
A Analysis for the Convex Case

Lemma 1. With the processes xt and vt defined as above:

‖vt − xt‖ = ‖ 1

P

P∑
p=1

(
αG̃pt−1(vt−1) + εpt−1

)
− 1

P

P∑
p=1

TopK
(
αG̃pt−1(vt−1) + εpt−1

)
‖

≤
(
γ +

ξ

P

) t∑
k=1

γk−1‖xt−k+1 − xt−k‖.

(18)

Proof. First, we obtain a recursive relation of the form:

‖vt+1 − xt+1‖ =

∥∥∥∥∥vt − xt +
1

P

P∑
p=1

(
αG̃pt (vt) + εpt

)
− εt −

1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)∥∥∥∥∥
(7)
=

∥∥∥∥∥ 1

P

P∑
p=1

(
αG̃pt (vt) + εpt

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)∥∥∥∥∥
=‖ 1

P

P∑
p=1

(
αG̃pt (vt) + εpt

)
− 1

P
TopK

(
P∑
p=1

(
αG̃pt (vt) + εpt

))
+

+
1

P
TopK

(
P∑
p=1

(
αG̃pt (vt) + εpt

))
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
‖

≤ γ
P
‖
P∑
p=1

(
αG̃pt (vt) + εpt

)
‖+ ξ

P
‖αG̃t(vt)‖

=γ‖αG̃t(vt) + vt − xt‖+
ξ

P
‖αG̃t(vt)‖

≤γ‖vt − xt‖+
(
γ +

ξ

P

)
‖xt+1 − xt‖

Iterating this downwards yields the result.

Next, we use the previous result to bound a quantity that represents the difference between the updates
based on the TopK procedure and those based on full gradients.

Lemma 2. Under the assumptions above and with expectation taken with respect to the gradients at
time t:

E

[
‖ 1

P

P∑
p=1

(
αG̃pt (vt)

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
‖

]
≤ (γ + 1)

(
γ +

ξ

P

) t∑
k=1

γk−1‖xt−k+1 − xt−k‖

+

(
γ +

ξ

P

)
αM

(19)

12

Proof. Using the result from Lemma 1:

E

[
‖ 1

P

P∑
p=1

(
αG̃pt (vt)

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
‖

]

≤ E [‖εt‖] + E

[
‖ 1

P

P∑
p=1

(
αG̃pt (vt) + εpt

)
− 1

P

P∑
p=1

TopK
(
αG̃pt (vt) + εpt

)
‖

]

≤ ‖εt‖+γ‖vt − xt‖+
(
γ +

ξ

P

)
E
[
‖αG̃ (vt) ‖

]
≤ (γ + 1) ‖vt − xt‖+

(
γ +

ξ

P

)
αM

≤ (γ + 1)

(
γ +

ξ

P

) t∑
k=1

γk−1‖xt−k+1 − xt−k‖+
(
γ +

ξ

P

)
αM.

Finally, we introduce some notation. Set

C = (γ + 1)

(
γ +

ξ

P

) ∞∑
k=1

γk−1 =
1 + γ

1− γ

(
γ +

ξ

P

)
,

and

C ′ = C +

(
γ +

ξ

P

)
=

(
γ +

ξ

P

)
2

1− γ
.

Note that

C ′ =

(√
n−K
n

+
ξ

P

)
2

1−
√

n−K
n

= 2
n

K

(√
n−K
n

+
ξ

P

)(
1 +

√
n−K
n

)
= O

(n
K

)

A.1 The Main Result

We have the following:

Theorem 1. Assume that W is a rate supermartingale with horizon B for the sequential SGD
algorithm and that W is H-Lipschitz in the first coordinate. Assume further that αHMC ′ < 1. Then
for any T ≤ B, the probability that vs 6∈ S for all s ≤ T is:

Pr [FT] ≤ E [W0 (v0)]

(1− αHMC ′)T
. (20)

Proof. Consider the process, defined by:

Vt (vt, . . . , v0) = Wt (vt, . . . , v0)− αHMCt+H

(
(γ + 1)

(
γ +

ξ

P

) t∑
k=1

‖xt−k+1 − xt−k‖
∞∑
m=k

γm−1

−
(
γ +

ξ

P

)
αMt

)
,

if the algorithm has not succeeded by time t (i.e. xs 6∈ S for all s ≤ T) and by Vt = Vu−1 otherwise,
where u is the minimal index, such that xu ∈ S.

