
5 Appendix

We define Âv , Â\ �(v) (edges incident to sample v), and Â
u , Â\ �(u) (edges incident to model

u) for simplicity.

5.1 Proof of Lemma 1

Proof. For the monotone non-decreasing objective G(·,W), greedy algorithm or its variant always
tries to add more elements until some constraint(s) is violated. Hence, if the first constraint Iv does
not saturate, i.e., there exists at least one v0 2 V such that |Âv| = k� x for some integer 1  x  m,
and |Âu| = p, 8u 2 U \ U(Âv0), where U(Âj0) represents the set of models incident to Âv0 . That is,
for any model u that sample v0 is not assigned to, the only reason that it cannot be assigned to sample
v
0 when |Âv0 | < k is that the corresponding second constraint Iu already saturates. The number of

models with saturated constraint |Âu| = p is
���U \ Âv0

��� = m� k + x. We then have

|Â| � |Âv0 |+
X

u2U\Âv0

|Âu| = (k � x) + (m� k + x)p � (k � 1) + (m� k + 1)p. (5)

For the other n� 1 samples excluding sample v
0, they need to satisfy the constraint |Âv|  k, and

they need to be assigned (with repetition) to the (m� k + x) models such that each model gets p
samples, i.e.,

(n� 1)k �
X

v2V \v0

|Âv| �
X

u2U\Âv0

|Âu| = (m� k + x)p � (m� k + 1)p. (6)

Therefore, if the first constraint does not saturate, we must have

k � mp+ p

n+ (p� 1)
. (7)

An equivalent statement due to logical transposition rule is: if k < mp+p/n+(p�1), the first constraint
must saturate, and |Â| = nk. This completes the proof of the first statement in Lemma 1.

By following similar reasoning, if the second constraint does not saturate, i.e., there exists at least
one u

0 2 U such that |Âu0 | = p� x for certain integer 1  x  n, we have
|Â| � |Âu0

|+
X

v2V \Âu0

|Âv| = (p� x) + (n� p+ x)k � (p� 1) + (n� p+ 1)k. (8)

For the other m� 1 models excluding sample u
0, they need to satisfy the constraint |Âu|  p, and

the (n� p+ x) samples need to be assigned (with repetition) to these m� 1 models such that each
sample is assigned to k models, i.e.,

(m� 1)p �
X

u2U\u0

|Âu| �
X

v2V \Âu0

|Âv| = (n� p+ x)k � (n� p+ 1)k. (9)

Hence, if the second constraint does not saturate, we must have

k  mp� p

n� (p� 1)
. (10)

Similarly, if k > mp�p/n�(p�1), the second constraint must saturate, and |Â| = mp. This completes
the proof of the second statement in Lemma 1.

By combing the conditions in Eq. (7) and Eq. (10), and the respective lower bounds of |Â| in Eq. (5)
and Eq. (8) under these two conditions, the third statement can be proved.

5.2 Proof of Proposition 1

Proof. In each iteration, lines 7-9 in Algorithm 1 guarantees that G(Â,W
t) � G(A,W

t) (where the
superscript t refers to the iteration index), and the gradient descent on �Ĥ(W t) (or equally gradient
ascent on Ĥ(W t)) guarantees that H(W t+1) � H(W t), which implies G(Â,W

t+1) � G(Â,W
t).

Hence, we have G(Â,W
t+1) � G(Â,W t) � G(A,W

t), i.e., each iteration of Algorithm 1 does
not decrease the objective G(A,W) of the max-max problem in Eq. (3). So the algorithm generates

13

a monotonically non-decreasing sequence of objective values of G(A,W). This completes the proof
of the first statement.

By producing a monotonically non-decreasing sequence of objective values of G(A,W), with a
damped learning rate ⌘, Algorithm 1 eventually stays on one piece of Ĥ(W) and converges to a
stationary point on that piece with zero gradient. It will not end by oscillating amongst the non-
differentiable boundaries between the pieces on Ĥ(W) because the algorithm can only visit each
boundary point for at most one time due to the monotone non-decreasing objective values. This
completes the proof of the second statement.

