A Related Work

In this section we give an in depth overview of related work.

Link prediction and privacy in social networks. The link prediction problem was popularized by
Liben-Nowell and Kleinberg [35]. The goal of link prediction is to infer which edges are likely to
appear in the near-future, given a snapshot of the network. In [35] various node similarity measures
are used to predict a non-trivial fraction of future interactions. Other works focus on predicting
positive or negative links [32, 51]. For an extensive survey, see [3].

While related, link prediction differs from the problem we consider since, typically, one is given
full access to a network snapshot (and e.g., could compute exact pairwise node similarities for this
network) and seeks to make predictions about future evolutions of the network. In our setting, we are
given partial information about a network (via a partial set of noisy similarities) and seek to learn
existing links.

While link prediction is useful in applications ranging from understanding network evolution, to link
recommendation, and predicting interactions between terrorists, it entails privacy risks. For instance,
a malicious attacker can use link prediction to disclose information about sensitive connections in
a sexual contact graph [31, 56]. Private link prediction is not adequately explored in the literature.
Abebe and Nakos suggest a possible formalization [1].

Learning graphs. Learning graphs from data is central to many disciplines including machine
learning [25], network tomography [11], bioinformatics [16], and phylogenetics [17]. The general
framework is that there exists a hidden graph that we wish to discover by exploiting some kind of
data, e.g., answers from a blackbox oracle returning certain (possibly noisy) graph measurements.

Theoretical work in this area has focused on worst case query complexity. Two representative
examples include Angluin and Chen’s work on learning graphs using edge queries [5], and the recent
work of Kannan, Mathieu, and Zhou using distance queries [26]. A number of works also consider
learning graph parameters such as node count and mixing time by examining random walks traces
[28, 14, 8]. Experimental work has focused on recovering graphs from noisy measurements such as
GPS traces [13], and distances between cell populations based on genetic differences [17, 16].

Learning trees. While a tree is special type of a graph, the case of learning trees deserves special
mention since significant work on learning graphs from data has focused on trees. Distance-based
reconstruction of trees aims to reconstruct a phylogenetic tree whose leaves correspond to n species,
given their (72’) pairwise distances [17]. Note that on a tree, pairwise distances are identical to pairwise
effective resistanes. Batagelj et al. study tree realizability assuming access to fewer than (’QL) leaves’
pairwise distances [7]. A spectral method has been proposed by Stone and Griffing [48]. Culberson
and Rudnicki [15] consider the problem of reconstructing a degree restricted tree given its distance
matrix, see also [43].

B Omitted Proofs

Exact Graph Recovery. We now give proofs of the exact recovery results of Section 3.1 as well as
the gradient and Hessian computations for Problem 2 discussed in Section 3.2.

Theorem 1. [f there is a feasible solution to Problem 1.1 then it is unique and can be found in O(n?)
time. Specifically, the Laplacian L of the solution G is given by

J AV
(7)) ®
n n
where R is the matrix with Ry, , = r¢(u,v) for all u,v € [n], I is the n X n identity matrix , and J
is the n X n all ones matrix.
Proof. For an n node graph, the number of possible edges is m = (Z) Let B € R™*" be the vertex

edge incidence matrix of the complete graph with a row equal to ., = e, — e, for every (u,v).

The Laplacian of any n vertex graph can be written as L = BT W B, for some W € R™*™ which is
a nonnegative diagonal matrix with entries corresponding to the edge weights.
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We can rewrite the effective resistance formula in (1) as:
rr(u,v) = XI,uLJrXu.,v = (L+)u,u + (L+)v,v - 2(L+)u,v' (N

Since L is symmetric we need only determine w unknown entries to determine the full matrix.

Moreover, since the all ones vector is in the null space of L and therefore LT, we see that:
Liu = - Z L’LT,’U’ (8)
vFEU
and hence we can rewrite (7) as:

Tuw = — Z (L+)u,v’ - Z (L+)u’,v _4(L+)U7U‘ (9)

v'#v,u u'#u,v

Let M be the m X m matrix with rows and columns indexed by pairs u,v € [n| with u # v and
(u1,v1), (uz, v2) entry given by:

—4 1fu1 = U2 and V1 = V2
]\4'(1“7 —1ifu1 = U Or v = V2

0 otherwise.

v1),(uz,v2) —

Let r € R™ contain each effective resistance r¢(u, v). We can see from (9) that if we solve the linear
system Mx = —r, as long as M is full rank and so the solution is unique, the entries of = will give
us each (LT),,,, with u # v. We can then use these entries to recover the remaining diagonal entries
of L using (8).

