
Supplementary Material to “The Price of Privacy for Low-rank
Factorization"

A Related Work

Low-rank approximation (LRA), where the goal is to output a matrix B such that kA�BkF is close
to the optimal LRA, of large data-matrices has received a lot of attention in the recent past in the
private as well as the non-private setting. In what follows, we give a brief exposition of works most
relevant to this work.

In the non-private setting, previous works have either used random projection or random sampling (at
a cost of a small additive error) to give low-rank approximation [3, 21, 31, 33, 27, 43, 55, 82, 85, 86].
Subsequent works [23, 24, 26, 28, 66, 71, 79, 86] achieved a run-time that depends linearly on the
input sparsity of the matrix. In a series of works, Clarkson and Woodruff [21, 23] showed space
lower bounds and almost matching space algorithms. Recently, Boutsidis et al. [17] gave the first
space-optimal algorithm for low-rank approximation under turnstile update mode, but they do not
optimize for run-time. A optimal space algorithm was recently proposed by Yurtsever et al. [99].
Distributed PCA algorithms in the row partition model and arbitrary partition model has been long
studied [8, 64, 61, 17, 44, 83, 84, 91].

In the private setting, low-rank approximation LRA has been studied under a privacy guarantee
called differential privacy. Differential privacy was introduced by Dwork et al. [36]. Since then,
many algorithms for preserving differential privacy have been proposed in the literature [38]. All
these mechanisms have a common theme: they perturb the output before responding to queries.
Recently, Blocki et al. [13] and Upadhyay [92] took a complementary approach. They perturb the
input reversibly and then perform a random projection of the perturbed matrix.

Blum et al. [14] first studied the problem of differentially private LRA in the Frobenius norm. This
was improved by Hardt and Roth [47] under the low coherence assumption. Upadhyay [93] later
made it a single-pass. Differentially private LRA has been studied in the spectral norm as well by
many works [20, 57, 48, 46]. Kapralov and Talwar [57] and Chaudhary et al. [20] studied the spectral
LRA of a matrix by giving a matching upper and lower bounds for privately computing the top k

eigenvectors of a matrix with pure differential privacy (i.e., � = 0). In subsequent works Hardt and
Roth [48] and Hardt and Price [46] improved the approximation guarantee with respect to the spectral
norm by using robust private subspace iteration algorithm. Recently, Dwork et al. [40] gave a tighter
analysis of Blum et al. [14] to give an optimal approximation to the right singular space, i.e., they
gave a LRA for the covariance matrix. Dwork et al. [37] first considered streaming algorithms with
privacy under the model of pan-privacy, where the internal state is known to the adversary. They
gave private analogues of known sampling based streaming algorithms to answer various counting
tasks. This was followed by results on online private learning [40, 51, 90].

B Discussion on Privacy Guarantees, Assumptions, and Relaxation.

The two privacy guarantees considered in this paper have natural reasons to be considered. Priv1

generalizes the earlier privacy guarantees and captures the setting where any two matrices differ in
only one spectrum. Since Priv1 is defined in terms of the spectrum of matrices, Priv1 captures one
of the natural privacy requirements in all the applications of LRF. Priv2 is more stronger than Priv1.
To motivate the definition of Priv2, consider a graph, G := (V, E) that stores career information
of people in a set P since their graduation. The vertex set V is the set of all companies. An edge
e = (u, v) 2 E has weight

P
p2P(tp,e/tp), where tp,e is the time for which the person p held a job

at v after leaving his/her job at u, and tp is the total time lapsed since his/her graduation. Graphs
like G are useful because the weight on every edge e = (u, v) depends on the number of people who
changed their job status from u to v (and the time they spent at v). Therefore, data analysts might
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want to mine such graphs for various statistics. In the past, graph statistics have been extensively
studied for static graph under edge-level privacy (see, for e.g., [40, 47, 46, 92, 93]): the presence
or absence of a person corresponds to a change in a single edge. On the other hand, in graphs like
G, presence or absence of a person would be reflected on many edges. If we use earlier results on
edge-level privacy to such graphs, it would lead to either a large additive error or a loss in privacy
parameters ", �. Priv2 is an attempt to understand whether we can achieve any non-trivial guarantee
on the additive error without depreciating the privacy parameters.

Our choice to not make any assumptions such as symmetry, incoherence, or a bound on the Frobenius
norm of the input matrix, as made in previous works [40, 47, 46, 57], allows us to give results as
general as possible and cover many practical scenarios not covered by previous works. For example,
this allows us to have a unified algorithmic approach for all the settings mentioned earlier in the
introduction (see Corollary 2). Moreover, by not making any assumption on the Frobenius norm or
coherence of the matrix, we are able to cover many general cases not covered by previous results.
For example, adjacency matrices corresponding to graph G can have arbitrary large Frobenius norm.
Such graphs can be distributed over all the companies and updated every time a person changes his
job, and the effect is (possibly) reflected on many edges. On the other hand, one would like to protect
private information about an individual in G or data packets in communication network. There are
practical learning application such as word2vec where private data is used to build a relationship
graph on objects (such as words-to-words, queries-to-urls, etc) also share all these properties. Other
applications like recommendation systems, clustering, and network analysis, have their input datasets
store dynamically changing private information in the form of m⇥ n matrices. For example, online
video streaming websites that stores users’ streaming history, both store private information in the
form of matrix which is updated in a turnstile manner and has arbitrary large Frobenius norm. These
data are useful for their respective businesses since they can be used for various analyses [30, 62, 77].

On the other hand, in some practical applications, matrices are more structured. One such special
case is when the rows of private matrix A have bounded norm and one would like to approximate
ATA. This problem was studied by Dwork et al. [40] (see Appendix N.3 for their formal problem
statement). We consider the matrices are updated by inserting one row at a time: all the updates at
time ⌧  T are of the form

�
i⌧ ,A(⌧)

 
, where 1  i⌧  m, A(⌧) 2 R

n, and i⌧ 6= i⌧ 0 for all ⌧ 6= ⌧
0.

We get the following corollary by using ATA as the input matrix:
Corollary 2. (Theorem 15, informal). Given an A 2 R

m⇥n updated by inserting one row at a
time such that every row has a bounded norm 1 and m > n. Then there is an (", �)-differentially
private algorithm under Priv2 that uses eO(nk↵

�2) space, and outputs a rank-k matrix B such that
kATA�BkF  (1 + ↵)kATA� [ATA]kkF + eO

⇣p
nk/(↵")

⌘
.

We do not violate the lower bound of Dwork et al. [40] because their lower bound is valid when
↵ = 0, which is not possible for low space algorithms due to Theorem 2. Dwork et al. [40] bypassed
their lower bounds under a stronger assumption known as singular value separation: the difference
between k-th singular value and all k

0-th singular values for k
0

> k is at least !(
p

n). In other
words, our result shows that we do not need singular value separation while using significantly
less space— eO(nk/↵

2) as compared to O(n2)—if we are ready to pay for a small multiplicative
error (this also happens for both the problems studied by Blocki et al. [13] though the authors do
not mention it explicitly). There are scenarios where our algorithm perform better, such as when
kATA � [ATA]kkF = O(

p
kn) with small singular value separation. For example, a class of

rank-ck matrices (for c � 2) with singular values �1, · · · , �ck, such that �
2
k
= �

2
k0 + O(

p
n/k) for

k  k
0  ck, does not satisfy singular value separation. Moreover, kATA� [ATA]kkF = O(

p
kn)

and kATAkF = O(
p

m). In this case, we have kATA � BkF  O((↵")�1
p

kn). On the other
hand, Dwork et al. [40] guarantees kATA�BkF  O("�1

k
p

n). That is, we improve on Dwork et
al. [40] when ↵ = ⇥(1) for a large class of matrices. Some examples include the matrices considered
in the literature of matrix completion (see [74] for details).

