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Abstract

We study the problem of learning personalized decision policies from observational
data while accounting for possible unobserved confounding in the data-generating
process. Unlike previous approaches that assume unconfoundedness, i.e., no
unobserved confounders affected both treatment assignment and outcomes, we
calibrate policy learning for realistic violations of this unverifiable assumption
with uncertainty sets motivated by sensitivity analysis in causal inference. Our
framework for confounding-robust policy improvement optimizes the minimax
regret of a candidate policy against a baseline or reference “status quo” policy,
over an uncertainty set around nominal propensity weights. We prove that if the
uncertainty set is well-specified, robust policy learning can do no worse than the
baseline, and only improve if the data supports it. We characterize the adversarial
subproblem and use efficient algorithmic solutions to optimize over parametrized
spaces of decision policies such as logistic treatment assignment. We assess our
methods on synthetic data and a large clinical trial, demonstrating that confounded
selection can hinder policy learning and lead to unwarranted harm, while our robust
approach guarantees safety and focuses on well-evidenced improvement.

1 Introduction

The problem of learning personalized decision policies to study “what works and for whom” in areas
such as medicine and e-commerce often endeavors to draw insights from observational data, since
data from randomized experiments may be scarce and costly or unethical to acquire [12, 3, 30, 6,
13]. These and other approaches for drawing conclusions from observational data in the Neyman-
Rubin potential outcomes framework generally appeal to methodologies such as inverse-propensity
weighting, matching, and balancing, which compare outcomes across groups constructed such that
assignment is almost as if at random [23]. These methods rely on the controversial assumption of
unconfoundedness, which requires that the data are sufficiently informative of treatment assignment
such that no unobserved confounders jointly affect treatment assignment and individual response [24].
This key assumption may be made to hold ex ante by directly controlling the treatment assignment
policy as sometimes done in online advertising [4], but in other domains of key interest such as
personalized medicine where electronic medical records (EMRs) are increasingly being analyzed ex

post, unconfoundedness may never truly hold in fact.

Assuming unconfoundedness, also called ignorability, conditional exogeneity, or selection on observ-

ables, is controversial because it is fundamentally unverifiable since the counterfactual distribution
is not identified from the data, thus rendering any insights from observational studies vulnerable to
this fundamental critique [11]. If the data is truly unconfounded, it would be known by construction
because it would come from an RCT or logged bandit; any data whose unconfoundedness is uncertain
must be confounded to some extent. The growing availability of richer observational data such as
found in EMRs renders unconfoundedness more plausible, yet it still may never be fully satisfied in
practice. Because unconfoundedness may fail to hold, existing policy learning methods that assume
it can lead to personalized decision policies that seek to exploit individual-level effects that are not
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really there, may intervene where not necessary, and may in fact lead to net harm rather than net
good. Such dangers constitute obvious impediments to the use of policy learning to enhance decision
making in such sensitive applications as medicine, public policy, and civics.

To address this deficiency, in this paper we develop a framework for robust policy learning and
improvement that can ensure that a personalized decision policy derived from observational data,
which inevitably may have some unobserved confounding, does no worse than a current policy such as
the standard of care and in fact does better if the data can indeed support it. We do so by recognizing
and accounting for the potential confounding in the data and require that the learned policy improve
upon a baseline no matter the direction of confounding. Thus, we calibrate personalized decision
policies to address sensitivity to realistic violations of the unconfoundedness assumption. For the
purposes of informing reliable and personalized decision-making that leverages modern machine
learning, point identification of individual-level causal effects, which previous approaches rely on,
may not be at all necessary for success, but accounting for the lack of identification is.

Functionally, our approach is to optimize a policy to achieve the best worst-case improvement relative
to a baseline treatment assignment policy such as treat all or treat none, where the improvement
is measured using a weighted average of outcomes and weights take values in an uncertainty set
around the nominal inverse propensity weights (IPW). This generalizes the popular class of IPW-
based approaches to policy learning, which optimize an unbiased estimator for policy value under
unconfoundedness [15, 28, 27]. Unlike standard approaches, in our approach the choice of baseline
is material and changes the resulting policy chosen by our method. This framing supports reliable
decision-making in practice, as often a practitioner is seeking evidence of substantial improvement
upon the standard of care or a default option, and/or the intervention under consideration introduces
risk of toxicity or adverse effects and should not be applied without strong evidence.