We can verify that M is in fact always full rank by writing M = —|B||B|T — 21, where | B| denotes
the matrix formed from B by taking the absolute value of each of its entries. We note that the
non-zero eigenvalues of | B|| B|T are equal to the non-zero eigenvalues of | BT || B| which is the n x n
matrix M = (n —2)I 4 .J. M has eigenvalues 2n — 2 with multiplicity 1 and n — 2 with multiplicity
n — 1. The remaining m — n eigenvalues of |B||B|T are zero. Consequently, the eigenvalues of M
are —2n with multiplicity 1, —n with multiplicity 7 — 1 and —2 with multiplicity m — n. Thus M is
full rank, proving that the effective resistances fully determine L™ and thus L.

Solving for L via the linear system Mz = —1 would require O(n%) time, however, the closed form
solution (6) given in Lemma 9.4.1 of [46] allows us to solve this problem in O(n?) time. O

We next show that exact recovery is possible if G is a tree and S is a superset of G’s edge set. Roughly,
since G is a tree, the effective resistance r¢(u, v) is equal to the length of the unique path connecting
u and v. As long as S includes all edges in G, it fully determines all path lengths and hence the
effective resistances for all pairs u, v. We can thus recover G via Theorem 1.

Theorem 2. If G is a tree and a feasible solution to Problem 1.2 with edge set E C S then G is
unique and can be found in O(n?) time.

Proof. Let P, be the unique path between u, v in G. It is well known [12] that:

ra(u,v) = Z 1/we. (10)

e€Pyy

For (u,v) € S set7(u,v) = rg(u,v). Let G be an undirected graph with an edge for each (u,v) € S
with length 7 (u,v). For all (u,v) ¢ S, set #(u, v) to the shortest path distance between w and v in
G.

Claim. 7(u, v) = rg(u,v) for all (u,v) € [n] x [n]. B
For any pair (u,v), we have 7(u,v) < rg(u,v). The length of shortest path between u,v in G is

certainly at most the length of P,,, which is contained in G since £ C S. P,,’s length in G is:
Yeep,, Tc(€) =D cp. 1/we using (10). Thus, again via (10),

Flu,v) < Z 1/we = rg(u,v).

eEPyy
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Further, P,, is in fact a shortest path between u,v in G, giving that 7#(u,v) = rg(u,v). This is
because the length of every edge (u,v) € S that is not in F just equals the length of path P, in G
(i.e., 7q(u,v)) and so removing this edge from G does not change any shortest path distance. So we
can assume that G just contains the edges in F, and so P, is the unique path between wu, v.

Given the above, Theorem 2 follows since we can compute each 7(u, v) from the effective resistances
in § and can compute G from these resistances by Theorem 1. O

Gradient and Hessian Computations. We now show closed form formulas for the gradient and
Hessian of Problem 2, using the notation established in Section 3.2.

Proposition 1. Let o denote the Hadamard (entrywise) product for matrices. Define the error vector
A(w) € R™ as having A(w); = 7(i) — [R(w)];,; for all i € S and Os elsewhere. We have:

VF(w) =2(R(w) o R(w)) A(w).

Proof. We begin by observing that, letting e; be the ith standard basis vector in R™, for any weight
vector w, the graph Laplacian corresponding to the weight vector w + ee;, is L(w) + eb;b! . The
Sherman-Morrison formula for the matrix pseudoinverse yields:

L(w)*b;bT L(w)*

L bbIYVt = L(w)t —
(L(w) + ebib; ) (w) €1+ebiTL(w)+bi’

and, hence thinking of L(w)™ as a matrix-valued function of w,

OL(w)™ L(w)*b;6F L(w)*

1
= lim - |L(w)* — — L(w)*

o, am g |Ew)T —e 1+ eb L(w)*b; (w)
= —L(w)"b;b! L(w)™.

Let R; denote the 7** column of R(w) = BL(w)* BT. By linearity:

ok _ g (L(w)"b;b] L(w)t) BT = =R, R .
ow; )
OF v
Ths, o =23 () ~ [Rw)s) - [R@)E,.
! jES
and so we obtain that the gradient equals VF (w) = 2 (R(w) o R(w)) A(w). O

While gradient descent works well in our experiments, one may also apply second order methods,
which require F'(w)’s Hessian. By similar computations to those in Proposition 1:

Proposition 2. Let Is € R™*™ be the diagonal matrix with a 1 at each entry corresponding to
i € S and Os elsewhere and A(w) be as defined in Proposition 1. The Hessian matrix of F'(w) is:

Hr(w) = —4 [R(w) diag(A(w)) R(w)] o R(w) + 2(R(w) o R(w))Is(R(w) o R(w)).

