
A Conjugates and lower bounds with duality

A.1 Conjugates of the joint indicator function

Here, we derive a lower bound on
∑k
i=2 χi(z1:i). It is mathematically convenient to introduce

addition variables ẑ1:k such that ẑi = zi for all i = 1, . . . , k, and rephrase it as the equivalent
constrained optimization problem.

min
z1:k−1,ẑ2:k

0

subject to ẑi =

i−1∑
j=1

fij(zj) for i = 2, . . . , k

zi = ẑi for i = 1, . . . , k

(14)

Note that we do not optimize over ẑ1 and zk yet, to allow for future terms on the inputs and outputs
of the network, so this is analyzing just the network structure. We introduce Lagrangian variables
ν1:k, ν̂2:k to get the following Lagrangian:

L(z1:k, ẑ1:k, ν1:k, ν̂2:k) =

k∑
i=2

ν̂Ti

ẑi − i−1∑
j=1

fij(zj)

+

k∑
i=1

νTi (zi − ẑi) (15)

Grouping up terms by zi, ẑi and rearranging the double sum results in the following expression:

L(z1:k, ẑ1:k, ν1:k, ν̂2:k) = −νT1 ẑ1 +

k∑
i=2

(ν̂i − νi)T ẑi +

k∑
i=1

νTi zi − k∑
j=i+1

ν̂Tj fji(zi)

 (16)

From the KKT stationarity conditions for the derivative with respect to ẑi, we know that ν̂i = νi.
Also note that in the summand, the last term for i = k has no double summand, so we move it out for
clarity.

L(z1:k, ν1:k) = −νT1 ẑ1 + νTk zk +

k−1∑
i=1

νTi zi − k∑
j=i+1

νTj fji(zi)

 (17)

Finally, we minimize over zi for i = 2, . . . , k − 1 to get the conjugate form for the lower bound via
weak duality.

L(z1:k, ν1:k) ≥ −νT1 ẑ1 + νTk zk +

k−1∑
i=1

min
zi

νTi zi − k∑
j=i+1

νTj fji(zi)


= −νT1 ẑ1 + νTk zk −

k−1∑
i=1

max
zi

−νTi zi +

k∑
j=i+1

νTj fji(zi)


= −νT1 z1 + νTk zk −

k−1∑
i=1

χ∗i (−νi, νi+1:k)

(18)

A.2 Proof of Theorem 1

First, we rewrite the primal problem by bringing the function and input constraints into the objective
with indicator functions I . We can then apply Lemma 1 to get the following lower bound on the
adversarial problem:

maximize
ν1:k

minimize
z1,zk

(cT + νk)T zk + IB(x)(z1)− νT1 z1 −
k−1∑
i=1

χ∗i (−νi, νi+1:k) (19)

Minimizing over z1 and zk, note that

min
ẑk

(c+ νk)T ẑk = −I(νk = −c)

min
ẑ1

IB(x)(z1)− νT1 z1 = −I∗B(x)(ν1)
(20)
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Note that if B(x) = {x+ ∆ : ‖∆‖ ≤ ε} for some norm, then I∗B(x)(ν1) = νT1 x+ ε‖ν1‖∗ where ‖ · ‖
is the dual norm, but any sort of input constraint can be used so long as its conjugate can be bounded.
Finally, the last term can be bounded with the dual layer:

min
zi

νTi zi −
k∑

j=i+1

νTj fji(zi) = −χ∗i (−νi, νi+1:k) ≥ −hi(νi:k) subject to νi =

k∑
j=i+1

gij(νj)

(21)

Combining these all together, we get that the adversarial problem from Equation 2 is lower bounded
by

maximize
ν

− νT1 x− ε‖ν1‖∗ −
k−1∑
i=1

hi(νi:k)

subject to νk = −c

νi =

k∑
j=i+1

gij(νj)

(22)

B Dual layers

In this section, we derive the dual layers for standard building blocks of deep learning.