Our contributions are as follows: we provide a framework for performing policy improvement which
is robust in the face of unobserved confounding. Our framework allows for the specification of
data-driven uncertainty sets, based on the sensitivity parameter � describing a pointwise multiplica-
tive bound, as well as allowing for a global uncertainty budget which restricts the total deviation
proportionally to the maximal `1 discrepancy between the true propensities and nominal propensities.
Leveraging the optimization structure of the robust subproblem, we provide algorithms for performing
policy optimization. We assess performance on a synthetic example as well as a large clinical trial.

2 Problem Statement and Preliminaries

We assume the observational data consists of tuples of random variables {(Xi, Ti, Yi) : i = 1, . . . , n},
comprising of covariates Xi 2 X , assigned treatment Ti 2 {�1, 1}, and real-valued outcomes
Yi 2 R. Using the Neyman-Rubin potential outcomes framework, we let Yi(�1) and Yi(1) denote
the potential outcomes of applying treatment �1 and 1, respectively. We assume that the observed
outcome is potential outcome for the observed treatment, Yi = Yi(Ti), encapsulating non-interference
and consistency, also known as SUTVA [25]. We also use the convention that the outcomes Yi

corresponds to losses so that lower outcomes are better.

We consider evaluating and learning a (randomized) treatment assignment policy mapping covariates
to the probability of assigining treatment, ⇡ : X ! [0, 1]. We focus on a policy class ⇡ 2 F of
restricted complexity. Examples include linear policies ⇡�(X) = I[�|

x], logistic policies ⇡�(X) =
�(�|

x) where �(z) = 1/(1 + e
�z), or decision trees of a bounded certain depth. We allow the

candidate policy ⇡ to be either deterministic or stochastic, and denote the random variable indicating
the realization of treatment assignment for some Xi to be a Bernoulli random variable Z

⇡
i such that

⇡(Xi) = Pr[Z⇡
i = 1 | Xi].

The goal of policy evaluation is to assess the policy value,

V (⇡) = E[Y (Z⇡)] = E[⇡(Xi)Y (1) + (1� ⇡(Xi))Y (�1)],

the population average outcome induced by the policy ⇡. The problem of policy optimization seeks
to find the best such policy over the parametrized function class F . Both of these tasks are hindered
by residual confounding since then V (⇡) cannot actually be identified from the data.

Motivated by the sensitivity model in [22] and without loss of generality, we assume that there is an
additional but unobserved covariate Ui such that unconfoundedness would hold if we were to control
for both Xi and Ui, that is, such that E[Yi(t) | Xi, Ui, Ti] = E[Yi(t) | Xi, Ui] for t 2 {�1, 1}.
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Equivalently, we can treat the data as collected under an unknown logging policy that based its
assignment on both Xi and Ui and that assigned Ti = 1 with probability e(Xi, Ui) = Pr[T = 1 |
Xi, Ui]. Here, e(Xi, Ui) is precisely the true propensity score of unit i. Since we do not have access
to Ui in our data, we instead presume that we have access only to nominal propensities ê(Xi) =
Pr[T = 1 | Xi], which do not account for the potential unobserved confounding. These are either part
of the data or can be estimated directly from the data using a probabilistic classification model such as
logistic regression. For compactness, we denote êTi(Xi) =

1
2 (1+ Ti)ê(Xi) +

1
2 (1� Ti)(1� ê(Xi))

and eTi(Xi, Ui) =
1
2 (1 + Ti)e(Xi, Ui) +

1
2 (1� Ti)(1� e(Xi, Ui)).

2.1 Related Work

Our work builds upon the literatures on policy learning from observational data and on sensitivity
analysis in causal inference.

Sensitivity analysis. Sensitivity analysis in causal inference tests the robustness of qualitative
conclusions made from observational data to model specification or assumptions such as unconfound-
edness. In this work, we focus on structural assumptions bounding how unobserved confounding
affects selection, without restriction on how unobserved confounding affects outcomes. In particular,
we focus on the implications of confounding on personalized treatment decisions.

Rosenbaum’s model for sensitivity analysis assesses the robustness of matched-pairs randomization
inference to the presence of unobserved confounding by considering a uniform bound � on the impact
of confounding on the odds ratio of treatment assignment [22]. Motivated by a logistic specification,
in this model, the odds-ratio for two units with the same covariates Xi = Xj , which differs due to the
units’ different values Ui, Uj for the unobserved confounder, is elog(�)(Ui�Uj), and Ui, Uj 2 [0, 1]
may be arbitrary. We consider a variant, also called the “marginal sensitivity model" in [34], which
instead bounds the log-odds ratio between e(Xi), e(Xi, Ui).