C Graph Learning via Convex Optimization — Problem 3

In this section we show how to efficiently solve our convex formulation Problem 3, via a semidefinite
program. We can express each effective resistance constraint as a positive semidefinite constraint via
a Schur complement condition,

L
T 7+ _ . Xu,v
XuoLl " Xup < T(u,v) iff |:X£,U #(u, v):| >=0and L > 0.

Doing so yields the following program:
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Problem 4 (SDP Form of Problem 3). Given vertex pairs S C [n] X [n], and target effective
resistance 7(u,v) for every (u,v) € S,

minimize Tr(L)

Lecl

bject toL = 0 and v S | % Xwv iy
subject toL, = 0 an (u,v) €S, XLy #u,v)|

We require L to be a valid graph Laplacian (i.e., constrain L € £) by adding the linear constraint to
the above formulation. Specifically,

Via Li,i - - ZL’LJ andVi 7£ j7 Lz,j S O
J#i

D Omitted Experimental Results

Dataset Details. Details of the synthetic and real work networks studied are shown in Table 2 below.

Table 2: Datasets for experiments. FB denotes “Facebook”.

Name #nodes | # edges
GRID (SYNTHETIC) 64 224
K-NN (SYNTHETIC) 80 560
FB SMALL A (EGO NODE ID 698) 40 220
FB SMALL B (EGo NODE ID 3980) 44 138
FB SMALL C (EGO NODE ID 414) 148 1692
FB SMALL D (EGO NODE ID 686) 168 1656
FB MEDIUM A (EGO NODE ID 348) 224 3192
FB MEDIUM B (EGO NODE ID 0) 324 2514
FB LARGE A (EGO NODE ID 3437) 532 4812
FB LARGE B (EGOo NODE ID 1912) 795 30023

Performance on K-NN. In Figure 4 we show the objective function and generalization error (de-
scribed in Section 4.2) of the least squares formulation of Problem 2 on the synthetic clustered K-NN
graph. As with the GRID graph, we see that gradient descent converges for a variety of noise levels
and constraint sets. Convergence leads to improved generalization error.
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Figure 4: Objective error and generalization error for Problem 2, as defined in (5) for K-NN.
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E Extensions to Other Similarity Measures

As discussed, our results generalize to random walk-based node similarities beyond effective resis-
tances, such as personalized PageRank scores. Given localization parameter o > 0, the personalized
PageRank score p& (u, v) is the probability that a lazy random walk on graph G which jumps back to
u with probability « in each step is at node v in its stationary distribution [39, 22, 4].

Letting W = %(I + AD™!) be the lazy random walk matrix, p& (u, v) is the v'" entry of the personal
PageRank vector:

p&(u) = a(l — (1—a)W) e, (11)

This vector gives the stationary distribution for the random walk on G and thus the personalized
PageRank pg (u,v) is its v entry.

It is not hard to show an analogous result to Theorem 1, that given a full set of exact personalized
PageRank scores, full recovery of G is possible. Roughly, if we let P be the matrix with p& () as its

u!™ column, we have P = a(I — (1 — )W) ™! and can thus solve for the random walk matrix W,
and the graph G. This gives:

Theorem 3. For any connected graph G, given personalized PageRank score pg(u,v) for each
(u,v) € [n] x [n], there is algorithm returning G (up to a scaling of its edge weights) in O(n>) time.

Further, it is possible to formulate a problem analogous to Problem 2 and solve for a graph matching
a subset of personalized PageRank measurements as closely as possible. As shown in Figure 5,
personalized PageRank often gives a stronger signal of global graph structure than effective resistance.

To create the plot, nodes are sorted by their value in the Laplacian Fielder vector, which corresponds
roughly to residence in different clusters. In an extended version of our work, we will provide detailed
empirical results with personalized PageRank, and other random walk measures.

25 50 75 100 125 25 50 75 100 125

FB Small C Ego Network effective resistance personalized PageRank

Figure 5: Personalized PageRank correlates better than commute times with the cluster structure in
the FB SMALL C network (see Table 2). Heatmaps are shown in log scale.
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