C Notations and Preliminaries

Notations We give a brief exposition of notations and linear algebra to the level required to understand
this paper. We refer the readers to standard textbook on this topic for more details [12]. We let N to
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denote the set of natural numbers and R to denote the set of real numbers. For a real number x 2 R,
we denote by |x| the absolute value of x. We use boldface lowercase letters to denote vectors, for
example, x, and x1, . . . , xn to denote the entries of x, and bold-face capital letters to denote matrices,
for example, A. For two vectors x and y, we denote by hx, yi =

P
i
xiyi

the inner product of x and y.
We let e1, . . . , en denote the standard basis vectors in R

n, i.e., ei has entries 0 everywhere except for
the position i where the entry is 1. We denote by (A B) the matrix formed by appending the matrix
A columnwise with the matrix B. We use the notation In to denote the identity matrix of order n and
0m⇥n the all-zero m⇥ n matrix. Where it is clear from the context, we drop the subscript.

For a matrix A 2 R
m⇥n, we denote by Aij the (i, j)-th entry of A. We denote by vec(A) the vector

of length mn formed by the entries of the matrix A, i.e., for an m⇥n matrix A, the ((i�1)n+ j)-th
entry of vec(A) is Aij , where 1  i  m, 1  j  n. The transpose of a matrix A is a matrix B
such that Bij = Aji. We use the notation AT to denote the transpose of a matrix A. For a matrix
A, we denote the best k-rank approximation of A by [A]k, its Frobenius norm by kAkF , and by
�k := kA � [A]kkF . For a matrix A, we use the symbol r(A) to denote its rank and det(A) to
denote its determinant.

We give a brief exposition of notations and linear algebra to the level required to understand this
paper. We refer the readers to standard textbook on this topic for more details [12]. We let N to
denote the set of natural numbers and R to denote the set of real numbers. For a real number x 2 R,
we denote by |x| the absolute value of x. We use boldface lowercase letters to denote vectors, for
example, x, and x1, . . . , xn to denote the entries of x, and bold-face capital letters to denote matrices,
for example, A. For two vectors x and y, we denote by hx, yi =

P
i
xiyi

the inner product of x and y.
We let e1, . . . , en denote the standard basis vectors in R

n, i.e., ei has entries 0 everywhere except for
the position i where the entry is 1. We denote by (A b) the matrix formed by appending the matrix
A with the vector b. We use the notation In to denote the identity matrix of order n and 0m⇥n the
all-zero m⇥ n matrix. Where it is clear from the context, we drop the subscript.

For a m⇥n matrix A, we denote by Aij the (i, j)-th entry of A. We denote by vec(A) the vector of
length mn formed by the entries of the matrix A, i.e., for an m⇥ n matrix A, the ((i� 1)n + j)-th
entry of vec(A) is Aij , where 1  i  m, 1  j  n. The transpose of a matrix A is a matrix B
such that Bij = Aji. We use the notation AT to denote the transpose of a matrix A. For a matrix
A, we denote the best k-rank approximation of A by [A]k and its Frobenius norm by kAkF . For a
matrix A, we use the symbol r(A) to denote its rank and det(A) to denote its determinant. A matrix
A is a non-singular matrix if det(A) 6= 0.

C.1 Definitons

Definition 2. (Differentially Private Low Rank Factorizataion in the General Turnstile Update
Model). Let the private matrix A 2 R

m⇥n initially be all zeroes. At every time epoch, the curator
receives an update in the form of the tuple {i, j,�}, where 1  i  m, 1  j  n, and � 2 R—
each update results in a change in the (i, j)-th entry of the matrix A as follows: Ai,j  Ai,j +�.
Given parameters 0 < ↵, � < 1 and �, and the target rank k, the curator is required to output a
differentially-private rank-k matrix factorization eUk, e⌃k, and eVk of A at the end of the stream, such
that, with probability at least 1� �,

kA� eUk
e⌃k
eVT

k
kF  (1 + ↵)�k + �,

where �k := kA� [A]kkF with [A]k being the best rank-k approximation of A.
Definition 3. (Differentially Private Low Rank Factorizataion in the Continual Release Model). Let
the private matrix A 2 R

m⇥n initially be all zeroes. At every time epoch t, the curator receives
an update in the form of the tuple {i, j,�}, where 1  i  m, 1  j  n, and � 2 R—each
update results in a change in the (i, j)-th entry of the matrix A as follows: A(t)

i,j
 A(t�1)

i,j
+�.

Given parameters 0 < ↵, � < 1 and �, and the target rank k, the curator is required to output a
differentially-private rank-k matrix factorization eU(t)

k
, e⌃(t)

k
, and eV(t)

k
of A at every time epoch, such

that, with probability at least 1� �,

kA(t) � eU(t)
k
e⌃(t)

k
(eV(t)

k
)TkF  (1 + ↵)�(t)

k
+ �,

where �(t)
k

:= kA(t) � [A(t)]kkF with [A(t)]k being the best rank-k approximation of A(t).
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Definition 4. (Local Differentially Private Principal Component Analysis Problem). Given an m⇥n

matrix A distributed among m users where each user holds a row of the matrix A, a rank parameter
k, and an accuracy parameter 0 < ↵ < 1, design a local differentially private algorithm which, upon
termination, outputs an orthonormal matrix U such that

kA�UUTAkF  (1 + ↵)kA� [A]kkF + �

with probability at least 1� �, and the communication cost of the algorithm is as small as possible.
Furthermore, the algorithm should satisfies (", �)-LDP.

In this paper, we use various concepts and results from the theory of random projections, more
specifically the Johnson-Lindenstrauss transform and its variants.
Definition 5. Let ↵, � > 0. A distribution D over t⇥ n random matrices satisfies (↵, �)-Johnson
Lindenstrauss property (JLP) if, for any unit vector x 2 R

n, we have

Pr�⇠D[k�xk22 2 (1± ↵)] � 1� �.

Definition 6. A distribution DR of t⇥m matrices satisfies (↵, �)-subspace embedding for generalized
regression if it has the following property: for any matrices P 2 R

m⇥n and Q 2 R
m⇥n

0
such that

r(P)  r, with probability 1� � over � ⇠ DR, if

eX = argmin
X

k�(PX�Q)kF and bX = argmin
X2Rn⇥n0

kPX�QkF ,

then kPeX�QkF  (1 + ↵)kPbX�QkF .

Definition 7. A distribution DA over v ⇥m matrices satisfies (↵, �)-affine subspace embedding if
it has the following property: for any matrices D 2 R

m⇥n and E 2 R
m⇥n

0
such that r(D)  r,

with probability 1 � � over S ⇠ DA, simultaneously for all X 2 R
n⇥n

0
, kS(DX � E)k2

F
=

(1± ↵)kDX�Ek2
F
.

We use the symbol DR to denote a distribution that satisfies (↵, �)-subspace embedding for general-
ized regression and DA to denote a distribution that satisfies (↵, �)-affine subspace embedding.

C.2 Linear Algebra

A matrix is called a diagonal matrix if the non-zero entries are all along the principal diagonal. An
m⇥m matrix A is a unitary matrix if ATA = AAT = Im. Additionally, if the entries of the matrix
A are real, then such a matrix is called an orthogonal matrix. For an m⇥m matrix A, the trace of
A is the sum of its diagonal elements. We use the symbol Tr(A) to denote the trace of matrix A. We
use the symbol det(A) to denote the determinant of matrix A.

Let A be an m ⇥ m matrix. Its singular values are the eigenvalues of the matrix
p
ATA. The

eigenvalues of the matrix
p
ATA are real because ATA is a symmetric matrix and has a well-defined

spectral decomposition1 [12].

The singular-value decomposition (SVD) of an m⇥ n rank-r matrix A is a decomposition of A as
a product of three matrices, A = U⌃VT such that U 2 R

m⇥r and V 2 R
n⇥r have orthonormal

columns and ⌃ 2 R
r⇥r is a diagonal matrix with singular values of A on its diagonal. One can

equivalently write it in the following form:

A =

r(A)X

i=1

�iuiv
T
i
,

where ui is the i-th column of U, vi is the i-th column of V, and �i is the i-th diagonal entry of ⌃.