Given the data assignment Â produced by lines 6-9 in Algorithm 1, the objective G(Â,W) can be
represented as the sum of |Â| sample-wise loss functions in the following form.

G(Â,W) =
X

ui2U

X

vj2V (Âui)

(� � `(vj ;wi)) = �|Â|�
X

(vj ,ui)2Â

`(vj ;wi). (11)

Because each loss function `(vj ;wi) is �-strongly convex w.r.t. wi, �G(Â,W) = �Ĥ(W) is
�|Â|-strongly convex, which indicates that for any W

⇤
loc and Ŵ ,

Ĥ(Ŵ) +rĤ(Ŵ)T (W ⇤
loc � Ŵ)� Ĥ(W ⇤

loc) �
�|Â|
2

kW ⇤
loc � Ŵk22. (12)

Since �Ĥ(W) is �|Â|-strongly convex, any stationary point Ŵ achieved by Algorithm 1 is a local
optimal solution within some local area K. Hence, for any local optimal solution W

⇤
loc 2 K on the

true objective H(W), the above inequality in Eq. (12) still holds. In addition, because rĤ(Ŵ) = 0,
Eq. (12) becomes

Ĥ(Ŵ) � Ĥ(W ⇤
loc) +

�|Â|
2

kW ⇤
loc � Ŵk22. (13)

If SUBMODULARMAX has approximation factor ↵, we further have Ĥ(W ⇤
loc) � ↵ · H(W ⇤

loc).
Substituting this result and the lower bound for |Ŝ| from Lemma 1 into Eq. (13), we have

Ĥ(Ŵ) � Ĥ(W ⇤
loc) +

�|Â|
2

kW ⇤
loc � Ŵk22 (14)

� ↵H(W ⇤
loc) +

�

2
·min{(k � 1) + (m� k + 1)p, (p� 1) + (n� p+ 1)k}kŴ �W

⇤
lock22.

(15)
This completes the proof of the third statement.

5.3 Data Assignment as a Generalized Bipartite Matching Problem

The combinatorial optimization problem in Eq. (3) is a generalized bipartite matching problem [43]
with monotone submodular evaluations and two matroid constraints, which is a special case of
monotone submodular maximization with p-matroid constraint (p = 2). simple greedy algorithm
can yield an approximation factor of ↵ = 1/p+1 [21]. This result can be further improved when the
objective G(·,W) is close to modular. Specifically, ↵ becomes ↵ = 1/p+G [13], which depends on
the curvature G 2 [0, 1] defined as

G , 1�min
j2V

G(j|V \j)
G(j)

. (16)

When G = 0, G(·,W) is modular, and when G = 1, G(·,W) is fully curved and the above bound
recovers ↵ = 1/p+1. The objective G(·,W) in Eq. (3) is weighted sum of a modular function and two
submodular functions. It becomes closer to modular as the weights � and � for the two submodular
functions decrease, and G decreases accordingly. We therefore have the following Lemma:

Lemma 2. Let G(A) = M(A) + �F (A) where F (·) is a monotone non-decreasing submodular
function with curvature F , M(·) is a non-negative modular function, and � � 0. Then G  F

c/�+1

where c = minj2V M(j)/F (j).

14

Proof. We have

G = 1�min
j2V

M(j) + �F (j|V \ j)
M(j) + �F (j)

= � ·max
j2V

F (j)� F (j|V \ j)
M(j) + �F (j)

= � ·max
j2V

1� F (j|V \j)
F (j)

M(j)
F (j) + �

 � · F

minj2V
M(j)
F (j) + �

=
F

c/�+ 1

Where c , minj2V
M(j)
F (j) .

In this paper, we apply the fast greedy procedure mentioned earlier [51, 48, 49] to the data assignment
problem. It secures an approximation factor ↵ = 1/2+G, but might perform much better in practice.

