
e−L̃ > ((1 + 1/s)t′)1/(s+1)

]
dt′

=

∫ ∞

0

Pr

[
s

s+ 1
e−(s+1)L̃ > t′

]
dt′

=
s

s+ 1
E
[
e−(s+1)L̃

]

=
s

s+ 1
ϕ̃(−s− 1) .

Putting the derivations above together and substituting ϕ̃(−s− 1) for ϕ(s) we see that

ϕ(s) =
s

s+ 1
ϕ(s) +

∫ ∞

0

Dt1/s(µ‖µ′)dt ,

or equivalently:

ϕ(s) = (s+ 1)

∫ ∞

0

Dt1/s(µ‖µ′)dt .

Now we observe that some terms in the integral above cannot be bounded using an α-divergence
between µ and µ′, e.g. for t ∈ (0, 1) the term Dt1/s(µ‖µ′) is not a divergence. Instead, using the
definition of Dt1/s(µ‖µ′) we can see that these terms are equal to by 1− t1/s + t1/sDt−1/s(µ′‖µ),
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where the last term is now a divergence. Thus, we split the integral in the expression for ϕ(s) into
two parts and obtain

ϕ(s) = (s+ 1)

∫ 1

0

(
1− t′1/s + t′

1/s
Dt′−1/s(µ′‖µ)

)
dt′ + (s+ 1)

∫ ∞

1

Dt1/s(µ‖µ′)dt

= 1 + (s+ 1)

∫ 1

0

t′
1/s
Dt′−1/s(µ′‖µ)dt′ + (s+ 1)

∫ ∞

1

Dt1/s(µ‖µ′)dt .

Finally, we can obtain the desired equation by performing a series of simple changes of variables
t′ = 1/t, α = t1/s, and α = eε:

ϕ(s) = 1 + (s+ 1)

∫ ∞

1

t−2−1/sDt1/s(µ
′‖µ)dt+ (s+ 1)

∫ ∞

1

Dt1/s(µ‖µ′)dt

= 1 + s(s+ 1)

∫ ∞

1

(
αs−1Dα(µ‖µ′) + α−s−2Dα(µ′‖µ)

)
dα

= 1 + s(s+ 1)

∫ ∞

0

(
esεDeε(µ‖µ′) + e−(s+1)εDeε(µ

′‖µ)
)
dε .

Proof of Theorem 7. The result follows from a few simple observations. The first observation is that
for any coupling π ∈ C(ν, ν′) and y ∈ supp(ν′) we have

∑

y′

πy,y′δM,d(y,y′)(ε) ≥
∑

y′

πy,y′δM,d(y,supp(ν′))(ε)

=
∑

y

νyδM,d(y,supp(ν′))(ε) ,

where the first inequality follows from d(y, y′) ≥ d(y, supp(ν′)) and the fact that δM,k(ε) is
monotonically increasing with k. Thus the RHS of (6) is always a lower bound for the LHS. Now
let π be a dY -compatible coupling. Since the support of π only contains pairs (y, y′) such that
d(y, y′) = d(y, supp(ν′)), we see that

∑

y,y′

πy,y′δM,d(y,y′)(ε) =
∑

y,y′

πy,y′δM,d(y,supp(ν′))(ε) =
∑

y

νyδM,d(y,supp(ν′))(ε) .

The result follows.

C Proofs from Section 4

Proof of Theorem 8. Using the tools from Section 3, the analysis is quite straightforward. Given
x, x′ ∈ 2U with x 'r x′, we write ω = Swoη (x) and ω′ = Swoη (x′) and note that TV(ω, ω′) = η.
Next we define x0 = x ∩ x′ and observe that either x0 = x or x0 = x′ by the definition of 'r. Let
ω0 = Spoη (x0). Then the decompositions of ω and ω′ induced by their maximal coupling have either
ω1 = ω0 when x = x0 or ω′1 = ω0 when x′ = x0. Noting that applying advanced joined convexity
in the former case leads to an additional cancellation we see that the maximum will be attained when
x′ = x0. In this case the distribution ω1 is given by ω1(y ∪{v}) = ω0(y). This observation yields an
obvious d'r -compatible coupling between ω1 and ω0 = ω′1: first sample y′ from ω0 and then build
y by adding v to y′. Since every pair of datasets generated by this coupling has distance one with
respect to d'r , Theorem 7 yields the bound δM′(ε′) ≤ ηδM(ε).