13

In the case when the algorithm has not succeeded at time t, using W ’s Lipschitz property:

Vt+1 (vt+1, vt, . . . , v0) = Wt+1

(
vt −

1

P

P∑
p=1

TopK
(
εpt + αG̃p (vt)

)
, vt, . . . , v0

)
− αHMC (t+ 1)

+H

(
(γ + 1)

(
γ +

ξ

P

) t+1∑
k=1

‖xt−k+2 − xt−k+1‖
∞∑
m=k

γm−1 −
(
γ +

ξ

P

)
αM (t+ 1)

)

≤Wt+1

(
vt −

1

P

P∑
p=1

αG̃p (vt) , vt, . . . , v0

)

+H‖ 1

P

P∑
p=1

αG̃p (vt)−
1

P

P∑
p=1

TopK
(
εpt + αG̃p (vt)

)
‖

− αHMC (t+ 1) +H (1 + γ)

(
γ +

ξ

P

)
‖xt+1 − xt‖

∞∑
m=1

γm−1

+H

(
(1 + γ)

(
γ +

ξ

P

) t∑
k=1

‖xt−k+1 − xt−k‖
∞∑

m=k+1

γm−1 −
(
γ +

ξ

P

)
αM (t+ 1)

)
Now we take expectation with respect to the randomness at time t and conditional on the past. Note
that the average of i.i.d. stochastic gradients is also a stochastic gradient. Using the supermartingale
property of W , the bound on the expected norm of the gradient and (19):

E [Vt+1] ≤Wt (vt, . . . , v0)− αHMCt+H

(
(1 + γ)

(
γ +

ξ

P

) t∑
k=1

‖xt−k+1 − xt−k‖
∞∑
m=k

γm−1

−
(
γ +

ξ

P

)
αMt

)
+

(
HE

[
‖αG̃ (vt) ‖

]
(1 + γ)

(
γ +

ξ

P

) ∞∑
m=1

γm−1 − αHMC

)

+H

(
E

[
‖ 1

P

P∑
p=1

αG̃p (vt)−
1

P

P∑
p=1

TopK
(
εpt + αG̃p (vt)

)
‖

]

− (1 + γ)

(
γ +

ξ

P

) t∑
k=1

‖xt−k+1 − xt−k‖γk−1 −
(
γ +

ξ

P

)
αM

)
≤ Vt.

The inequality also holds trivially in the case when the algorithm has succeeded at time t. Hence, Vt
is a supermartingale for the TopK process.

Now if the algorithm has not succeeded at time T , WT ≥ T , so VT ≥ WT − αHMC ′T ≥ 0. It
follows that VT ≥ 0 for all T . Therefore,

E [W0 (v0)] = E [V0 (v0)]

≥ E [VT]

= E [VT |FT] Pr [FT] + E [VT |¬FT] Pr [¬FT]

≥ E [VT |FT] Pr [FT]

= E

[
WT (vT , ..., v0)− αHMCT +H

(
(1 + γ)

(
γ +

ξ

P

) T∑
k=1

‖xT−k+1 − xT−k‖
∞∑
m=k

γm−1

−
(
γ +

ξ

P

)
αMT

)
|FT
]

Pr [FT]

≥
(
E [WT (vT , ..., v0)|FT]− αHM

(
C +

(
γ +

ξ

P

))
T

)
Pr [FT]

≥ (T − αHMC ′T) Pr [FT] ,

14

where we have used the fact that W is a rate supermartingale. Hence we obtain:

Pr [FT] ≤ E [W0 (x0)]

(1− αHMC ′)T
.