One can derive a lot of things from the singular value decomposition of a matrix. For example,

1A spectral decomposition of a symmetric matrix A is the representation of a matrix in form of its eigenvalues
and eigenvectors:

P
i �iviv

T
i , where �i are the eigenvalues of A and vi is the eigenvector corresponding to �i.
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1. The Moore-Penrose pseudo-inverse of a matrix A = U⌃VT is denoted by A† and has a
SVD A† = V⌃†UT, where ⌃† consists of inverses of only non-zero singular values of A.
In other words,

A† =

r(A)X

i=1

1

�i

uiv
T
i
,

where r(A) is the number of non-zero singular values of A.

2. Let �1 � · · · � �k � · · · � �r(A) be the singular values of A. Then

[A]k =
kX

i=1

�iuiv
T
i
,

3. The trace of a matrix A can be represented in form of the singular values of A as follows:
Tr(A) =

P
i
�i. Similarly, the determinant of a matrix A is det(A) =

Q
i
�i. Moreover,

the Frobenius norm of A is
P

i
�

2
i
.

We use few unitary matrices, which we define next. Let N be a power of 2. A Walsh-Hadamard
matrix of order N is an N ⇥N matrix formed recursively as follows:

WN =
1p
2

✓
WN/2 WN/2

WN/2 �WN/2

◆
W1 := (1).

A Walsh-Hadamard matrix is a unitary matrix. We often drop the subscript wherever it is clear
from the context. A randomized Walsh-Hadamard matrix is a matrix product of a Walsh-Hadamard
matrix and a random diagonal matrix with entries ±1 picked according to the following probability
distribution:

Pr[X = 1] = Pr[X = �1] = 1/2.

A discrete Fourier matrix of order n is an n⇥ n matrix such that the (i, j)-th entry is !
(i�1)(j�1),

where ! is the n-th root of unity, i.e., ! = e
�2⇡◆/n.

C.3 Gaussian Distribution

Given a random variable x, we denote by N (µ, ⇢
2) the fact that x has a normal Gaussian distribution

with mean µ and variance ⇢
2. The Gaussian distribution is invariant under affine transformation,

i.e., if X ⇠ N (µx, �x) and Y ⇠ N (µy, �y), then Z = aX + bY has the distribution Z ⇠
N (aµx + bµy, a�

2
x
+ b�

2
y
). This is also called the rotational invariance of Gaussian distribution. By

simple computation, one can verify that the tail of a standard Gaussian variable decays exponentially.
More specifically, for a random variable X ⇠ N (0, 1), we have Pr [|X| > t]  2e�t

2
/2

.

Our proof uses an analysis of multivariate Gaussian distribution. The multivariate Gaussian distribu-
tion is a generalization of univariate Gaussian distribution. Let µ be an N -dimensional vector. An N -
dimensional multivariate random variable, x ⇠ N (µ,⇤), where⇤ = E[(x�µ)(x�µ)T] is the N⇥N

covariance matrix, has the probability density function given by PDFX(x) := e
�xT⇤†x/2p

(2⇡)r(⌃) det(⇤)
. If

⇤ has a non-trivial kernel space, then the multivariate distribution is undefined. However, in this
paper, all our covariance matrices have only trivial kernel. Multivariate Gaussian distributions is
invariant under affine transformation, i.e., if y = Ax + b, where A 2 R

M⇥N is a rank-M matrix
and b 2 R

M , then y ⇠ N (Aµ + b,A⇤AT).

D Basic Results Used in This Paper

Our proofs uses various concepts and known results about random projections, pseudo-inverse of
matrices and gaussian distribution. In this section, we cover them up to the level of exposition
required to understand this paper. We refer to the excellent book by Bhatia [12] for more exposition
on pseudo-inverses, and Woodruff [98].
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D.1 Random Projections.

Random projection has been used in computer science for a really long time. Some partial application
includes metric and graph embeddings [16, 65], computational speedups [86, 95], machine learning [9,
87], nearest-neighbor search [50, 80], and compressed sensing [10].

In this paper, we use random projections that satisfy Definition 6 and Definition 7. An example
distribution DR with t = O(↵�2 log(1/�)) is the distribution of random matrices whose entries are
sampled i.i.d. from N (0, 1/t). Recently, Clarkson and Woodruff [22] proposed other distribution of
random matrices that satisfies (↵, �)-subspace embedding for generalized regression and (↵, �)-affine
subspace embedding. They showed the following:

Lemma 1. ([22, Lem 41, Lem 46]) There is a distribution DR over Rt⇥m such that satisfies

(i) if t = O(↵�2 log2
m), then for � ⇠ DR and any m ⇥ n matrix Q, k�Qk2

F
= (1 ± ↵)kQk2

F
,

and

(ii) if t = O(r/↵ log(r/�)), then DR satisfies (↵, �)-subspace embedding for generalized regression
for P and Q.

Further, for any matrix L 2 R
m⇥n, �L can be computed in O(nn(L) + tn log t) time. Here P, Q,

and r are as in Definition 6.

Lemma 2. [22, Thm 39, Thm 42]) There exists a distribution DA over Rv⇥m such that

(i) if v = ⇥(↵�2), then for S ⇠ DA and any m⇥ d matrix D, kSDk2
F
= (1± ↵)kDk2

F
.

(ii) if v = O(p/↵
2 log(p/�)), then DA satisfies (↵, �)-affine embedding for D and E.

Further, for any matrix L 2 R
m⇥n, SL can be computed in O(nn(L) + nv log v) time. Here E, D,

and p are as in Definition 7.

In the theorems above, � and S are oblivious to the matrices P,Q,D, and E. That is, we design
the distribution DA over linear maps such that for any fixed matrices D,E, if we chose S ⇠ DA,
then S is an (↵, �)-affine embedding for D,E. Similarly, we design the distribution DR over linear
maps such that for any fixed matrices P,Q, if we chose� ⇠ DA, then� is an (↵, �) embedding for
P,Q.

D.2 Differential privacy

Differential privacy is a very robust guarantee of privacy which makes confidential data available
widely for accurate analysis while still preserving the privacy of individual data. Achieving these two
requirements at the same time seems paradoxical. On one hand, we do not wish to leak information
about an individual. On the other hand, we want to answer the query on the entire database as
accurately as possible. This makes designing differentially private mechanisms challenging.

D.2.1 Robustness of Differential Privacy

One of the key features of differential privacy is that it is preserved under arbitrary post-processing,
i.e., an analyst, without additional information about the private database, cannot compute a function
that makes an output less differentially private. In other words,

Lemma 3. (Dwork et al. [35]). Let M(D) be an (↵, �)-differential private mechanism for a database
D , and let h be any function, then any mechanism M0 := h(M(D)) is also (↵, �)-differentially
private for the same set of tasks.

Proof. Let M be a differentially private mechanism. Let range(M) denote the range the of M.Let R

be the range of the function h(·). Without loss of generality, we assume that h(·) : range(M)! R is
a deterministic function. This is because any randomized function can be decomposed into a convex
combination of deterministic function, and a convex combination of differentially private mechanisms
is differentially private. Fix any pair of neighbouring data-sets DB and gDB and an event S ✓ R.
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Let T = {y 2 range(M) : f(r) 2 S}. Then

Pr[f(M(DB)) 2 S] = Pr[M(DB) 2 T ]

 exp(↵)Pr[M(gDB) 2 T ] + �

= exp(↵)Pr[f(M(gDB)) 2 S] + �.

D.2.2 Composition

Before we begin, we discuss what does it mean by the term “composition" of differentially private
mechanism. The composition that we consider covers the following two cases:

1. Repeated use of differentially private mechanism on the same database.
2. Repeated use of differentially private mechanism on different database that might contain

information relating to a particular individual.

The first case covers the case when we wish to use the same mechanism multiple times while the
second case covers the case of cumulative loss of privacy of a single individual whose data might be
spread across many databases.