In the sampling literature, the weight-normalized estimator for population mean is known as the
Hajek estimator, and Aronow and Lee [1] derive sharp bounds on the estimator arising from a uniform
bound on the sampling weights, showing a closed-form solution for the solution to the fractional
linear program for a uniform bound on the sampling probabilities. [34] considers bounds on the
Hajek estimator, but imposes a parametric model on the treatment assignment probability.

Sensitivity analysis is also related to the literature on partial identification of treatment effects
[17]. Similar bounds studied in [33] in the transfer learning setting rely on no knowledge but the
law of total probability. Our approach instead uses sensitivity analysis based on the estimated
propensities as a starting point and leverages additional information about how far it is from true
propensities to achieve tighter bounds that interpolate between the fully-unconfounded and arbitrarily-
confounded regimes. [19] considers tightening the bounds from the Hajek estimator by adding shape
constraints, such as log-concavity, on the cumulative distribution of outcomes Y . [18] considers
sharp partially identified bounds under the assumption of an uniform bound on nominal propensities,
supU |Pr[T = 1 | X]� Pr[T = 1 | X,U ]|  c. We focus on the implications of sensitivity analysis
for policy-learning based approaches for learning optimal treatment policies from observational data.

Policy learning from observational data under unconfoundedness. A variety of approaches
for learning personalized intervention policies that maximize causal effect have been proposed,
but all under the assumption of unconfoundedness. These fall under regression-based strate-
gies [21] or reweighting-based strategies [3, 12, 13, 28], or doubly robust combinations thereof
[6, 30]. Regression-based strategies estimate the conditional average treatment effect (CATE),
E[Y (1) � Y (�1) | X], either directly or by differencing two regressions, and use it to score the
policy. Without unconfoundedness, however, CATE is not identifiable from the data and these
methods have no guarantees.

Reweighting-based strategies use inverse-probability weighting (IPW) to change measure from the
outcome distribution induced by a logging policy to that induced by the policy ⇡. Specifically, these
methods use the fact that, under unconfoundedness, V̂ IPW(⇡) is unbiased for V (⇡) [15], where

V̂
IPW(⇡) = 1

n

Pn
i=1

(1+Ti(2⇡(Xi)�1))Yi

2êTi (Xi)
(1)

Optimizing V̂
IPW(⇡) can be phrased as a weighted classification problem [3]. Since dividing by

propensities can lead to extreme weights and high variance estimates, additional strategies such as
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clipping the probabilities away from 0 and normalizing by the sum of weights as a control variate
are typically necessary for good performance [27, 32]. With or without these fixes, if there are
unobserved confounders, none of these are consistent for V (⇡) and learned policies may introduce
more harm than good.

A separate literature in reinforcement learning considers the idea of safe policy improvement by
minimizing the regret against a baseline policy, forming an uncertainty set around the presumed
unknown transition probabilities between states as in [29], or forming a trust region for safe policy
exploration via concentration inequalities on the importance-reweighted estimates of policy risk [20].

3 Robust policy evaluation and improvement

Our framework for confounding-robust policy improvement minimizes a bound on policy regret
against a specified baseline policy ⇡0, R⇡0(⇡) = V (⇡) � V (⇡0). Our bound is achieved by maxi-
mizing a reweighting-based regret estimate over an uncertainty set around the nominal propensities.
This ensures that we cannot do any worse than ⇡0 and may do better, even if the data is confounded.

The baseline policy ⇡0 can be any fixed policy that we want to make sure not to do worse than,
or deviate from unnecessarily. This is usually the current standard of care, established from prior
evidence, and can be a policy that actually depends on x. Generally, we think of this as the policy
that always assigns control. Alternatively, if a reliable estimate of the average treatment effect,
E[Y (1)� Y (�1)], is available then ⇡0 can be the constant ⇡0(x) = I[E[Y (1)� Y (�1)] < 0]. In an
agnostic extreme, ⇡0 can be the complete randomization policy ⇡0(x) = 1/2.

3.1 Confounding-robust policy learning by optimizing minimax regret

If we had oracle access to the true inverse propensities W
⇤
i = 1/eTi(Xi, Ui) we could form the

correct IPW estimate by replacing nominal with true propensities in eq. (1). We may go a step further
and, recognizing that E[1/eTi(Xi, Ui)] = 2, use the empirical sum of true propensities as a control
variate by normalizing our IPW estimate by them. This gives rise to the following Hajek estimators
of V (⇡) and correspondingly R⇡0(⇡)

V̂
⇤(⇡) =

Pn
i=1 W⇤

i (1+Ti(2⇡(Xi)�1))YiPn
i=1 W⇤

i
,

R̂
⇤
⇡0
(⇡) = V̂

⇤(⇡)� V̂
⇤(⇡0) =

2
Pn

i=1 W⇤
i (⇡(Xi)�⇡0(Xi))TiYiPn

i=1 W⇤
i

It follows by Slutsky’s theorem that these estimates remain consistent (if we know W
⇤
i ). Note that

had we known W
⇤
i , both the normalization and choice of ⇡0 would have amounted to constant shifts

and scales to R̂
⇤
⇡0
(⇡) that would not have changed the choice of ⇡ to minimize the regret estimate.