We now apply this result with a specific supermartingale W for the sequential SGD process. Note
that W must be a supermartingale for the process that applies an average of P updates, multiplied by
the learning rate α.
We use the following result from [8]:

Lemma 3 ([8]). Define the piecewise logarithm function to be

log(x) =

{
log(ex) : x ≥ 1
x : x ≤ 1

Define the process Wt by:

Wt(xt, . . . , x0) =
ε

2αcε− α2M2
log
(
‖xt − x∗‖2ε−1

)
+ t,

if the algorithm has not succeeded by timestep t (i.e. xi 6∈ S for all i ≤ t) and by Wt = Wu−1
whenever xi ∈ S for some i ≤ t and u is the minimal index with this property. Then Wt is a
rate supermartingale for sequential SGD with horizon B = ∞. It is also H-Lipschitz in the first
coordinate, with H = 2

√
ε
(
2αcε− α2M2

)−1
, that is for any t, u, v and any sequence xt−1, . . . , x0:

‖Wt (u, xt−1, . . . , x0)−Wt (v, xt−1, . . . , x0) ‖≤ H‖u− v‖.

Applying this particular martingale, we obtain:

Corollary 1. Assume that we run Algorithm 1 for minimizing a convex function f satisfying the listed
assumptions. Suppose that the learning rate is set to α, with:

α < min

{
2cε

M2
,

2 (cε−
√
εMC ′)

M2

}
Then for any T > 0 the probability that vi 6∈ S for all i ≤ T is:

P (FT) ≤ ε

(2αcε− α2M2 − α2
√
εMC ′)T

log

(
e‖v0 − x∗‖2

ε

)
. (21)

Proof. Substituting and using the result from [8] that

E (W0 (v0)) ≤ ε

2αcε− α2M2
log

(
e‖v0 − x∗‖2

ε

)
we obtain that:

P (FT) ≤ E (W0)

(1− αHMC ′)T

≤ ε

2αcε− α2M2
log

(
e‖v0 − x∗‖2

ε

)((
1− α 2

√
ε

2αcε− α2M2
MC ′

)
T

)−1
≤ ε

(2αcε− α2M2 − α2
√
εMC ′)T

log

(
e‖v0 − x∗‖2

ε

)

15

B Analysis for the Non-Convex Case

Setup. We now consider the more general case when SGD is minimizing a (not necessarily convex)
function f , using SGD with (decreasing) step sizes αt. Again, we assume that the second moment
of the stochastic gradients is bounded in expectation (inequality (2)). Assume also that ∇f is
L-Lipschitz (not only in expectation); that is, for all x, y:

‖∇f(x)−∇f(y)‖≤ L‖x− y‖. (22)

As is standard in non-convex settings [17], will settle for a weaker notion of convergence, namely
showing that

min
t∈{1,...,T}

E
[
‖∇f (vt) ‖2

] T→∞−→ 0,

that is, the algorithm converges ergodically to a local minimum of the function f . Our strategy will be
to leverage our ability to bound the difference between the “real” model xt and the view vt observed
at iteration t to bound the evolution of the expected value of f(vt), which in turn will allow us to
bound the sum

1∑T
t=1 αk

T∑
t=1

αtE
[
‖∇f (vt) ‖2

]
,

where the parameters αt are appropriately chosen decreasing learning rate parameters. This will
enable us to show that the norm of the gradients converges towards zero in expectation.