It is easy to see that the composition of pure differentially private mechanisms yields another pure
differentially private mechanism, i.e., composition of an (↵1, 0)-differentially private and an (↵2, 0)-
differentially private mechanism results in an (↵1 + ↵2, 0)-differentially private mechanism. In
other words, the privacy guarantee depreciates linearly with the number of compositions. In the
case of approximate differential privacy, we can improve on the degradation of ↵ parameter at
the cost of slight depreciation of the � factor. We use this strengthening in our proofs. In our
proofs of differential privacy, we prove that each row of the published matrix preserves (↵0, �0)-
differential privacy for some appropriate ↵0, �0, and then invoke a composition theorem by Dwork,
Rothblum, and Vadhan [39] to prove that the published matrix preserves (↵, �)-differential privacy.
The following theorem is the composition theorem that we use.
Theorem 4. (Dwork et al. [39]). Let ↵0, �0 2 (0, 1), and �

0
> 0. If M1, · · · ,M` are each (↵, �)-

differential private mechanism, then the mechanism M(D) := (M1(D), · · · ,M`(D)) releasing the
concatenation of each algorithm is (↵0

, `�+0+�
0)-differentially private for ↵

0
<
p

2` ln(1/�0)↵0+
2`↵2

0.

A proof of this theorem could be found in [38, Chapter 3].

Gaussian Mechanism. The Gaussian variant of the Laplace mechanism was proven to preserve
differential privacy by Dwork et al. [35] in a follow-up work. Let f(·) be a function from a class of
�-sensitive functions. The Gaussian mechanism is

M(D, f(·), ↵) := f(D) + (X1, · · · , Xk), where Xi ⇠ N
✓
0,
�2

✏2
log(1.25/�)

◆
.

Dwork et al. [35] proved the following.
Theorem 5. (Gaussian mechanism [35].) Let x, y 2 R

n be any two vectors such that kx� yk2  c.
Let ⇢ = c"

�1
p
log(1/�) and g ⇠ N (0, ⇢2)n be a vector with each entries sampled i.i.d. Then for

any s ⇢ R
n, Pr[x + g 2 s]  e

"
Pr[y + g 2 s] + �.

D.3 Properties of Gaussian distribution.

We need the following property of a random Gaussian matrices.

Fact 1. ([54, 86]) Let P 2 R
m⇥n be a matrix of rank r and Q 2 R

m⇥n
0

be an m⇥n
0 matrix. Let D

be a distribution of matrices over Rt⇥n with entries sampled i.i.d. from N (0, 1/t). Then there exists
a t = O(r/↵ log(r/�)) such that D is an (↵, �)-subspace embedding for generalized regression.
Lemma 4. Let N ⇠ N (0, ⇢2)m⇥n Gaussian matrix. Then with probability 99/100, kNkF =
O(⇢
p

mn).

7



Proof. The lemma follows from the following computation.

E[kC�k2
F
] = E

2

4
X

i,j

( eN1)
2
ij

3

5 =
X

i,j

E[( eN1)
2
ij
] = mn⇢

2
.

The result follows using Markov’s inequality.

D.4 Properties of pseudo-inverse of a matrix.

We need the following results about product of pseudo-inverse in the proof of Lemma 5 and Lemma 22.
Fact 2. If A has a left-inverse, then A† = (ATA)�1AT and if A has right-inverse, then A† =
AT(AAT)�1.
Theorem 6. Let A and B be conforming matrices and either,

1. A has orthonormal columns (i.e., ATA is an identity matrix) or,

2. B has orthonormal rows (i.e., BBT is an identity matrix),

3. A has all columns linearly independent (full column rank) and B has all rows linearly
independent (full row rank) or,

4. B = AT (i.e., B is the conjugate transpose of A),

then (AB)† = B†A†.

We use the following variant of Pythagorean theorem in the proof of Lemma 6.
Theorem 7. (Pythagorean theorem). Let A and B be two matrices such that ATB is an zero matrix.
Then for any C = A+B, we have kCk2

F
= kAk2

F
+ kBk2

F
.

D.5 Linear Algebraic Results Used in This Paper

We also need the following results for the privacy proof.
Theorem 8. (Lidskii Theorem [12]). Let A,B be n⇥ n Hermittian matrices. Then for any choice of
indices 1  i1  · · ·  ik  n,

kX

j=1

�ij (A+B) 
kX

j=1

�ij (A) +
kX

j=1

�ij (B),

where {�i(A)}n

i=1 are the eigen-values of A in decreasing order.
Theorem 9. (Weyl’s Pertubation Theorem [12]). For any m⇥ n matrices P,Q, we have |�i(P+
Q)� �i(P)|  kQk2, where �i(·) denotes the i-th singular value and kQk2 is the spectral norm of
the matrix Q.

We use the notation Rad(p) to denote a distribution with support ±1 such that +1 is sampled with
probability p and �1 is sampled with probability 1� p. An n⇥ n Walsh-Hadamard matrix Hn is
constructed recursively as follows:

Hn =

✓
Hn/2 Hn/2

Hn/2 �Hn/2

◆
and H1 := 1.

A randomized Walsh-Hadamard matrix Wn is formed by multiplying Hn with a diagonal matrix
whose diagonal entries are picked i.i.d. from Rad(1/2). We drop the subscript n where it is clear
from the context. A subsampled randomized Hadamard matrix is construct by multiplying ⇧1..r

from the left to a randomized Hadamard matrix, where⇧1..r is the matrix formed by the first r rows
of a random permutation matrix.
Lemma 5. Let S be a v ⇥ m subsampled randomized Hadamard matrix, where v  m and
N 2 R

v⇥n. Then we have,
kS†N2kF = kN2kF .

8



Proof. One way to look at the action of S when it is a subsampled Hadamard transform is that it
is a product of matrices W and ⇧1..r, where ⇧1..r is the matrix formed by the first r rows of a
random permutation matrix and W is a randomized Walsh-Hadamard matrix formed by multiplying
a Walsh-Hadamard matrix with a diagonal matrix whose non-zero entries are picked i.i.d. from
Rad(1/2).

Since WD has orthonormal rows, S† = (⇧1..vWD)† = (WD)T(⇧1..v)†. This implies

kS†NkF = k(⇧1..vWD)†NkF = k(WD)T⇧†
1..v

NkF
= k⇧†

1..v
NkF .

Using the fact that ⇧1..v is a full row rank matrix and b⇧1..v
b⇧T

1..v
is an identity matrix, we have

b⇧†
1..v

= b⇧T
1..v

( b⇧1..v⇧T
1..v

)�1 = b⇧T
1..v

. The result follows.

We reprove the following theorem of Boutsidis et al. [17]. Our proof allows us a tighter control on
the intermediate results which helps us to get a tighter bound on the additive error.
Theorem 10. Let DR be an (↵, �)-subspace embedding for generalized regression (Definition 6).
Then with probability 1� 2� over �T ⇠ DR and ⇠ DR, for any arbitrary m⇥ n matrix A,

min
X,r(X)k

kA�X A�AkF  (1 + ↵)2kA� [A]kkF . (4)

Our proof uses two optimization problems and uses the solution to those optimization problem in a
clever way. We feel that our proof is simpler. It also has explicit solutions to the two optimization
problems, which makes it easy to extend to the case of private low-rank factorization and get a tight
bound.

Proof. Let [A]k = Uk⌃kVT
k

. We will use Lemma 1 to prove the theorem. Set� = �T, P = [A]T
k

,
Q = AT. Then for eX = argminX k�T([A]T

k
X � AT)kF , we have with probability 1 � � over

�T ⇠ DR,

k[A]T
k
eX�ATkF  (1 + ↵)min

X
k[A]T

k
X�ATkF

 (1 + ↵)k[A]T
k
�ATkF

where the last inequality follows by setting X = UkUT
k

. Here eX = (�T[A]T
k
)†(A�)T. Since

Frobenius norm is preserved under transpose, we have by substituting the value of eX,

kA�([A]k�)
†[A]k �AkF  (1 + ↵)kA� [A]kkF . (5)

We now use Lemma 1 on the following regression problem:

min
X
kWX�AkF , where W = A�([A]k�)

†
.