This will not be true of our bound, where both the normalization and the choice of ⇡0 will be material.

Since the oracle weights W ⇤
i are unknown, we instead minimize the worst-case possible value of our

regret estimate, by ranging over the space of possible values for eTi(Xi, Ui) that are consistent with
the observed data and our assumptions about the confounded data-generating process. Specifically,
our model restricts the extent to which unobserved confounding may affect assignment probabilities.
We first consider an uncertainty set motivated by the odds-ratio characterization in [22], which
restricts how far the weights can vary pointwise from the nominal propensities. Given a bound � > 1,
the odds-ratio restriction on e(x, u) is that it satisfy the following inequalities

��1  (1�ê(x))e(x,u)
ê(x)(1�e(x,u))  �. (2)

This restriction is motivated by (but more general than) considering a logistic model where e(x, u) =
�(g(x) + �u), g is any function, u 2 [0, 1] is bounded without loss of generality, and |�|  log(�).
Such a model would necessarily give rise to eq. (2). This restriction also immediately leads to an
uncertainty set for the true inverse propensities of observed treatments of each unit, 1/e(Xi, Ui),
which we denote as follows

U�
n =

�
W 2 Rn

+ : a�i Wi  b
�
i 8i = 1, . . . , n

 
, where

a
�
i =

1� êTi(Xi) + �êTi(Xi)

�êTi(Xi)
, b

�
i =

�(1� êTi(Xi)) + êTi(Xi)

êTi(Xi)
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The corresponding bound on empirical regret is R⇡0(⇡;U�
n ), where for any U ⇢ Rn

+ we define

R⇡0(⇡;U) = supW2U
2
Pn

i=1 Wi(⇡(Xi)�⇡0(Xi))TiYiPn
i=1 Wi

We then choose the policy ⇡ in our class that minimizes this regret bound, i.e., ⇡(F ,U�
n ,⇡0), where

⇡(F ,U ,⇡0) 2 argmin⇡2F R⇡0(⇡;U) (3)

In particular, for our estimate R⇡0(⇡;U�
n ), weight normalization is crucial for only enforcing robust-

ness against consequential realizations of confounding which affect the relative weighting of patient
outcomes; otherwise robustness against confounding would simply assign weights to their highest
possible bounds for positive YiTi. If the baseline policy is in the policy class F , it already achieves 0
regret; thus, minimizing regret necessitates learning regions of policy treatment assignment where
evidence from observed outcomes suggests benefits in terms of decreased loss. Different baseline
policies ⇡0 = 0, 1 structurally change the solution to the adversarial subproblem by shifting the
contribution of the loss term YiTi(⇡(Xi)� ⇡0) to emphasize improvement upon the baseline.

Budgeted uncertainty sets to address “local” confounding. Our approach can be pessimistic in
ensuring robustness against worst-case realizations of unobserved confounding “globally” for each
unit, whereas concerns about unobserved confounding may be restricted to a subset of the population,
due to subgroup risk factors or outliers. For the Rosenbaum model in hypothesis testing, this has
been recognized by [7, 9] who address it by limiting the average of the unobserved propensities by an
additional sensitivity parameter. Motivated by this, we next consider an alternative uncertainty set,
where we fix a budget ⇤ for how much the weights can diverge from the nominal inverse propensity
weights in total. Specifically, letting Ŵi = 1/êTi (Xi), we construct the uncertainty set

U�,⇤
n =

n
W 2 Rn

+ :
Pn

i=1 |Wi � Ŵi|  ⇤, a�i Wi  b
�
i 8i = 1, . . . , n

o

When plugged into eq. (3), this provides an alternative policy choice criterion that is less conservative.
We suggest to calibrate ⇤ as a fraction ⇢ < 1 of the total deviation allowed by U�

n . Specifically,
⇤ = ⇢

Pn
i=1 max(Ŵi � a

�
i , b

�
i � Ŵi). This is the approach we take in our empirical investigation.