B.1 Linear operators

Suppose fi(zi) = Wizi + bi for some linear operator Wi and bias terms bi. Then,

χ∗i (−νi, νi+1) = max
zi
−zTi νi + (Wizi + bi)

T νi+1

= max
zi

zTi (WT
i νi+1 − νi) + bTi νi+1

= max
zi

I(νi = WT
i νi+1) + bTi νi+1

= bTi νi+1 subject to νi = WT
i νi+1

(23)

B.2 Residual linear connections

Suppose fi(zi, zj) = Wizi + zj + bi and zj+1 = Wjzj + bj for some j < i− 1 for linear operators
Wi,Wj and bias term bi, bj . Then,

χ∗i (−νi, νi+1) = max
zi
−zTi νi + (Wizi + bi)

T νi+1

= bTi νi+1 subject to νi = WT
i νi+1

(24)

and
χ∗i (−νj , νj+1) = max

zj
−zTj νj + zTj νi + (Wjzj + bj)

T νj+1

= bTj νj subject to νj = WT
j νj+1 + νi

(25)

B.3 ReLU activations

The proof here is the same as that presented in Appendix A3 of Wong and Kolter [2017], however we
reproduce a simplified version here for the reader. The conjugate function for the ReLU activation is
the following:

χ∗(−νi, νi+1) = max
zi
−zTi νi + max(zi, 0)νi+1 (26)

Suppose we have lower and upper bounds `i, ui on the input zi. If ui ≤ 0, then max(zi, 0) = 0, and
so

χ∗(−νi, νi+1) = max
zi
−zTi νi = 0 subject to νi = 0 (27)
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Otherwise, if `i ≥ 0, then max(zi, 0) = zi and we have

χ∗(−νi, νi+1) = max
zi
−zTi νi + zTi νi+1 = 0 subject to νi = νi+1 (28)

Lastly, suppose `i < 0 < ui. Then, we can upper bound the conjugate by taking the maximum over a
convex outer bound of the ReLU, namely Si = {(zi, zi+1) : zi+1 ≥ 0, zi+1 ≥ zi,−ui � zi + (ui −
`i)� zi+1 ≤ −ui � `i}, where � denotes element-wise multiplication:

χ∗(−νi, νi+1) ≤ max
Si
−zTi νi + zTi+1νi+1 (29)

The maximum must occur either at the origin (0, 0) or along the line −uijzij + (uij − `ij)zi+1,j =
−uij`ij , so we can upper bound it again with

χ∗(−νij , νi+1,j) ≤ max
zij

[
−zijνij +

(
uij

uij − `ij
zij −

uij`ij
uij − `ij

)
νi+1,j

]
+

= max
zij

[(
uij

uij − `ij
νi+1,j − νij

)
zij −

uij`ij
uij − `ij

νi+1,j

]
+

=

[
− uij`ij
uij − `ij

νi+1,j

]
+

subject to νij =
uij

uij − `ij
νi+1,j

= −`ij [νij ]+ subject to νij =
uij

uij − `ij
νi+1,j

(30)

Let I−i , I
+
i , I and Di be as defined in the corollary. Combining these three cases together, we get

the final upper bound:

χ∗i (−νi, νi+1:k) ≤ −
∑
j∈Ii

`i,j [νi,j ]+ subject to νi = Diνi+1 (31)

B.4 Hardtanh

Here, we derive a dual layer for the hardtanh activation function. The hard tanh activation function is
given by

hardtanh(x) =


−1 for x < −1

x for −1 ≤ x ≤ 1

1 for x > 1

(32)

Since this is an activation function (and has no skip connections), we only need to bound the following:

χ∗(−νi, νi+1) = max
zi
−zTi νi + hardtanh(zi)

T νi+1 (33)

Given lower and upper bounds ` and u, we can use a similar convex relaxation as that used for ReLU
and decompose this problem element-wise (we will now assume all terms are scalars for notational
simplicity), so we have

χ∗(νi, νi+1) ≤ max
zi,zi+1∈S

−ziνi + zi+1νi+1 (34)

where S is the convex relaxation. The exact form of the relaxation depends on the values of ` and
u, and we proceed to derive the dual layer for each case. We depict the relaxation where u > 1 and
` < −1 in Figure 4, and note that the remaining cases are either triangular relaxations similar to the
ReLU case or exact linear regions.

B.4.1 u > 1, ` < −1

If u > 1 and ` < −1, we can use the relaxation given in Figure 4. The upper bound goes through the
points (`,−1) and (1, 1) while the lower bound goes through the points (−1,−1) and (u, 1). The
slope of the first one is 2

1−` and the slope of the second one is 2
u+1 , so we have either

zi+1 =
2

1− `
(zi − 1) + 1, zi+1 =

2

u+ 1
(zi + 1)− 1 (35)
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Figure 4: Convex relaxation of hardtanh given lower and upper bounds ` and u.