Let bX = argminX k (WX�A)kF . Since [A]k has rank k, Lemma 1 and equation (5) gives with
probability 1� � over ⇠ DR

kW bX�AkF = kA�([A]k�)
† bX�AkF

 (1 + ↵)min
X
k(A�)([A]k�)

†X�AkF

 (1 + ↵)kA�([A]k�)
†[A]k �AkF

 (1 + ↵)2kA� [A]kkF .

Substituting the value of bX = ( W)† A, with probability 1� 2� over �T
, ⇠ DR, we have

kA�([A]k�)
†( A�([A]k�)

†)† A�AkF  (1 + ↵)2kA� [A]kkF . (6)

Since ([A]k�)†( A�([A]k�)†)† has rank at most k, this completes the proof because
�([A]k�)†)† is a rank-k matrix.

9



We prove the following key lemma, which can be seen as a generalization of one of the previous
results of Clarkson and Woodruff [21]. This lemma would be required in proving all our results.
Lemma 6. Let R be a matrix with orthonormal rows and C have orthonormal columns. Then

min
X,r(X)=k

kCXR� FkF = kC[CTFRT]kR� FkF .

Proof. For any matrix Y of appropriate dimension, we have hF�CCTF,CCTF�CYRi = 0.
This is because F�CCTF = (I�CCT)F lies in space orthogonal to C(CTF�YR). By Theorem 7,

kF�CYRk2
F
= kF�CCTFk2

F
+ kCCTF�CYRk2

F

= kF�CCTFk2
F
+ kCTF�YRk2

F
, (7)

where the second equality follows from the properties of unitary matrices.

Again, for any matrix Y of appropriate dimensions, we have
hCTFRTR�YR,CTF�CTFRTRi = 0. This is because CTFRTR � YR =
(CTFRT �Y)R lies in the space spanned by R, and CTF�CTFRTR = CTF(I�RTR) lies
in the orthogonal space. By Theorem 7, we have

kCTF�YRk2
F
= kCTF�CTFRTRk2

F
+ kCTFRTR�YRk2

F
(8)

Since kCTF �CTFRTRk2
F

is independent of Y, we just bound the term kCTFRTR �YRk2
F

.
Substituting Y = [CFR]k and using the fact that multiplying R from the right does not change
the Frobenius norm and [CTFRT]k is the best k-rank approximation to the matrix CTFRT, for all
rank-k matrices Z, we have

kCTFRTR� [CTFRT]kRk2F  kCTFRTR� ZRk2
F
. (9)

Combining equation (9) with equation (8) and Theorem 7, we have

kCTF� [CFR]kRk2F  kCTF�CTFRTRk2
F
+ kCTFRTR� ZRk2

F
= kCTF� ZRk2

F
.

(10)

Combining equation (10) with equation (7), the fact that C has orthonormal columns, and Theorem 7,
we have

kF�C[CFR]kRk2F  kF�CCTFk2
F
+ kCTF� ZRk2

F

= kF�CCTFk2
F
+ kCCTF�CZRk2

F

= kF�CZRk2
F
.

This completes the proof of Lemma 6.

E Low Space Differentially private Low-rank Factorization

In this section, we give our basic low space algorithms for various granularity of privacy. These algo-
rithms serve as a meta algorithm on which we built algorithms in various model of computations, like
streaming model under turnstile update, continual release model, and local model. In Appendix E.1,
we analyze the algorithm presented earlier. In Appendix E.2, we give our low space differentially
private algorithm under Priv2, a stronger privacy guarantee.

E.1 Low Space Differentially Private Low-rank Factorization Under Priv1

In this section, we analyze the algorithm presented earlier. For the ease of the readers, we first
restate Theorem 3 here.

Restatement of Theorem 3. Let m, n, k 2 N and ↵, ", � be the input parameters. Let
s = max{m, n}, u = min {m, n},  = (1 + ↵)/(1 � ↵), ⌘ = max

�
k, ↵

�1
 

, and �min =

16 log(1/�)
p

t ln(1/�)/". Given an m⇥ n matrix A, PRIVATE-SPACE-OPTIMAL-LRF, described
in Figure 1, outputs a k-rank factorization eU, e⌃, and eV, such that

10



1. PRIVATE-SPACE-OPTIMAL-LRF is (3", 3�) differentially private under Priv1.

2. Let Mk = eUe⌃eVT
. Then with probability 9/10 over the random coins of PRIVATE-SPACE-

OPTIMAL-LRF,

k (A 0)�MkkF  (1 + ↵)kA� [A]kkF + O(�min
p

u + "
�1
p

ks ln(1/�)),

3. The space used by PRIVATE-SPACE-OPTIMAL-LRF is O((m + n)⌘↵
�1 log(k/�)).

4. The total computational time is O

⇣
nn(A) log(1/�) + (u2+s⌘)⌘ log2(k/�)

↵2 + ⌘
3 log3(k/�)

↵5

⌘
.

First note that if we do not aim for run time efficiency, then we can simply use Gaussian random
matrices instead of sampling�, ⇠ DR and S,T ⇠ DA as per Lemma 1 and Lemma 2. This would
simplify the privacy proof as we will see later. Secondly, the probability of success can be amplified
to get a high probability bound by standard techniques. We leave these details as they are standard
arguments.

Proof of Theorem 3. Part 3 follows immediately by setting the values of t and v. Part 4 of Theorem 3
requires some computation. More precisely, we have the following.

1. Computing Yc requires O(nn(A) log(1/�))+m(m+n)t time and computing Yr requires
O(nn(A) log(1/�)) + (m + n)t2 time.

2. Computing U and V requires O(nt
2 + mt

2) = O((m + n)⌘2
↵
�2 log2(k/�)) time.

3. Computing a SVD of matrices SU and TVT requires vt
2 + tv

2 = O(k3
↵
�5 log2(k/�)).

4. Computing Z requires O(nn(A) log(1/�) + ⌘
2
/↵

2 log2(k/�) + n⌘
2
↵
�2 log2(k/�)) Com-

putation of [eUT
s

ZeV]k requires O(nn(A) log(1/�)) + tv
2 = O(nn(A) log(1/�) +

k
3
↵
�5 log3(k/�)) time.

5. Computation of the last SVD requires O((m + n)⌘2
↵
�2 log2(k/�)) time.

Combining all these terms, we have our claim on the running time.

E.1.1 Correctness Proof of PRIVATE-SPACE-OPTIMAL-LRF

We now prove the correctness guarantee of PRIVATE-SPACE-OPTIMAL-LRF. In what follows, we
analyze the case when m  n. The case when n  m follows analogously due to the symmetry
of PRIVATE-SPACE-OPTIMAL-LRF. First note that appending A with an all zero matrix 0m⇥m

has no effect on its k-rank approximation, i.e., we can analyze the approximation guarantee for
bA := (A 0) instead of A. Let Mk be as defined in Theorem 3. We break our proof in three main
steps.

(i) Lower bound kMk � bAkF by kMk � (A 0) kF up to an additive term (Lemma 7).

(ii) Relate kMk � bAkF and kbA� [bA]kkF (Lemma 8).

(iii) Upper bound kbA� [bA]kkF by a term linear in kA� [A]kkF up to an additive term (Lemma 9).

Part 2 of Theorem 3 follows by combining these three items together.

Performing step (i). We start by proving a bound on kMk � bAkF by kMk �AkF and a small
additive term. The following lemma provides such a bound.

Lemma 7. Let A be an m⇥n input matrix, and let bA = (A �minIm) for �min defined in Theorem 3.
Denote by Mk := eUe⌃eVT the output of PRIVATE-OPTIMAL-SPACE-LRF. Then

kMk � (A 0) kF  kMk � bAkF + �min
p

m.