3.2 The Improvement Guarantee

We next prove that if we appropriately bounded the potential hidden confounding then our worst-case
empirical regret objective is asymptotically an upper bound on the true population regret. On the one
hand, since our objective is necessarily non-positive if ⇡0 2 F , this says we do no worse. On the
other hand, if our objective is negative, which we can check by just evaluating it, then we are assured
some strict improvement. Our result is generic for both U�

n and U�,⇤
n .

Our upper bound depends on the complexity of our policy class. Define its Rademacher complexity:

Rn(F) = 1
2n

P
✏2{�1,+1}n sup⇡2F

�� 1
n

Pn
i=1 ✏i⇡(Xi)

��

All the policy classes we consider have
p
n-vanishing complexities, i.e., Rn(F) = O(n�1/2).

Theorem 1. Suppose that (1/e(X1, U1), . . . , 1/e(Xn, Un)) 2 U and that ⌫  e(x, u)  1� ⌫ for

some ⌫ > 0 and |Y |  C for some C � 1. Then for any � > 0 such that n � ⌫
�2 log(5/�)/2, we

have that with probability at least 1� �,

R⇡0(⇡) = V (⇡)� V (⇡0)  R⇡0(⇡;U) + 2Rn(F) + C
⌫

q
8 log(5/�)

n 8⇡ 2 F (4)

In particular, if we let ⇡ = ⇡(F ,U ,⇡0) be as in eq. (3) then eq. (4) holds for ⇡, which minimizes the
right hand side. So, if the objective R⇡0(⇡;U) is negative, we are (almost) assured of getting some
improvement on ⇡0. At the same time, so long as ⇡0 2 ⇧, the objective is necessarily non-positive,
so we are also (almost) assured of doing no worse than ⇡0. Our guarantee of improvement holds,
under well-specification, without requiring effect identification due to hidden confounding. Thus,
Theorem 1 exactly captures the appeal of our approach.
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3.3 Calibration of the uncertainty parameter �

In our framework, appropriate choice of � is both important for ensuring that we avoid harm and will
be context-dependent. The assumption that there exists a finite � < 1 that satisfy eq. (2) is itself
untestable, just like unconfoundedness (which corresponds to � = 1). Since we focus on enabling
safe policy learning in domains where one errs toward safety in case of ignorance, if absolutely
nothing is known then � =1 is the right choice and there is no hope for strictly safe improvement.
However, practitioners generally have domain-level knowledge on the missing variables that may
impact selection. This can guide the choice of � <1, which our method leverages to offer some
improvement while ensuring safety. In particular, one way that the value of � can be calibrated is
by judging its value against the discrepancies in estimated propensities that are induced by omitting
observed variables [10]. Then, determining a reasonable upper bound for � can be phrased in terms of
whether one thinks one has omitted a variable that could have increased or decreased the probability
of treatment by as much as a particular observed variable. For example, a bound for � can be implied
by claiming one has not omitted a variable with as much impact on treatment as does, say, age,
if age were observed. Additionally, when alternative outcome data is available, other approaches
such as negative controls can be used to provide a lower bound for � [16]. If one knows that the
treatment does not have an effect on a particular outcome but one is observed in the data, then �
must be sufficiently large to invalidate that observed effect. These tools can be combined to derive a
reasonable range for � in practice. Since our focus is on safety, we suggest to err toward larger �.

4 Optimizing Robust Policies

We next discuss how to optimize the policy optimization problem in eq. (3). We focus on differentiable
parametric policies, F = {⇡( · ; ✓) : ✓ 2 ⇥}, such as logistic policies. We first discuss how to solve
the worst-case regret subproblem for a fixed policy, which we will then use to develop our algorithm.

4.1 Dual Formulation of Worst-Case Regret

The minimization in eq. (3) for U = U�
n involves an inner supremum, namely R⇡0(⇡;U�

n ). Moreover,
this supremum over weights W does not on the face of it appear to be convex. We next proceed to
characterize this supremum, formulate it as a linear program, and, by dualizing it, provide an efficient
procedure for finding the pessimal weights.

For compactness and generality, we address the optimization problem Q(r;U�
n ) parameterized by an

arbitrary reward vector r 2 Rn, where

Q(r;U) = maxW2U
Pn

i=1 riWi/
Pn

i=1 Wi. (5)

To recover R⇡0(⇡;U), we would simply set ri = 2(⇡(Xi)� ⇡0(Xi))TiYi. Since U�
n involves only

linear constraints on W , eq. (5) for U = U�
n is a linear fractional program. We can reformulate it

as a linear program by applying the Charnes-Cooper transformation [5], requiring weights to sum
to 1, and rescaling the pointwise bounds by a nonnegative scale factor t. We obtain the following
equivalent linear program, where we let w 2 Rn

+ denote the normalized weights:

Q(r;U�
n ) = maxt,w�0

�Pn
i=1 riwi :

Pn
i=1 wi = 1; ta�i  wi  tb

�
i , 8 i = 1, . . . , n

 
(6)

The dual problem to eq. (6) has dual variables � 2 R for the weight normalization constraint and
u, v 2 Rn

+ for the lower bound and upper bound constraints on weights, respectively, and is given by

minu,v�0,�2R {� : b
|
v + a

|
u � 0, vi � ui + � � ri 8 i = 1...n} (7)

We use this to show that solving the adversarial subproblem requires only sorting the data and ternary
search to optimize a unimodal function, generalizing the result of Aronow and Lee [1] for arbitrary
pointwise bounds on the weights. Crucially, the algorithmically efficient solution will allow for faster
subproblem solutions when optimizing our regret bound over policies in a given policy classes.
Theorem 2 (Normalized optimization solution). Let (i) denote the ordering such that r(1)  r(2) 
· · ·  r(n). Then, Q(r;U�

n ) = �(k⇤), where k
⇤ = inf{k = 1, . . . , n+ 1 : �(k) < �(k � 1)} and

�(k) =
P

i<ka
�
(i)r(i)+

P
i�kb

�
(i)r(i)P

i<ka
�
(i)

+
P

i�kb
�
(i)

(8)

Moreover, �(k) is a discrete concave unimodal function.
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Next we consider Q(r;U�,⇤
n ). Write an extended formulation for U�,⇤

n using only linear constraints:

U�,⇤
n =

n
W 2 Rn

+ : 9d s.t.
Pn

i=1 di  ⇤, di �Wi � Ŵi, di � Ŵi �Wi, a
�
i Wi  b

�
i 8i

o

This immediately shows that Q(r;U�,⇤
n ) remains a fractional linear program. Indeed, letting, w0 =Pn

i=1 Ŵi a similar Charnes-Cooper transformation as used above with the additional normalization
d
0
i = dit yields a non-fractional linear programming formulation:

Q(r;U�,⇤
n ) = max

d,w,t�0

⇢Pn
i=1 wiri :

P
i d

0
i � ⇤t  0,

P
i wi = 1, ait  wi  bit 8i

�d0i  �wi + w
0
i t, � d

0
i  wi � w

0
i t, 8i

�

The corresponding dual problem is:

min
g,h,u,v,⌫�0,�2R

⇢
� :

v � u+ g � h+ � � r, v � g + h

�b|v + a
|
u� ⇤⌫ + g

|
w

0 + h
|
w

0 = 0

�

As Q(r;U�,⇤
n ) remains a linear program, we can easily solve it using off-the-shelf solvers.

4.2 Optimizing Parametric Policies

We next consider the case where F = {⇡(·; ✓) : ✓ 2 ⇥}, ⇥ is convex (usually ⇥ = Rm), and
⇡(x; ✓) is differentiable with respect to ✓. We suppose that r✓⇡(x; ✓) is given as an evaluation
oracle. An example is logistic policies where ⇡(X;↵,�) = �(↵ + �

|
X) and ⇥ = Rd+1. Since

�
0(z) = �(z)(1� �(z)), evaluating derivatives is simple.

Our method follows a parametric optimization approach [26]. Note that Q(r;U) is convex in r since
it is a maximum over linear functions in r. Correspondingly, its subdifferential at r is given by the
argmax set:

@rQ(r;U) =
n

WPn
i=1 Wi

: W 2 U ,
Pn

i=1 WiriPn
i=1 Wi

� Q(r;U).
o

If we set ri(✓) = 2(⇡(Xi; ✓) � ⇡0(Xi))TiYi, so that Q(r;U) = R⇡0(⇡(·; ✓);U), then @ri(✓)
@✓j

=

2TiYi
@⇡(Xi;✓)

@✓j
. Although F (✓) := R⇡0(⇡(·; ✓);U) may not be convex in ✓, this suggests a subgradi-

ent descent approach. Let

g(✓;W ) = r✓
2
Pn

i=1 Wi(⇡(Xi;✓)�⇡0(Xi))TiYiPn
i=1 Wi

=
2
Pn

i=1 WiTiYir✓⇡(Xi;✓)Pn
i=1 Wi

.

Note that whenever @rQ(r(✓);U) = {W/
Pn

i=1 Wi} is a singleton then g(✓;W ) is in fact a gradient
of F (✓).