Taking the maximum over these two cases, we have our upper bound of the conjugate is

χ∗(νi, νi+1) ≤ max

(
−ziνi +

(
2

1− `
(zi − 1) + 1

)
νi+1,−ziνi +

(
2

u+ 1
(zi + 1)− 1

)
νi+1

)
(36)

Simplifying we get

χ∗(νi, νi+1) ≤ max

(
zi

(
−νi +

2

1− `
νi+1

)
+

(
1− 2

1− `

)
νi+1,

zi

(
−νi +

2

u+ 1
νi+1

)
+

(
2

u+ 1
− 1

)
νi+1

) (37)

So each case becomes

χ∗(νi, νi+1) ≤ max

((
1− 2

1− `

)
νi+1 subject to νi =

2

1− `
νi+1 ,(

2

u+ 1
− 1

)
νi+1 subject to νi =

2

u+ 1
νi+1

) (38)

As a special case, note that when u = −`, we have

χ∗(νi, νi+1) ≤
∣∣∣∣(1− 2

1 + u

)
νi+1

∣∣∣∣ subject to νi =
2

1 + u
νi+1 (39)

This dual layer is linear, and so we can continue to use random projections for efficient bound
estimation.

B.4.2 u ≤ −1

Then, S = {zi+1 = −1} and so

χ∗(νi, νi+1) = max
zi
−ziνi − νi+1 = −νi+1 subject to νi = 0 (40)

B.4.3 ` ≥ 1

Then, S = {zi+1 = 1} and so

χ∗(νi, νi+1) = max
zi
−ziνi + νi+1 = νi+1 subject to νi = 0 (41)

B.4.4 ` ≥ −1, u ≤ 1

Then, S = {zi+1 = zi} and so

χ∗(νi, νi+1) = max
zi
−ziνi + ziνi+1 = 0 subject to νi = νi+1 (42)
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B.4.5 ` ≤ −1,−1 ≤ u ≤ 1

Here, our relaxation consists of the triangle above the hardtanh function. Then, the maximum
occurs either on the line zi+1 = 1+u

u−` (zi − `) − 1 or at (−1,−1). This line is equivalent to

zi+1 = 1+u
u−` zi −

(
1+u
u−` `+ 1

)
, and the point (−1,−1) has objective value νi − νi+1, so we get

χ∗(νi, νi+1) ≤ max
zi
−ziνi +

1 + u

u− `
ziνi+1 −

(
1 + u

u− `
`+ 1

)
νi+1 (43)

χ∗(νi, νi+1) ≤ max

(
−
(

1 + u

u− `
`+ 1

)
νi+1, νi − νi+1

)
subject to νi =

1 + u

u− `
νi+1 (44)

B.4.6 −1 ≤ ` ≤ 1, 1 ≤ u

Here, our relaxation consists of the triangle below the hardtanh function. Then, the maximum
occurs either on the line zi+1 = 1−`

u−` (zi − `) + ` or at (1, 1). This line is equivalent to zi+1 =

1−`
u−`zi −

(
1−`
u−``− `

)
, and at the point (1, 1) has objective value −νi + νi+1, so we get

χ∗(νi, νi+1) ≤ max
zi
−ziνi +

1− `
u− `

ziνi+1 −
(

1− `
u− `

`− `
)
νi+1 (45)

χ∗(νi, νi+1) ≤ max

(
−
(

1− `
u− `

`− `
)
νi+1,−νi + νi+1

)
subject to νi =

1− `
u− `

νi+1 (46)

B.5 Batch normalization

As mentioned before, we only consider the case of batch normalization with a fixed mean and
variance. This is true during test time, and at training time we can use the batch statistics as a heuristic.
Let µi, σi be the fixed mean and variance statistics, so batch normalization has the following form:

BN(zi) = γ
xi − µi√
σ2
i + ε

+ β (47)

where γ, β are the batch normalization parameters. Then,

zi = γ
ẑi − µ√
σ2 + ε

+ β = Dizi + di (48)

where Di+1 = diag
(

γ√
σ2+ε

)
and di+1 = β− µ√

σ2+ε
. and so we can simply plug this into the linear

case to get

χ∗i (−νi, νi+1:k) = dTi νi+1 subject to νi = Diνi+1 (49)

Note however, that batch normalization has the effect of shifting the activations to be centered more
around the origin, which is exactly the case in which the robust bound becomes looser. In practice,
we find that while including batch normalization may improve convergence, it reduces the quality of
the bound.