11



Proof. The lemma is immediate from the following observation: kMk�(A 0) kF ��minkImkF 
kMk � (A 0)� (0 �minI) kF = kMk � bAkF , where the first inequality follows from the sub-
additivity of the Frobenius norm.

Performing step (ii). This is the most involved part of the proof and uses multiple lemmas as follows.

Lemma 8. Let bA = (A �minI) and denote by Mk := eUe⌃eVT. Let b� = t
�1⌦�. Then with

probability 1�O(�) over the random coins of the algorithm PRIVATE-SPACE-OPTIMAL-LRF,

kMk � bAkF  (1 + ↵)kbA� [bA]kkF + 2kS†N(TT)†kF + kbAb�([bA]k b�)†( bAb�([bA]k b�)†)†N1kF .

Proof. Let B = bA + S†N(T†)T and b� = ⌦�. We first use the relation between
minX,r(X)k kbAb�X bA � bAk and (1 + ↵)kbA � [bA]kkF from the proof of Theorem 10. Us-
ing Lemma 1 and Fact 1, if we set A = bA in equation (6), then with probability 1 � 3� over
b�T

, ⇠ DR, kbAb�([bA]k b�)†( bAb�([bA]k b�)†)† bA � bAkF  (1 + ↵)2kbA � [bA]kkF . Now de-
fine a rank-k matrix Pk := ([bA]k b�)†( bAb�([bA]k b�)†)†. Let us consider the following optimization
problem:

min
X

r(X)k

kYcXYr �BkF .

Since Pk is a rank-k matrix, using the subadditivity of the Frobenius norm, we have

min
X,

r(X)k

kYcXYr �BkF  kYcPkYr �BkF

= kYcPkYr � (bA+ S†N(T†)T)kF
 kYcPkYr � bAkF + kS†N(T†)TkF
= kbAb�Pk( bA+N1)� bAkF + kS†N(T†)TkF
 kbAb�Pk bA� bAkF + kS†N2(T

†)TkF + kbAb�PkN1kF
 (1 + ↵)2kbA� [bA]kkF + kS†N2(T

†)TkF + kbAb�PkN1kF (11)

Let S2 = bAb�PkN1. By definition, V is a matrix whose rows are an orthonormal basis for the row
space of Yr and U is a matrix whose columns are an orthonormal basis for the column space of Yc.
Therefore,

min
Y

r(Y)k

kUYV �BkF  min
X

r(X)k

kYcXV �BkF  min
X

r(X)k

kYcXYr �BkF . (12)

Combining equation (11) and equation (12), we have

min
Y

r(Y)k

kUYV �BkF  (1 + ↵)2kbA� [bA]kkF + kS†N2(T
†)TkF + kS2kF . (13)

Claim 1. Let U,V,B,A,S,T and N2 be as above. Let DA be a distribution that satisfies (↵, �)-
affine embedding. Let eX = argminX,r(X)=k kS(UX�B)kF . Then with probability 1�O(�) over
S,TT ⇠ DA,

k(UeXV �B)kF  (1 + ↵)4kbA� [bA]kkF + 4kS†N2(T
†)TkF + 4kS2kF .

Proof. Set p = t, D = U and E = B in the statement of Lemma 2. Let us restrict our attention to
matrices X with rank at most k and denote by

bX = argmin
X,r(X)k

kUXV �BkF and eX = argmin
X,r(X)k

kS(UXV �B)TTkF .

Then we have with probability 1� 3� over S ⇠ DA,

min
X

r(X)=k

kUXV �BkF = kUbXV �BkF � (1 + ↵)�1/2kS(UbXV �B)kF . (14)
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Substituting D = VT, X = (SUbX)T and E = (SB)T in the statement of Lemma 2, with probability
1� 4�,

(1 + ↵)�1/2kS(UbXV �B)kF = (1 + ↵)�1/2kVT(SUbX)T � (SB)T)kF
� (1 + ↵)�1kT(VT(SUbX)T � (SB)T)kF
= (1 + ↵)�1kS(UbXV �B)TTkF
� (1 + ↵)�1 min

X
r(X)k

kS(UXV �B)TTkF

= (1 + ↵)�1kS(UeXV �B)TTkF
� (1 + ↵)�2k(UeXV �B)kF . (15)

Combining equation (15) with equation (13), with probability 1� O(�) over the random coins of
PRIVATE-OPTIMAL-SPACE-LRF,

k(UeXV �B)kF  (1 + ↵)4kbA� [bA]kkF + 4(kS†N2(T
†)TkF + kS2kF ) (16)

as ↵ 2 (0, 1). This completes the proof of Claim 1.

To finalize the proof, we need to compute

eX = argmin
X

r(X)k

kS(UXV �B)TTkF .

We use Lemma 6 to compute eX. Recall SU = Us⌃sVT
s

and TVT = Ut⌃tVT
t

. Using Lemma 6
with C = eUs,R = eVT

t
and F = Z = SbATT +N2, we get

[eUT
s
SBTT eVt]k = argmin

X
r(X)k

keUsXeVT
t
� SBTTkF

This implies that argminX,r(X)k kS(UXV �B)TTkF has closed form

eX = eVs
e⌃†

s
[eUT

s
ZeVt]k e⌃†

t
eUT

t
(17)

Recall, eX = eVs
e⌃†

s
[eUT

s
ZeVt]k e⌃†

t
eUT

t
= U0⌃0V0T. Substituting equation (17) in equation (16) and

the fact that B = bA+ S†N2(T†)T, we have

kUU0⌃0(VTV0)T � bAkF � kS†N2(T
T)†kF  kUU0⌃0(VTV0)T �BkF

 (1 + ↵)6kbA� [bA]kkF + O(kS†N2(T
T)†kF + kS2kF ).

This in particular implies that

kUU0⌃0(VTV0)T � bAkF  (1 + ↵)6kbA� [bA]kkF + O(kS†N2(T
T)†kF + kS2kF ).

Scaling the value of ↵ by a constant completes the proof of Lemma 8.

Performing step (iii). In order to complete the proof, we compute an upper bound on kbA� [bA]kkF .
For this, we need the Weyl’s perturbation theorem (Theorem 9).

Lemma 9. Let d be the maximum of the rank of A and bA. Let �1, · · · , �d be the singular values of
A and �

0
1, · · · , �

0
d

be the singular values of bA. Then |�i � �
0
i
|  � for all 1  i  d.

Proof. The lemma follows from the basic application of Theorem 9. We can write bA = (A 0) +
(0 �minIm) . The lemma follows since, by construction, all the singular values of (0 �minIm) are
�min.
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To compute the additive error, we need to bound kS†N2(TT)†kF and kS2kF . This is done by the
following two lemmas.

Claim 2. Let DR be a distribution that satisfies (↵, �)-subspace embedding for generalized regression.
Let S2 be as defined above. Then with probability 99/100 over b� ⇠ DR, kS2kF = ⇢1

p
kn(1 + ↵).

Proof. Let G =  A�([bA]k�)†. G is an m⇥ k matrix. When ↵  1, G has rank k. This implies
that there exist a t ⇥ k matrix bU with orthonormal columns such that GG† = bUbUT. Therefore,
 S2 = GG†N2 = bUbUTN1. From the second claim of Lemma 1 and the choice of the parameter
t, kS2k2F  (1 + ↵)kbUbUTN1k2F . Since every entries of N1 are picked i.i.d. and bUbUT is an
orthonormal projection onto a k-dimensional subspace, we have kS2kF = O(⇢1

p
kn(1 + ↵)).

The following claim follows from Lemma 5.

Claim 3. Let S,T ⇠ DA. Then for any matrix N2 of appropriate dimension, kS†N2(TT)†kF =
kN2kF .

Proof. Let C = S†N2(TT)†. Then SCTT = SS†N2(TT†)T. Now SS† (similarly, TT†) is a
projection unto a random subspace of dimension k. Since every entries of N2 is picked i.i.d. from
N (0, ⇢2), SCTT = eN2, where eN1 is an v ⇥ v matrix with every entries picked i.i.d. from N (0, ⇢2

2).
Using Lemma 4, this implies that

E[kSCTTk2
F
] = E

h
k eN2k2F

i
=
X

i,j

E[( eN2)
2
ij
] = v

2
⇢
2
2.