At each step, our algorithm starts with a current value of ✓, then proceeds by finding the weights W
that realize R⇡0(⇡(· ; ✓) by using an efficient method as in the previous section, and then takes a step
in the direction of �g(✓;W ). Using this method, we can optimize policies over both the unbudgeted
uncertainty set U�

n and the budgeted uncertainty set U�,⇤
n . Because descent is not always guaranteed

at each step, at the end, we return the value of ✓ that corresponds to the best objective value seen so
far. Our method is summarized in Alg. 1.

5 Experiments

Simulated data. We first consider a simple linear model specification demonstrating the possible
effects of significant confounding on inverse-propensity weighted estimators.

⇠ ⇠ Bern(1/2), X ⇠ N(µx, I5), U = I[Yi(1) < Yi(�1)]
Y (t) = �

|
0x+ 1/2(t+ 1)�|

treatx+ ↵1/2(t+ 1) + ⌘⇠t+ !⇠ + ✏

The constant treatment effect is 2.5 with the linear interaction �treat = [�1.5, 1,�1.5, 1, 0.5]. The
covariate mean is µx = [�1, .5,�1, 0,�1]. The noise term ⇠ affects outcomes with coefficients
⌘ = �2,! = 1, in addition to a uniform noise term ✏ ⇠ N(0, 1). We let the nominal propensities be
logistic in X , ê(Xi) = �(�|

x) with � = [0, .75,�.5, 0,�1, 0], and we generate Ti according to the
true propensities, which we set to e(Xi, Ui) =

4+5U+ê(Xi)(2�5U)
6ê(Xi)

.

We compare the policies learned by a variety of methods. We consider two commonplace standard
methods that assume unconfoundedness: the logistic policy minimizing the IPW estimate with
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Figure 1: Out of sample policy performance
on synthetic data, where the true generating
log(�)⇤ = 1.5.

Algorithm 1: Parametric Subgradient Method

1: Input: step size ⌘0, step-schedule exponent  2
(0, 1], initial iterate ✓0, number of iterations N

2: for t = 0, . . . , N � 1 do:
3: ⌘t  ⌘0t

�
. Update step size

4: `t  max
W2U

2
Pn

i=1 Wi(⇡(Xi;✓t)�⇡0(Xi))TiYiPn
i=1 Wi

5: W  argmax
W2U

2
Pn

i=1 Wi(⇡(Xi;✓t)�⇡0(Xi))TiYiPn
i=1 Wi

6: ✓t+1  Projection⇥(✓t � ⌘tg(✓t;W ))
return ✓argmint lt

nominal propensities1 and the direct comparison policy gotten by estimating CATE using causal
forests and comparing it to zero [CF; 31]. We compare these to our methods with a never-treat
baseline policy ⇡0(x) = 0: our robust logistic policy using the unbudgeted uncertainty set, our robust
logistic policy using the budgeted uncertainty set and multipliers ⇢ = 0.5, 0.3, 0.2. For each of
these we vary the parameter � in {0.3, 0.4, . . . , 1.6, 1.7, 2, 3, 4, 5}. The causal forest policy achieves
slightly better regret than the IPW policy, but remains confounded. By construction, for log(�) very
small (left end of plot), the confounding-robust approach tracks IPW with the nominal propensities
and incurs some regret relative to control. When we add robustness, our policies achieve substantial
improvements. As log(�) increases, the learned robust logistic policies are able to achieve negative
regret, meaning we improve upon ⇡0. As log(�) grows very large (right end of plot), we are very
robust to any size of confounding and almost always default to ⇡0 as a policy that ensures never
doing worse and our true regret converges to 0. Even in this extreme example of confounding where
the true propensities achieve the odds-ratio bounds, the budgeted version is able to attain similar
improvements to the unbudgeted version for ⇢ = 0.3, 0.2, and uniformly better improvements for
⇢ = 0.5. These improvements are relatively insensitive to the exact value of ⇢ and the budgeted
version is able to achieve improvement even when the budgeted uncertainty set is misspecified. The
best improvements for the parametric policies are achieved at log(�) = 1.5, consistent with the
model specification.

Assessment with Clinical Data: International Stroke Trial.