C Cascade construction

The full algorithm for constructing cascades as we describe in the main text is shown in Algorithm 2.
To illustrate the use of the cascade, Figure 5 shows a two stage cascade on a few data points in two
dimensional space. The boxes denote the adversarial ball around each example, and if the decision
boundary is outside of the box, the example is certified.
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Algorithm 2 Training robust cascade of k networks and making predictions

input: Initialized networks f1, . . . , fk, training examples X, y, robust training procedure denoted
RobustTrain, test example x∗
for i = 1, . . . , k do
fi := RobustTrain(fi, X, y) // Train network
// remove certified examples from dataset
X, y := {xi, yi : J(x, g(ef(xi) − eytarg )) > 0, ∀ytarg 6= f(xi)}

end for
for i = 1, . . . , k do

if J(x, g(efi(x∗) − eytarg )) < 0 ∀ytarg 6= fi(x
∗) then

output: fi(x∗) // return label if certified
end if

end for
output: no certificate

Figure 5: An example of a two stage cascade. The first model on the left can only robustly classify
three of the datapoints. After removing the certified examples, the remaining examples can now
easily be robustly classified by a second stage classifier.

D Estimation using Cauchy random projections

D.1 Proof of Theorem 2

Estimating ‖ν̂1‖1,: Recall the form of ν̂1,

ν̂1 = IWT
1 D2W

T
2 . . . DnW

T
n = g(I)

where we include the identity term to make explicit the fact that we compute this by passing an
identity matrix through the network g. Estimating this term is straightforward: we simply pass in a
Cauchy random matrix R, and take the median absolute value:

‖ν̂1‖1,: ≈ median(|RWT
1 D2W

T
2 . . . DnW

T
n |) = median(|g(R)|)

where the median is taken over the minibatch axis.

Estimating
∑
i[νi,:]+ Recall the form of ν = νj for some layer j,

νj = IDjW
T
j . . . DnW

T
n = gj(I)

Note that for a vector x, ∑
i

[x]+ =
‖x‖1 + 1Tx

2

So we can reuse the `1 approximation from before to get∑
i

[νi,:]+ =
‖ν‖1,: + 1T ν

2
≈ |median(gj(R)) + gj(1

T )|
2

which involves using the same median estimator and also passing in a single example of ones through
the network.
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Estimating
∑
i∈I `i[νi,:]+ The previous equation, while simple, is not exactly the term in the

objective; there is an addition `1 factor for each row, and we only add rows in the I set. However, we
can deal with this by simply passing in a modified input to the network, as we will see shortly:∑

i∈I
`i[νi,:]+ =

∑
i∈I

`i
|νi,:|+ νi,:

2

=
1

2

(∑
i∈I

`i|νi,:|+
∑
i∈I

`iνi,:

)

=
1

2

(∑
i∈I

`i|gj(I)i|+
∑
i∈I

`igj(I)i

) (50)

Note that since gj is just a linear function that does a forward pass through the network, for any
matrix A,B,

Agj(B) = ABDjW
T
j . . . DnW

T
n = gj(AB).

So we can take the multiplication by scaling terms ` to be an operation on the input to the network
(note that we assume `i < 0, which is true for all i ∈ I)∑

i∈I
`i[νi,:]+ =

1

2

(
−
∑
i∈I
|gj(diag(`))i|+

∑
i∈I

gj(diag(`))i

)
(51)

Similarly, we can view the summation over the index set I as a summation after multiplying by an
indicator matrix 1I which zeros out the ignored rows. Since this is also linear, we can move it to be
an operation on the input to the network.∑

i∈I
`i[νi,:]+ =

1

2

(
−
∑
i

|gj(1I diag(`))i|+
∑
i

gj(1I diag(`))i

)
(52)

Let the linear, preprocessing operation be h(X) = X1I diag(`) so
h(I) = 1I diag(`).