Proof of Theorem 9. The analysis proceeds along the lines of the previous proof. First we note
that for any x, x′ ∈ 2Un with x 's x′, the total variation distance between ω = Swom (x) and
ω′ = Swom (x′) is given by η = TV(ω, ω′) = m/n. Applying advanced joint convexity (Theorem 2)
with the decompositions ω = (1 − η)ω0 + ηω1 and ω′ = (1 − η)ω0 + ηω′1 given by the maximal
coupling, the analysis of Deε′ (ωM‖ω′M) reduces to bounding the divergences Deε(ω1M‖ω0M)
and Deε(ω1M‖ω′1M). In this case both quantities can be bounded by δM(ε) by constructing
appropriate d's -compatible couplings and combining (5) with Theorem 7.
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We construct the couplings as follows. Suppose v, v′ ∈ U are the elements where x and x′ differ:
xv = x′v+1 and x′v′ = xv′+1. Let x0 = x∩x′. Then we have ω0 = Swom (x0). Furthermore, writing
ω̃1 = Swom−1(x0) we have ω1(y) = ω̃1(y ∩ x0) and ω′1(y) = ω̃1(y ∩ x0). Using these definitions we
build a coupling π1,1 between ω1 and ω′1 through the following generative process: sample y0 from
ω̃1 and then let y = y0 ∪ {v} and y′ ∪ {v′}. Similarly, we build a coupling π1,0 between ω1 and ω0

as follows: sample y0 from ω̃1, sample u uniformly from x0 \ y0, and then let y = y0 ∪ {v} and
y′ = y0 ∪ {u}. It is obvious from these constructions that π1,1 and π0,1 are both d's-compatible.
Plugging these observations together, we get δM′(ε′) ≤ (m/n)δM(ε).

Proof of Theorem 10. To bound the privacy profile of the subsampled mechanismMSwr
m on 2Un with

respect to 's we start by noting that taking x, x′ ∈ 2Un , x 's x′, the total variation distance between
ω = Swrm (x) and ω′ = Swrm (x′) is given by η = TV(ω, ω′) = 1− (1− 1/n)m. To define appropriate
mixture components for applying the advanced joint composition property we write v and v′ for
the elements where x and x′ differ and x0 = x ∩ x′ for the common part between both datasets.
Then we have ω0 = Swrm (x0). Furthermore, ω1 is the distribution obtained from sampling ỹ from
ω̃1 = Swrm−1(x) and building y by adding one occurrence of v to ỹ. Similarly, sampling y′ from ω′1
corresponds to adding v′ to a multiset sampled from Swrm−1(x′).

Now we construct appropriate distance-compatible couplings. First we let π1,1 ∈ P(NUm × NUm) be
the distribution given by sampling y from ω1 as above and outputting the pair (y, y′) obtained by
replacing each v in y by v′. It is immediate from this construction that π1,1 is a d's-compatible
coupling between ω1 and ω′1. Furthermore, using the notation from Theorem 7 and the construction
of the maximal coupling, we see that for k ≥ 1:

ω1(Yk) =
ω(Yk)− (1− η)ω0(Yk)

η
=

Pry∼ω[yv = k]

η
=

1

η

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
,

where we used ω0(Yk) = 0 since ω0 is supported on multisets that do not include v. Therefore, the
distributions µ1 = ω1M and µ′1 = ω′1M satisfy

ηDeε(µ1‖µ′1) ≤
m∑

k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) . (7)

On the other hand, we can build a d's-compatible coupling between ω1 and ω0 by first sampling y
from ω1 and then replacing each occurrence of v by an element picked uniformly at random from x0.
Again, this shows that Deε(µ1‖µ0) is upper bounded by the right hand side of (7).

Therefore, we conclude that

δM′(ε
′) ≤

m∑

k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) .

Proof of Theorem 11. Suppose x 'r x′ with |x| = n and |x′| = n − 1. This is the worst-case
direction for the neighbouring relation like in the proof of Theorem 8. Let ω = Swrm (x) and
ω = Swrm (x′). We have η = TV(ω, ω′) = 1 − (1 − 1/n)m, and the factorization induced by
the maximal coupling has ω0 = ω′1 = ω′ and ω1 is given by first sampling ỹ from Swrm−1(x) and
then producing y by adding to ỹ a copy of the element v where x and x′ differ. This definition
of ω1 suggests the following coupling between ω1 and ω0: first sample y from ω1, then produce
y′ by replacing each copy of v with a element from x′ sampled independently and uniformly. By
construction we see that this coupling is d's-compatible, so we can apply Theorem 7. Using the
same argument as in the proof of Theorem 10 we see that ηω1(Yk) =

(
m
k

)
(1/n)k(1 − 1/n)m−k.

Thus, we finally get

Deε′ (MS
wr
m(x)‖MSwr

m(x′)) = ηDeε(ω1M‖ω0M)

≤ η
m∑

k=1

ω1(Yk)δM,k(ε)

=
m∑

k=1

(
m

k

)(
1

n

)k (
1− 1

n

)m−k
δM,k(ε) .
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Theorem 14. LetM : 2U → P(Z) be a mechanism with privacy profile δM with respect to 's.
Then the privacy profile with respect of 's of the subsampled mechanismM′ =MSpo

γ : 2Un → P(Z)
on datasets of size n satisfies the following:

δM′(ε
′) ≤ γβδM(ε) + γ(1− β)

(
n−1∑

k=1

γ̃kδM(εk) + γ̃n

)
,

where ε′ = log(1 + γ(eε − 1)), β = eε
′
/eε, εk = ε+ log( γ

1−γ (nk − 1)), and γ̃k =
(
n−1
k−1

)
γk−1(1−

γ)n−k.