We build an evaluation framework for our methods from real-world data, where the counterfactuals are
not known, by simulating confounded selection into a training dataset, and estimating out-of-sample
policy regret on a held-out “test set” from the completely randomized controlled trial. We study
the International Stroke Trial (IST), restricting attention to two treatment arms from the original
factorial design: the treatment arm of both aspirin and heparin (high dose) (T = 1) vs. only aspirin
(T = �1) treatment arms, numbering 7233 cases with Pr[T = 1] = 1/3 [8]. We defer some details
about the dataset to Appendix C. Findings from the study suggest clear reduction in adverse events
(recurrent stroke or death) from aspirin, whereas heparin efficacy is inconclusive since small (non-
significant) benefit on rates of death at 6 months was offset by greater incidence of other adverse
events such as hemorrhage or cranial bleeding. We construct an evaluation framework from the
dataset by first sampling a split into a training set Strain and a held-out test set Stest, and subsampling
a final set of initial patients, whose data is then used to train treatment assignment policies. We
generate nominal selection probabilities into the final training set, letting Z = 1 denote inclusion, as
Pr[Z = 1 | Xage] = 0.6 + 0.2Xage, where Xage 2 [0, 1] is rescaled. Then the nominal propensities
of treatment assignment in the final training set are Pr[Z = 1, T = 1 | X] = 0.2 + 0.1Xage. We
introduce confounding by censoring the treated patients with the worst 10% of outcomes, and the
10% best patients in the control group.

The original trial measured a set of clinical outcomes including death, stroke recurrence, adverse side
effect, and full recovery at six months: we scalarize these outcomes as a composite loss function. A

1We also tried the self-normalized variant of Swaminathan and Joachims [27] and report the results in Sec. B
in the appendix.
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a. Out-of-sample policy regret

b. % of patients with ⇡(X) > 0.4 c. Avg death prognosis in treated

Figure 2: Comparison of policy performance on clinical trial (IST) data as � increases

difference-in-means estimate of the ATE for the composite score in full data is significant at 0.13,
suggesting that heparin is overall harmful. Without access to the true counterfactual outcomes for
patients, our oracle estimates are IPW-based estimates from the held-out RCT data with probabilities
of treatment assignment as p�1 = 2

3 and p1 = 1
3 . We use an out-of-sample Horvitz-Thompson

estimate of policy regret relative to ⇡0(x) = 0 based on the held-out dataset Stest, Rtest
⇡0

(⇡) =
1

|Stest|
P

i2Stest
YiTi⇡(Xi)

1
pTi

. In Fig. 2a, we evaluate on 10 draws from the dataset, comparing our

policies against the vanilla IPW estimator
P

i
Yi Pr[⇡i=Ti]
Pr[T=Ti]

with a probabilistic policy, and assigning
based on the sign of the CATE prediction from causal forests [31]. The selected datasets average a size
of ntrain = 2430. We evaluate logistic parametric policies (CRLogit) and budgeted (CRLogit.L1)
with ⇢ = 0.5. For the parametric policies, we optimize with the same parameters as earlier. We
evaluate log(�) = 0.1, 0.2, every 0.025 between 0.25 and 0.45, every 0.2 between log(�) = 0.5, 1.5
and � = 2. For small values of log(�), our methods perform similarly as IPW. As log(�) increases,
our methods achieve policy improvement, though the L1-budgeted method (CRLogit.L1) achieves
worse performance. For log(�) > 0.9, the robust policy essentially learns the all-control policy; our
finite-sample regret estimator simply indicates good regret for a neglible number of patients (5-6).

In Figs. 2b-2c, we study the behavior of the robust policies. The IST trial recorded a prognosis score
of probability of death at 6 months for patients, using an externally validated model, which we do not
include in the training data, but use to assess the validity of our robust policy. In Fig. 2c, we consider
the average prognosis score of death for among patients treated with ⇡(X) > 0.4. In Fig. 2b, for
log(�) 2 [0.3, 0.5], the policy considers treating 1 � 20% of patients and the subsequent average
prognosis score of the population under consideration increases, indicating that the policy is learning
and treating on appropriate indicators of severity from the available covariates. For log(�) > 0.9, the
noise in the prognosis score is due to the small treated subgroups (while the unbudgeted policy does
not learn a policy that improves upon control, so we default to control and truncate the plot).

Our learned policies suggest that improvements from heparin may be seen in the highest-risk patients,
consistent with the findings of [2], a systematic review comparing anticoagulants such as heparin
against aspirin. They conclude from a study of a number of trials, including IST, that heparin provides
little therapeutic benefit, with the caveat that the trial evidence base is lacking for the highest-risk
patients where heparin may be of benefit. Thus, our robust method appropriately treats those, and
only those, who stand to benefit from the more aggressive treatment regime.

6 Conclusion

We developed a framework for estimating and optimizing for robust policy improvement, which
optimizes the minimax regret of a candidate personalized decision policy against a baseline policy.
We optimize over uncertainty sets centered at the nominal propensities, and leverage the optimization
structure of normalized estimators to perform policy optimization efficiently by subgradient descent
on the robust risk. Assessments on synthetic and clinical data demonstrate the benefits of robust
policy improvement.
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