The result follows using Markov’s inequality and the fact that kSCTTk2
F

= (1 + ↵)2kCk2
F

and
↵  1.

The above claim implies that kN2kF = O(⇢2v) with probability 99/100.

Since kbA � [bA]kk2F 
P

i>k
�
02
i

and kA �Akk2F 
P

i>k
�

2
i
, combining Lemma 7, Lemma 8,

Claim 2, Claim 3, Lemma 9, and Lemma 4, we have the final utility bound.

Lemma 10. Let ⇢1, ⇢2, and �min be as defined in Theorem 3. With probability 99/100 over the coins
of the algorithm PRIVATE-OPTIMAL-SPACE-LRF, the output of PRIVATE-OPTIMAL-SPACE-LRF
satisfies

k (A 0)�MkkF  (1 + ↵)kA� [A]kkF + O(�min
p

m + ⇢1

p
kn(1 + ↵) + ⇢2v).

Now observe that v = O((⌘/↵
2) log(k/�))⌧ min {m, n} and 1 + ↵  2. If former is not the case,

then there is no reason to do a random projection. Therefore, the term ⇢2v is subsumed by the rest of
the term. The result follows by setting the values of ⇢1 and �min.

E.1.2 Privacy Proof of PRIVATE-SPACE-OPTIMAL-LRF

Our privacy result can be restated as the following lemma.
Lemma 11. If �min, ⇢1 and ⇢2 be as in Theorem 3, then the algorithm presented in Figure 1,
ALGORITHM 2, is (3", 3�)-differentially private.

We prove the lemma when m  n. The case for m � n is analogous after inverting the roles of
b� and . Let A and A0 be two neighboring matrices, i.e., E = A�A0 = uvT. Then bA and bA0,
constructed by OPTIMAL-SPACE-PRIVATE-LRF, has the following property: bA0 = bA+ (E 0).

Claim 4. If ⇢1 =
p

(1+↵) ln(1/�)

"
and ⇢2 =

(1+↵)
p

ln(1/�)

"
, then publishing Yr and Z preserves

(2", 2�)-differential privacy.
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Proof. We use the second claims of Lemma 1 and Lemma 2, i.e., kSDk2
F

= (1 ± ↵)kDk2
F

and
k Dk2

F
= (1±↵)kDk2

F
for all D, where S ⇠ DA and ⇠ DR. Let A and A0 be two neighboring

matrices such that E = A � A0 = uvT. Then kS (E 0)TTk2
F
 (1 + ↵)k (E 0)TTk2

F


(1 + ↵)2. Publishing Z preserves (", �)-differential privacy follows from considering the vector form
of the matrix SbATT and N2 and applying Theorem 5. Similarly, we use Theorem 5 and the fact
that, for any matrix C of appropriate dimension, k Ck2  (1 + ↵)kCk2

F
, to prove that publishing

 bA+N1 preserves differential privacy.

We next prove that Yc is (", �)-differentially private. This would complete the proof of Lemma 11
by combining Lemma 3 and Theorem 4 with the above claim. Let A �A0 = E = uvT and let
bv = (v 0m). Then bA � bA0 = ubvT. Since �T is sampled from DR, we have k�TWk2

F
=

(1 + ↵)kWk2
F

for any matrix W with probability 1 � � (second claim of Lemma 1). Therefore,
uvT� = (1 + ↵)1/2uevT = euevT for some unit vectors u, ev and eu = (1 + ↵)1/2u. We now
show that bA�⌦1 preserves privacy. We prove that each row of the published matrix preserves
("0, �0)-differential privacy for some appropriate "0, �0, and then invoke Theorem 4 to prove that the
published matrix preserves (", �)-differential privacy.

It may seem that the privacy of Yc follows from the result of Blocki et al. [13], but this is not the
case because of the following reasons.

1. The definition of neighboring matrices considered in this paper is different from that of
Blocki et al. [13]. To recall, Blocki et al. [13] considered two matrices neighboring if
they differ in at most one row by a unit norm. In our case, we consider two matrices are
neighboring if they have the form uvT for unit vectors u,v.

2. We multiply the Gaussian matrix to a random projection of bA and not to A as in the case of
Blocki et al. [13], i.e., to bA� and not to bA.

If we do not care about the run time efficiency of the algorithm, then we can set b� := ⌦ instead of
b� := ⌦�. In this case, we would not need to deal with the second issue mentioned above.

We first give a brief overview of how to deal with these issues here. The first issue is resolved by
analyzing (bA� bA0)�. We observe that this expression can be represented in the form of euevT, where
eu = (1 + ↵)1/2u for some kuk2 = 1, kevk2 = 1. The second issue can be resolved by observing
that � satisfies (↵, �)-JLP because of the choice of t. Since the rank of bA and bA� are the same, the
singular values of bA� are within a multiplicative factor of (1± ↵)1/2 of the singular values of �
with probability 1� � due to Sarlos [86]. Therefore, we scale the singular values of bA appropriately.

We now return to the proof. Denote by bA = (A �minIm) and by bA0 = (A0
�minIm), where

A � A0 = uvT. Then bA0 � bA =
�
uvT 0

�
. Let UC⌃CVT

C be the SVD of C = bA� and
eUC
e⌃C
eVT

C be the SVD of eC = bA0�. From above discussion, we know that if A�A0 = uvT, then
C� eC = (1 + ↵)1/2euevT for some unit vectors eu and ev. For notational brevity, in what follows we
write u for eu and v for ev.

Note that both C and eC are full rank matrices because of the construction; therefore CCT (respec-
tively, eCeCT) is a full dimensional m⇥m matrix. This implies that the affine transformation of the
multi-variate Gaussian is well-defined (both the covariance (CCT)�1 has full rank and det(CCT)

is non-zero). That is, the PDF of the distributions of the rows, corresponding to C and eC, is just a
linear transformation of N (0, Im⇥m). Let y ⇠ N (0, 1)t.

PDFCY (x) = 1p
(2⇡)t det(CCT)

e
(� 1

2 x(CCT)�1xT)

PDFeCY
(x) = 1q

(2⇡)t det(eCeCT)
e
(� 1

2 x(eCeCT)�1xT)

Let "0 = "p
4t ln(1/�) log(1/�)

and �0 = �/2t, We prove that every row of the published matrix

is ("0, �0) differentially private. Let x be sampled either from N (0,CCT) or N (0, eCeCT). It is
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straightforward to see that the combination of Claim 5 and Claim 6 below proves differential privacy
for a row of published matrix. The lemma then follows by an application of Theorem 4 and our
choice of "0 and �0.
Claim 5. Let C and "0 be as defined above. Then

e
�"0 

s
det(CCT)

det(eCeCT)
 e

"0 .

Claim 6. Let C, "0, and �0 be as defined earlier. Let y ⇠ N (0, 1)m. If x is sampled either from Cy
or eCy, then we have

Pr

h���xT(CCT)�1x� xT(eCeCT)�1x
���  "0

i
� 1� �0.

Proof of Claim 5. The claim follows simply as in [13] after a slight modification. More concretely,
we have det(CCT) =

Q
i
�

2
i
, where �1 � · · · � �m � �min(C) are the singular values of C. Let

e�1 � · · · � e�m � �min(eC) be its singular value for eC. The matrix E has only one singular valuep
1 + ↵. This is because EET = (1 + ↵)vvT. To finish the proof of this claim, we use Theorem 8.

Since the singular values of C� eC and eC�C are the same, Lidskii’s theorem (Theorem 8) givesP
i
(�i � e�i) 

p
1 + ↵. Therefore, with probability 1� �,

vuut
Y

i:e�i��i

e�2
i

�2
i

=
Y

i:e�i��i

✓
1 +

e�i � �i

�i

◆

 exp

 
"

32
p

(1 + ↵)t log(2/�) log(t/�)

X

i

(e�i � �i)

!

 e
"0/2

.