Then, we can observe that the two terms are simply an `1,: operation and a summation of the network
output after applying gj to h(I) (where in the latter case, since everything is linear we can take the
summation inside both g and h to make it gj(h(1T ))):∑

i∈I
`i[νi,:]+ =

1

2

(
−‖gj(h(I))‖1,: + gj(h(1T ))

)
(53)

The latter term is cheap to compute, since we only pass a single vector. We can approximate the first
term using the median estimator on the compound operations g ◦ h for a Cauchy random matrix R:∑

i∈I
`i[νi,:]+ ≈

1

2

(
−median(|gj(h(R))|) + gj(h(1T ))

)
(54)

The end result is that this term can be estimated by generating a Cauchy random matrix, scaling its
terms by ` and zeroing out columns in I, then passing it through the network and taking the median.
h(R) can be computed for each layer lower bounds `, and cached to be computed for the next layer,
similar to the non-approximate case.

E High probability bounds

In this section, we derive high probability certificates for robustness against adversarial examples.
Recall that the original certificate is of the form

J(g(c, α)) < 0,

so if this holds we are guaranteed that the example cannot be adversarial. What we will show is an
equivalent high probability statement: for δ > 0, with probability at least (1− δ),

J(g(c, α)) ≤ J̃(g(c, α))

where J̃ is equivalent to the original J but using a high probability `1 upper bound. Then, if
J̃(g(c, α)) < 0 then with high probability we have a certificate.
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E.1 High probability bounds using the geometric estimator

While the median estimator is a good heuristic for training, it is still only an estimate of the bound.
At test time, it is possible to create a provable bound that holds with high probability, which may be
desired if computing the exact bound is computationally impossible.

In this section, we derive high probability certificates for robustness against adversarial examples.
Recall that the original certificate is of the form

J(g(c, α)) < 0,

so if this holds we are guaranteed that the example cannot be adversarial. What we will show is an
equivalent high probability statement: for δ > 0, with probability at least (1− δ),

J(g(c, α)) ≤ J̃(g(c, α))

where J̃ is equivalent to the original J but using a high probability upper bound on the `1 norm.
Then, if J̃(g(c, α)) < 0 then with high probability we have a certificate.

E.2 Tail bounds for the geometric estimator

From Li et al. [2007], the authors also provide a geometric mean estimator which comes with high
probability tail bounds. The geometric estimator is

‖ν̂1‖1,j ≈
k∏
i=1

|g(R)i,j |1/k

and the relevant lower tail bound on the `1 norm is

P

(
1

1− ε

k∏
i=1

|g(R)i,j |1/k ≤ ‖ν̂1‖1,j

)
≤ exp

(
−k ε2

GL,gm

)
(55)

where

GL,gm =
ε2(

− 1
2 log

(
1 +

(
2
π log(1− ε)

)2)
+ 2

π tan−1
(
2
π log(1− ε)

)
log(1− ε)

)
Thus, if exp

(
−k ε2

GL,gm

)
≤ δ, then with probability 1− δ we have that

‖ν̂1‖1,j ≤
1

1− ε

k∏
i=1

|g(R)i,j |1/k = geo(R)

which is a high probability upper bound on the `1 norm.

E.3 Upper bound on J(g(c, α))

In order to upper bound J(g(c, α)), we must apply the `1 upper bound for every `1 term. Let
n1, . . . , nk denote the number of units in each layer of a k layer neural network, then we enumerate
all estimations as follows:

1. The `1 norm computed at each intermediary layer when computing iterative bounds. This
results in n2 + · · ·+ nk−1 estimations.

2. The
∑
j∈Ii `i,j [νi,j ]+ term for each i = 2, . . . , k − 1, computed at each intermediary layer

when computing the bounds. This results in n3 + 2n4 + · · ·+ (k − 3)nk−1.

In total, this is n2 + 2n3 + · · ·+ (k− 2)nk−1 = N total estimations. In order to say that all of these
estimates hold with probability 1− δ, we can do the following: we bound each estimate in Equation
55 with probability δ/N , and use the union bound over all N estimates. We can then conclude that
with probability at most δ, any estimate is not an upper bound, and so with probability 1− δ we have
a proper upper bound.
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E.4 Achieving δ/N tail probability

There is a problem here: if δ/N is small, then ε becomes large, and the bound gets worse. In fact,
since ε < 1, when k is fixed, there’s actually a lower limit to how small δ/N can be.

To overcome this problem, we take multiple samples to reduce the probability. Specifically, instead
of directly using the geometric estimator, we use the maximum over multiple geometric estimators

maxgeo(R1, . . . , Rm) = max(geo(R1), . . . , geo(Rm)),

where Ri are independent Cauchy random matrices. If each one has a tail probability of δ, then the
maximum has a tail probability of δm, which allows us to get arbitrarily small tail probabilities at a
rate exponential in m.