5.4 Related Work

5.4.1 Three mostly used classical ensemble methods

Bagging [7]: bagging samples different training sets for different models before any training starts,
and train all models in parallel, finally average all models’ outputs as prediction. It does not adapt
with the training process, i.e., the assignment of training data does not depend the performance of
any model at any training stage. Multiple models can be trained in parallel so bagging is potentially
applicable to deep neural nets, but might perform worse than simple average ensemble or dropout [41].

Boosting [57, 23, 50]: train a sequence of models one after another, and the weight of each training
sample to train the next model depends on its classification accuracy achieved on previously trained
models. It is adaptive and can build a strong ensemble model from multiple weak learners. However,
it is not practical in training deep neural nets that usually require a long training time, because each
model needs to wait the previous one to converge. In addition, boosting cannot adaptively adjust
the training set during the training process of each model. The data assignment happens before any
training begins.

Mixture of Experts (MoE) [33, 34]: they use a gating network to select a subset of models (experts)
for each given sample. Because the gating network connects all the models together and forms a
modular combination, which is usually a large neural network, end-to-end training is usually required,
which is hard to parallelize and might result in expensive computations and heavy memory load.
DivE2 has similar idea of training experts, but is different from MoE methods in that 1) DivE2

explicitly promotes diverse and complementary expertise on different experts; and 2) DivE2 does not
require end-to-end training (the gating network needs re-training if we remove or add models to the
ensemble) and is able to train models in parallel, because each model is independently updated based
on the assigned data in each learning stage.

5.4.2 Two mostly used ensemble methods for deep neural nets

Simple average might be the most widely used ensemble methods especially for deep neural nets. It
trains different models on the same training set but initialize them randomly (and thereby promote
diversity implicitly) at the beginning of optimization. It is simple to use but the diversity cannot be
explicitly enforced. Moreover, it trains each model on the whole training set independently, so the
training costs increase linearly with the number of models m.

Dropout [61]/Swapout [59]: implicitly gain an ensemble by randomly killing a portion of hidden nodes
(i.e., set their outputs to be zeros) or skipping over layers (i.e., layer dropout). They implicitly average
multiple models with different structures but with shared weights. They are different from explicitly
training multiple models and explicitly enforcing the diversity between them. They can always be
combined with other ensemble models including ours to further improve generation performance (in
this case each model in the ensemble is implicitly an ensemble of models with different structures), and
are orthogonal to methods explicitly training multiple models. ResNet [29] can also been explained
as an ensemble of shallow models due to its shortcut link between nonconsecutive layers [67].

5.4.3 Two recently proposed ensemble methods for deep neural nets

Snapshot ensemble [32]: by using a cyclic learning rate scheduling, it can quickly converge to a
local minimum, and escape from it by an increasing learning rate and then converge to the next local
minimum. By repeating this process for several times, it can achieve multiple local minimum models.

15

The final ensemble is composed of the last several local minimum models. They can also be easily
combined with other ensemble methods. One possible disadvantage of snapshot ensemble is that the
computational cost to achieve so many local minimums (note the number could be much larger than
the number of models used to compose the ensemble) can be very expensive, because it needs to
sequentially get local minimum models one after another.

Sparsely gated mixture of experts [58]: it uses a parameterized gate to combine the outputs of all
the models, and the gate is designed to only assign nonzero weights to a small number of models.
This has been shown to be effective for some NLP tasks. The sparsity is helpful to develop diverse
expertise on different models, but can easily cause imbalance loading problem in practice, as the
extremely sparse weights given by the gate may always assign most data to few models. In addition, it
needs to train thousands of models together with the gating network as a huge neural net in end-to-end
manner, so the computational costs are very expensive, and it is not easy to synchronize the training
process and accelerate it in parallel.

5.4.4 Other Related Works

Model compression [9] or knowledge distillation [30] learns a single small model to imitate an
ensemble of models, so the aggregation requires much less computation and memory. These methods
mainly focus on improving the aggregation efficiency, and can also be applied to the diverse ensemble
achieved by DivE2.