We have the following:
Lemma 4. For any time t ≥ 1:

‖vt − xt‖2≤
(

1 +
ξ

Pγ

)2 t∑
k=1

(
2γ2
)k ‖xt−k+1 − xt−k‖2 (23)

Proof. We had:

‖vt+1 − xt+1‖ ≤ γ‖vt − xt‖+
(
γ +

ξ

P

)
‖xt+1 − xt‖

Hence,

‖vt+1 − xt+1‖2 ≤
(
γ‖vt − xt‖+

(
γ +

ξ

P

)
‖xt+1 − xt‖

)2

≤ 2γ2‖vt − xt‖2+2

(
γ +

ξ

P

)2

‖xt+1 − xt‖2

Iterating this gives:

‖vt − xt‖2 ≤ 2

(
γ +

ξ

P

)2 t∑
k=1

(
2γ2
)k−1 ‖xt−k+1 − xt−k‖2

=

(
1 +

ξ

Pγ

)2 t∑
k=1

(
2γ2
)k ‖xt−k+1 − xt−k‖2

Theorem 2. Consider the TopK algorithm for minimising a function f that satisfies the above
assumptions. Suppose that the learning rate sequence and K are chosen so that for any time t > 0:

t∑
k=1

(
2γ2
)k α2

t−k
αt
≤ D (24)

for some constant D > 0. Then, after running Algorithm 1 for T steps:

1∑T
t=1 αt

T∑
t=1

αtE
[
‖∇f (vt) ‖2

]
≤ 4 (f (x0)− f (x∗))∑T

t=1 αt

+

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)∑T
t=1 α

2
t∑T

t=1 αt

(25)

16

Proof of Theorem 2. We begin by bounding the difference between the consecutive steps of the
algorithm. By the assumption that f is Lipschitz, for any time t:

f (xt+1)− f (xt) ≤ 〈∇f (xt) , xt+1 − xt〉+
L

2
‖xt+1 − xt‖2

= −〈∇f (xt) , αtG̃t (vt)〉+
L

2
‖αtG̃t (vt) ‖2

Taking expectation with respect to the randomness at time t and conditional on the past (denoted by
Et|.):

Et|. [f (xt+1)]− f (xt) ≤ −αt〈∇f (xt) ,∇f (vt)〉+
L

2
α2
tEt|.

[
‖G̃t (vt) ‖2

]
= −αt

2

(
‖∇f (xt) ‖2+‖∇f (vt) ‖2−‖∇f (xt)−∇f (vt) ‖2

)
+
L

2
α2
tEt|.

[
‖G̃t (vt) ‖2

]
= −αt

2
‖∇f (xt) ‖2−

αt
2
‖∇f (vt) ‖2+

αt
2
‖∇f (xt)−∇f (vt) ‖2

+
L

2
α2
tEt|.

[
‖G̃t (vt) ‖2

]
≤ −αt

2
‖∇f (xt) ‖2+

αt
2
L2‖vt − xt‖2+

L

2
α2
tEt|.

[
‖G̃t (vt) ‖2

]
≤ −αt

2

(
‖∇f (xt) ‖2+L2‖vt − xt‖2

)
+
L

2
α2
tM

2 + αtL
2‖vt − xt‖2

Taking expectation with respect to the remaining gradients (before time t):

E [f (xt+1)]−E [f (xt)] ≤ −
αt
2
E
[
‖∇f (xt) ‖2+L2‖vt − xt‖2

]
+
L

2
α2
tM

2+αtL
2E
[
‖vt − xt‖2

]
(26)

But, using Lemma 4:

E
[
‖vt − xt‖2

]
≤
(

1 +
ξ

Pγ

)2 t∑
k=1

(
2γ2
)k

E
[
‖xt−k+1 − xt−k‖2

]
≤M2

(
1 +

ξ

Pγ

)2

αt

t∑
k=1

(
2γ2
)k α2

t−k
αt

Now since for all t:
t∑

k=1

(
2γ2
)k α2

t−k
αt
≤ D

for some constant D, we have that:

E
[
‖vt − xt‖2

]
≤M2

(
1 +

ξ

Pγ

)2

αtD.