E.5 High probability tail bounds for network certificates

Putting this altogether, let δ > 0, let N > 0 be the number of estimates needed to calculate a
certificate, and let m be the number of geometric estimators to take a maximum over. Then with
probability (1− δ), if we bound the tail probability for each geometric estimate with δ̂ =

(
δ
N

)1/m
,

then we have an upper bound on the certificate.

MNIST example As an example, suppose we use the MNIST network from Wong and Kolter
[2017]. Then, let δ = 0.01, m = 10, and note that N = 6572. Then, δ̂ = 0.26, which we can achieve
by using k = 200 and ε = 0.22.
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Figure 6: Histograms of the relative error of the median estimator for 10 (top), 50 (middle), and 100
(bottom) projections, for a (left) random and (right) robustly trained convolutional layer.
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Figure 7: Timing (top) and memory in MB (bottom) plots for a single 3 by 3 convolutional layer to
evaluate 10 MNIST sized examples with minibatch size 1, averaged over 10 runs. The number of
hidden units is varied by increasing the number of filters. On a single Titan X, the exact method runs
out of memory at 52,800 hidden units, whereas the random projections scales linearly at a slope of
2.26× 10−7 seconds per hidden unit, up to 0.96 seconds for 4,202,240 hidden units.

E.6 Estimation quality and speedup

In this section, we discuss the empirical quality and speedup of the median estimator for `1 estimation
(for a more theoretical understanding, we direct the reader to Li et al. [2007]). In Figure 6, we plot
the relative error of the median estimator for varying dimensions on both an untrained and a trained
convolutional layer, and see that regardless of whether the model is trained or not, the distribution
of the estimate is normally distributed with decreasing variance for larger projections, and without
degenerate cases. This matches the theoretical results derived in Li et al. [2007].

In Figure 7, we benchmark the time and memory usage on a convolutional MNIST example to
demonstrate the performance improvements. While the exact bound takes time and memory that is
quadratic in the number of hidden units, the median estimator is instead linear, allowing it to scale up
to millions of hidden units whereas the exact bound runs out of memory out at 50,280 hidden units.

F AutoDual

In this section, we describe our generalization of the bounds computation algorithm from [Wong and
Kolter, 2017] to general networks using dual layers, which we call AutoDual.

Efficient construction of the dual network via linear dual operators The conjugate form, and
consequently the dual layer, for certain activations requires knowing lower and upper bounds for the
pre-activations, as was done for ReLU activations in Algorithm 1 of Wong and Kolter [2017]. While
the bound in Equation 7 can be immediately used to compute all the bounds on intermediate nodes of
the network one layer at a time, this requires performing a backwards pass through the dual network
whenever we need to compute the bounds. However, if the operators gij of the dual layers are all
affine operators gij(νi+1) = ATijνi+1 for some affine operator Aij , we can apply a generalization
of the lower and upper bound computation found in Wong and Kolter [2017] to compute all lower
and upper bounds, and consequently the dual layers, of the entire network with a single forward pass
in a layer-by-layer fashion. With the lower and upper bounds, we can also use the same algorithm
to automatically construct the dual network. The resulting algorithm, which we call AutoDual, is
described in Algorithm 3.

In practice, we can perform several layer-specific enhancements on top of this algorithm. First, many
of the Aji operators will not exist simply because most architectures (with a few exceptions) don’t
have a large number of skip connections, so these become no ops and can be ignored. Second, we
can lazily skip the computation of layer-wise bounds until necessary, e.g. for constructing the dual
layer of ReLU activations. Third, since many of the functions hj in the dual layers are functions
of BT νi for some matrix B and some i ≥ j, we can initialize ν(i)i with B instead of the identity
matrix, typically passing a much smaller matrix through the dual network (in many cases, B is a
single vector).
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Algorithm 3 Autodual: computing the bounds and dual of a general network

input: Network operations fij , data point x, ball size ε
// initialization
ν
(1)
1 := I
`2 := x− ε
u2 := x+ ε
for i = 2, . . . , k − 1 do

// initialize new dual layer
Create dual layer operators Aji and hi from fji, `j and uj for all j ≤ i
ν
(i)
i := I .