Proof of Theorem 14. Suppose x, x′ ∈ 2Un are sets of size n related by the substitution relation 's.
Let ω = Spoη (x) and ω′ = Spoη (x′) and note that TV(ω, ω′) = η. Let x0 = x ∩ x′ and v = x \ x0,
v′ = x′ \ x0. In this case the factorization induced by the maximal coupling is obtained by taking
ω0 = Spoη (x0), ω1(y ∪ {v}) = ω0(y), and ω′1(y ∪ {v′}) = ω0(y). From this factorization we see it
is easy to construct a coupling π1,1 between ω1 and ω′1 that is d's-compatible. Therefore we have
Deε(ω1M‖ω′1M) ≤ δM(ε).

Since we have already identified that no d's-compatible coupling between ω1 and ω0 can exist,
we shall further decompose these distributions “by hand”. Let νk = Swok (x0) and note that νk
corresponds to the distribution ω0 conditioned on |y| = k. Similarly, we define ν̃k as the distribution
corresponding to sampling ỹ from Swok−1(x0) and outputting the set y obtained by adding v to ỹ. Then
ν̃k equals the distribution of ω1 conditioned on |y| = k. Now we write γk = Pry∼ω0

[|y| = k] =(
n−1
k

)
γk(1− γ)n−1−k and γ̃k = Pry∼ω1 [|y| = k] =

(
n−1
k−1

)
γk−1(1− γ)n−k. With these notations

we can write the decompositions ω0 =
∑n−1
k=0 γkνk and ω1 =

∑n
k=1 γ̃kν̃k. Further, we observe that

the construction of ν̃k and νk shows there exist d's-compatible couplings between these pairs of
distributions when 1 ≤ k ≤ n − 1, leading to Deε(ν̃kM‖νkM) ≤ δM(ε). To exploit this fact we
first write

Deε(ω1M‖ω0M) = Deε

(
n−1∑

k=1

γ̃kν̃kM + γ̃nν̃nM

∥∥∥∥∥γ0ν0M +

n−1∑

k=1

γkνkM

)
.

Now we use that α-divergences can be applied to arbitrary non-negative measures, which are not
necessarily probability measures, using the same definition we have used so far. Under this relaxation,
given non-negative measures νi, ν′i, i = 1, 2, on a measure space Z we have Dα(ν1 + ν2‖ν′1 +
ν′2) ≤ Dα(ν1‖ν′1) + Dα(ν2‖ν′2), Dα(aν1‖bν2) = aDαb/a(ν1‖ν2) for a ≥ 0 and b > 0, and
Dα(ν1‖0) = ν1(Z). Using these properties on the decomposition above we see that

Deε(ω1M‖ω0M) ≤
n−1∑

k=1

γ̃kDeεk (ν̃kM‖νkM) + γ̃n

≤
n−1∑

k=1

γ̃kδM(εk) + γ̃n ,

where eεk = (γk/γ̃k)eε = (γ/(1− γ))(n/k − 1)eε.

D Proofs from Section 5

Proof of Lemma 12. We start by observing that for any x ∈ X the distribution µ =MSv,p(x) must
be a mixture µ = (1− θ)ν0 + θν1 for some θ ∈ [0, 1]. This follows from the fact that there are only
two possibilities ν0 and ν1 forMv,p(y) depending on whether v /∈ y or v ∈ y. Similarly, taking
x 'X x′ we get µ′ =MSv,p(x′) with µ′ = (1−θ′)ν0 +θ′ν1 for some θ′ ∈ [0, 1]. Assuming (without
loss of generality) θ ≥ θ′, we use the advanced joint convexity property of Dα to get

Deε′ (µ‖µ′) = θDeε(ν1‖(1− θ′/θ)ν0 + (θ′/θ)ν1)

≤ θ(1− θ′/θ)Deε(ν1‖ν0) = (θ − θ′)ψp(ε) ≤ θψp(ε) ,

17



where ε′ = log(1 + θ(eε − 1)) and β = eε
′
/eε, and the inequality follows from joint convexity.

Now note the inequalities above are in fact equalities when θ′ = 0, which is equivalent to the
fact v /∈ x′ because S is a natural subsampling mechanism. Thus, observing that the function
θ 7→ θψp(log(1 + (eε

′ − 1)/θ)) is monotonically increasing, we get

sup
x'Xx′

Deε′ (MSv,p(x)‖MSv,p(x′)) = sup
x'Xx′,v /∈x′

θψp(log(1 + (eε
′ − 1)/θ))

= ηψp(log(1 + (eε
′ − 1)/η)) = ηψp(ε) .
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