5.5 Discussion

In DivE2, the parameters k, p,�, � defining the learning goal of each stage are gradually change
according to a pre-defined schedule. In the future, we plan to use reinforcement learning to train an
agent to adaptively select these parameters based some features representing the state of the current
learning stage.

In DivE2, we extend the concept of “machine teaching” to “machine education” by emphasizing the
dynamic interaction between teacher (data assignment) and students (models) during the learning
process. In machine education, the curriculum is composed of a sequence of learning goals for
different learning stages, and each goal (i.e., an optimization in the form of Eq. (3)) is achieved based
on the current performance of models and the data distribution. In contrast, machine teaching aims at
finding the best “teaching set”, which is the final goal of the teacher, but does not delicately optimize
the learning process. While machine teaching might be useful to convex optimization, machine
education that optimizes the learning process (i.e., the curriculum) is more suitable to non-convex
optimization for training deep neural networks.

5.6 More Experiment Details

Bagging RandINIT DivE2

Figure 3: Test accuracy (%) per class on each single model from the ensemble trained by Bagging(left, after
18750 total training batches), RandINIT(middle, after 18750 total training batches) and DivE2 (right, after
18249 total training batches) on Fashion-MNIST. This figure reflects the expertise of each model on different
classes. Comparing to Bagging and RandINIT, the models learned by DivE2 show diverse and complementary
expertise.

16

Table 3: Details regarding the datasets.
Dataset CIFAR10 CIFAR100 Fashion STL10
#Training 50000 50000 60000 5000
#Test 10000 10000 10000 8000
#Feature 3⇥ 32⇥ 32 3⇥ 32⇥ 32 28⇥ 28 3⇥ 96⇥ 96
#Class 10 100 10 10

DivE2 vs. Bagging DivE2 vs. RandINIT

Figure 4: Compare DivE2 with Bagging(left column) and RandINIT(right column) in terms of test accuracy
(%) vs. number of training batches on CIFAR10, with m = 10 MobileNetV2 models trained, and using different
k values (k = 3, 5, 7 from top to bottom) for aggregation.

17

DivE2 vs. Bagging DivE2 vs. RandINIT

Figure 5: Compare DivE2 with Bagging(left column) and RandINIT(right column) in terms of test accuracy
(%) vs. number of training batches on CIFAR100, with m = 10 ResNet18 models trained, and using different k
values (k = 3, 5, 7 from top to bottom) for aggregation.

18

DivE2 vs. Bagging DivE2 vs. RandINIT

Figure 6: Compare DivE2 with Bagging(left column) and RandINIT(right column) in terms of test accuracy
(%) vs. number of training batches on Fashion-MNIST, with m = 10 modified LeNet5 models trained, and
using different k values (k = 3, 5, 7 from top to bottom) for aggregation.

19

DivE2 vs. Bagging DivE2 vs. RandINIT

Figure 7: Compare DivE2 with Bagging(left column) and RandINIT(right column) in terms of test accuracy
(%) vs. number of training batches on STL10, with m = 10 CNN models trained, and using different k values
(k = 3, 5, 7 from top to bottom) for aggregation.

20

	Introduction
	Diverse Ensemble Evolution (DivE2): Formulation
	Data-Model Marriage
	Inter-model & Intra-model Diversity

	Diverse Ensemble Evolution (DivE2): Algorithm
	Solving a Continuous-Combinatorial Optimization
	Theoretical Perspectives
	Ensemble Evolution: Curricula for Diverse Ensembles with Complementary Expertise

	Experiments
	Aggregation Methods using an Ensemble of Models

	Appendix
	Proof of Lemma 1
	Proof of Proposition 1
	Data Assignment as a Generalized Bipartite Matching Problem
	Related Work
	Three mostly used classical ensemble methods
	Two mostly used ensemble methods for deep neural nets
	Two recently proposed ensemble methods for deep neural nets
	Other Related Works

	Discussion
	More Experiment Details