// update all dual variables
for j = 1, . . . , i− 1 do
ν
(i)
j :=

∑j−1
k=1Akiν

(k)
j

end for
// compute new bounds
`i+1 := xT ν

(i)
1 − ε‖ν

(i)
1 ‖: +

∑i
j=1 hj(ν

(i)
j , . . . , ν

(i)
i )

ui+1 := xT ν
(i)
1 + ε‖ν(i)1 ‖: −

∑i
j=1 hj(−ν

(i)
j , . . . ,−ν(i)i )

// ‖ · ‖: for a matrix here denotes the norm of all rows
end for
output: bounds {`i, ui}ki=2, dual layer operators Ajk, hi

G Experiments

In this section, we provide more details on the experimental setup, as well as more extensive
experiments on the effect of model width and model depth on the performance that were not
mentioned above.

We use a parameter k to control the width and depth of the architectures used in the following
experiments. The Wide(k) networks have two convolutional layers of 4× k and 8× k filters followed
by a 128× k fully connected layer. The Deep(k) networks have k convolutional filters with 8 filters
followed by k convolutional filters with 16 filters.

Downsampling Similar to prior work, in all of our models we use strided convolutional layers with
4 by 4 kernels to downsample. When downsampling is not needed, we use 3 by 3 kernels without
striding.

G.1 MNIST

Experimental setup For all MNIST experiments, we use the Adam optimizer with a learning rate
of 0.001 with a batch size of 50. We schedule ε starting from 0.01 to the desired value over the first
20 epochs, after which we decay the learning rate by a factor of 0.5 every 10 epochs for a total of 60
epochs.

Model width and depth We find that increasing the capacity of the model by simply making the
network deeper and wider on MNIST is able boost performance. However, when the model becomes
overly wide, the test robust error performance begins to degrade due to overfitting. These results are
shown in Table 3.

G.2 CIFAR10

Experimental setup For all CIFAR10 experiments, we use the SGD optimizer with a learning rate
of 0.05 with a batch size of 50. We schedule ε starting from 0.001 to the desired value over the first
20 epochs, after which we decay the learning rate by a factor of 0.5 every 10 epochs for a total of 60
epochs.
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Table 3: Results on different widths and depths for MNIST
Dataset Model Epsilon Robust error Error
MNIST Wide(1) 0.1 6.51% 2.27%
MNIST Wide(2) 0.1 5.46% 1.55%
MNIST Wide(4) 0.1 4.94% 1.33%
MNIST Wide(8) 0.1 4.79% 1.32%
MNIST Wide(16) 0.1 5.27% 1.36%
MNIST Deep(1) 0.1 5.28% 1.78%
MNIST Deep(2) 0.1 4.37% 1.28%
MNIST Deep(3) 0.1 4.20% 1.15%

Table 4: Results on MNIST, and CIFAR10 with small networks, large networks, residual networks,
and cascaded variants for `2 perturbations.

Single model error Cascade error
Dataset Model Epsilon Robust Standard Robust Standard
MNIST Small, Exact 1.58 56.48% 11.86% 24.42% 19.57%
MNIST Small 1.58 56.32% 13.11% 25.34% 20.93%
MNIST Large 1.58 55.47% 11.88% 26.16% 24.97%
CIFAR10 Small 36/255 53.73% 44.72% 50.13% 48.64%
CIFAR10 Large 36/255 49.40% 40.24% 41.36% 41.16%
CIFAR10 Resnet 36/255 48.04% 38.80% 41.44% 41.28%

H Results for `2 perturbations

We run similar experiments for `2 perturbations on the input instead of `∞ perturbations, which
amounts to replacing the `1 norm in the objective with the `2 norm. This can be equivalently scaled
using random normal projections [Vempala, 2005] instead of random Cauchy projections. We use
the same network architectures as before, and pick ε2 such that the volume of an `2 ball with radius
ε2 is approximately the same as the volume of an `∞ ball with radius ε∞. A simple conversion (an
overapproximation within a constant factor) is:

ε2 =

√
d

π
ε∞.

For MNIST, we take an equivalent volume to ε∞ = 0.1. This ends up being ε2 = 1.58, and note that
within the dataset, the minimum `2 distance between any two digits is at least 3.24, so ε2 is roughly
half of the minimum distance between any two digits. For CIFAR we take an equivalent volume to
ε∞ = 2/255, which ends up being ε2 = 36/255.

The results for the complete suite of experiments are in Table 4, and we get similar trends in robustness
for larger and cascaded models to that of `∞ perturbations.
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