Therefore, we obtain:

E [f (xt+1)]−E [f (xt)] ≤ −
αt
2
E
[
‖∇f (xt) ‖2+L2‖vt − xt‖2

]
+
L

2
α2
tM

2+L2M2

(
1 +

ξ

Pγ

)2

α2
tD

Rearranging gives:

αtE
[
‖∇f (xt) ‖2+L2‖vt − xt‖2

]
≤ 2 (E [f (xt)]−E [f (xt+1)])

+

(
LM2 + 2L2M2

(
1 +

ξ

Pγ

)2

D

)
α2
t

(27)

Note that, since the gradient is Lipschitz:

‖∇f (vt) ‖2= ‖(∇f (vt)−∇f (xt)) +∇f (xt) ‖2 ≤ 2‖∇f (vt)−∇f (xt) ‖2+2‖∇f (xt) ‖2

≤ 2L2‖vt − xt‖2+2‖∇f (xt) ‖2

17

Applying this to the left-hand side of (27):

αtE
[
‖∇f (vt) ‖2

]
≤ 4 (E [f (xt)]−E [f (xt+1)])

+

(
2LM2 + 4L2M2

(
1 +

ξ

Pγ

)2

D

)
α2
t

(28)

Now for any time T , summing over the bound in (28) and dividing by the sum of the learning rates:

1∑T
t=1 αt

T∑
t=1

αtE
[
‖∇f (vt) ‖2

]
≤ 4 (f (x0)− f (x∗))∑T

t=1 αt

+

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)∑T
t=1 α

2
t∑T

t=1 αt

(29)

Therefore, it suffices to choose the learning rate sequence so that the term
∑T
t=1 αt dominates∑T

t=1 α
2
t asymptotically and so that the condition (24) holds. In particular, one can set αt = t−θ,

where θ > 0, and K = cn for some constant c > 1
2 . In this case

∑T
t=1 αt dominates

∑T
t=1 α

2
t and

for any t:

t∑
k=1

(
2γ2
)k α2

t−k
αt
≤

t∑
k=1

(
2

(
1− K

n

))k α2
t−k
αt

=

t∑
k=1

(2− 2c)
k tθ

(t− k)
2θ

Since powers dominate polynomials, this sum converges in the limit as t→∞, so the condition in
(24) is guaranteed to hold.

In the case when K = cn with c > 1
2 , one can also set a fixed learning rate:

α =

√√√√√ f (x0)− f (x∗)

T

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

) . (30)

Then we obtain:

min
t∈{1,...,T}

E
[
‖∇f (vt) ‖2

]
≤ 1

T

T∑
t=1

E
[
‖∇f (vt) ‖2

]

≤ 4 (f (x0)− f (x∗))

Tα
+

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)
Tα2

Tα

≤ 5

√√√√√ (f (x0)− f (x∗))

(
2LM2 + 4L2M2

(
1 + ξ

Pγ

)2
D

)
T

.

C Experimental Details

Datasets and models. We evaluated the algorithm on two machine learning tasks, namely classifi-
cation and linear regression. We train ResNet110 [12] on CIFAR-10 [13] for image classification.
We train a linear classifier on the RCV1 corpus [14] using logistic regression and perform linear
regression to train a model on a synthetic dataset containing 10K samples with 1024 features randomly
generated with some Gaussian noise added.
Setup. We conduct experiments by implementing the algorithm into the two frameworks CNTK [32]
and MPI-OPT [20]. The latter is a framework developed to run distributed optimization algorithms
such as SGD or SCD on multiple compute nodes communicating via any MPI library with minimal

18

overhead. We make use of SparCML [20] as the communication layer to efficiently aggregate
the sparse gradients. Implementation details can be found in [20]. For image classification, we
use standard batch sizes and default hyper-parameters form the full accuracy convergence in all
our experiments, which we define to be our baseline. These values are given in the open-source
CNTK 2.0 repository. The image classification, experiments are conducted on 4 nodes. We tune
the hyper-parameters such as batch-size, initial learning rate and decay factor for logistic and linear
regression in order to achieve best possible convergence on the full accuracy baseline setting. We
set those values for performing experiments with various values for K and perform the experiments
using 8 nodes.

19

	Analysis for the Convex Case
	The Main Result

	Analysis for the Non-Convex Case
	Experimental Details