The first inequality holds because � ⇠ DR satisfies (↵, �)-JLP due to the choice of t (second
claim of Lemma 1). Since C and A have same rank, this implies that all the singular values of C
are within a (1 ± ↵)1/2 multiplicative factor of bA due to a result by Sarlos [86]. In other words,
�i � �min(C) � (1 � ↵)1/2

�min. The case for all i 2 [m] when e�i  �i follows similarly as the
singular values of E and �E are the same. This completes the proof of Claim 5.

Proof of Claim 6. Without any loss of generality, we can assume x = Cy. The case for x = eCy is
analogous. Let C� eC = vuT. Note that E[(⌦)i,j ] = 0 for all 1  i, j  m and COV((⌦)i,j) = 1
if and only if i = j; and 0 otherwise. First note that the following

xT(CCT)�1x� xT(eCeCT)�1x = xT(CCT)�1(eCeCT)(eCeCT)�1x� xT(eCeCT)�1x

= xT
h
(CCT)�1(CuvT + vuT eCT)(eCeCT)�1

i
x.

Using the singular value decomposition of C = UC⌃CVT
C and eC = eUC

e⌃C
eVT

C, we have
�
xT(UC⌃

�1
C VT

C)u
� ⇣

vT(eUC
e⌃�2
C
eUT

C)x
⌘
+
�
xT(UC⌃

�2
C UT

C)v
� ⇣

uT(eVC
e⌃�1
C
eUT

C)x
⌘

Since x ⇠ Cy, where y ⇠ N (0, 1)m, we can write the above expression as ⌧1⌧2 + ⌧3⌧4, where

⌧1 =
�
yTCT(UC⌃

�1
C VT

C)u
�

⌧2 =
⇣
vT(eUC

e⌃�2
C
eUT

C)Cy
⌘

⌧3 =
�
yTCT(UC⌃

�2
C UT

C)v
�

⌧4 =
⇣
uT(eVC

e⌃�1
C
eUT

C)Cy
⌘
.

Now since ke⌃Ck2, k⌃Ck2 � �min(C), plugging in the SVD of C and C� eC = vuT, and that every
term ⌧i in the above expression is a linear combination of a Gaussian, i.e., each term is distributed as

16



PRIVATE-FROBENIUS-LRF

Initialization. Set ⌘ = max
�
k, ↵

�1
 

t = O(⌘↵
�1 log(k/�)), v = O(⌘↵

�2 log(k/�)), and ⇢ =p
(1 + ↵) ln(1/�)/". Sample � 2 R

m⇥t from DR as in Lemma 1 and S 2 R
v⇥n from DR as

in Lemma 2.

Computing the factorization. On input the matrix A,
1. Sample N1 ⇠ N (0, ⇢2)m⇥t

,N2 ⇠ N (0, ⇢2)v⇥n.
2. Compute Y = A�+N1 and Z = SA+N2.
3. Compute a matrix U 2 R

m⇥t whose columns are an orthonormal basis for the column space of
Y.

4. Compute the singular value decomposition of SU 2 R
v⇥t. Let it be eUe⌃eVT

.

5. Compute the singular value decomposition of eVe⌃†[eUTZ]k. Let it be U0⌃0V0T.
6. Output eU = UU0, e⌃ = ⌃0 and eV = V0.

Figure 3: Differentially private LRF Under Priv2

per N (0, k⌧ik2), we have the following:

k⌧1k2 = k(VC⌃CU
T
C)(UC⌃

�1
C VT

C)uk2  kuk2 
p
1 + ↵,

k⌧2k2 = kvT(eUC
e⌃�2
C
eUT

C)(eUC
e⌃C
eVT

C � vuT)k2

 kvT(eUC
e⌃�2
C
eUT

C)eUC
e⌃C
eUT

Ck2 + kvT(eUC
e⌃�2
C
eUT

C)vu
Tk2 

1

�min(C)
+

p
1 + ↵

�2
min(C)

,

k⌧3k2 = k(VC⌃CU
T
C)(UC⌃

�2
C UT

C)vk2  k⌃�1
C k2 

1

�min(C)
,

k⌧4k2 = kuT(eVC
e⌃�1
C
eUT

C)(eUC
e⌃C
eVT

C � vuT)k2

 kuT(eVC
e⌃�1
C
eUT

C)(eUC
e⌃C
eVT

Ck2 + kuT(eVC
e⌃�1
C
eUT

C)vk2 
p
1 + ↵ +

p
1 + ↵

�min(C)
.

Using the concentration bound on the Gaussian distribution, each term, ⌧1, ⌧2, ⌧3, and ⌧4, is less than
k⌧ik ln(4/�0) with probability 1 � �0/2. The second claim now follows because with probability
1� �0,

���xT(CCT)�1x� xT(eCT eC)�1x
���  2

✓p
1 + ↵

�min(C)
+

1 + ↵

�2
min(C)

◆
ln(4/�0)  "0,

where the second inequality follows from the choice of �min and the fact that �min(C) � (1 �
↵)1/2

�min.

Lemma 11 follows by combining Claim 5 and Claim 6.

E.2 Low Space Differentially private Low-rank Factorization Under Priv2

In Appendix E.1, we gave an optimal space algorithm for computing LRF under Priv1. However, we
cannot use the algorithm of Theorem 3 to simultaneously prove differential privacy under Priv2 and
get optimal additive error. This is because we need to perturb the input matrix by a noise proportional
to min

np
km,
p

kn

o
to preserve differential privacy under Priv2. As a result, the additive error

would depend linearly on min {m, n}. We show that by maintaining noisy sketches Y and Z and
some basic linear algebra, we can have a differentially private algorithm that outputs an optimal error
LRF of an m⇥ n matrix under Priv2. More concretely, we prove the following theorem.
Theorem 11. Let m, n 2 N and ↵, ", � be the input parameters. Let k be the desired rank of the
factorization, s = max{m, n}, u = min{m, n}, and ⌘ = max

�
k, ↵

�1
 

. Given a private input
matrix A 2 R

m⇥n, the factorization eU, e⌃, eV outputted by the algorithm, PRIVATE-FROBENIUS-
LRF, presented in Figure 3, is a k-rank factorization and satisfies the following properties:

1. PRIVATE-FROBENIUS-LRF is (", �)-differentially private under Priv2.
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2. Let Mk := eUe⌃eVT. With probability 9/10 over the coins of PRIVATE-FROBENIUS-LRF,

kA�MkkF  (1 + ↵)kA� [A]kkF + O

 ✓p
ks +

r
u⌘

↵2

◆ p
log(1/�)

"

!
.

3. The space used by PRIVATE-FROBENIUS-LRF is O((m + n↵
�1)⌘↵

�1 log(k/�)).

4. The time required to compute the factorization is
O

⇣
(nn(A) log(1/�) + (m+n↵

�2)⌘2 log2(k/�)
↵2 + ⌘

3 log3(k/�)
↵s3

⌘
.

We present the algorithm when m � n, i.e., s = m and u = n. The case when m < n follows by
symmetry. The space required by the algorithm is the space required to store Y and Z, which is
mt+nv = O((m+n↵

�1)⌘↵
�1 log(k/�)). This proves part 3 of Theorem 11. For the running time

of part 4 of Theorem 11, we have the following.

1. Computing the sketch Y requires O(nn(A) log(1/�))+mt
2 time and computing the sketch

Z requires O(nn(A) log(k/�)) + nv
2.

2. Computing the orthonormal basis U requires mt
2 = O(m⌘

2
↵
�2 log2(k/�)) time.

3. Computing a SVD of the matrix SU requires vt
2 = O(⌘3

↵
3 log3(k/�)).

4. Computation of [eUTZ]k requires O(n⌘
2
↵
�2 log2(k/�)).

5. Computing a SVD in Step 4 requires nt
2 = O(n⌘

2
↵
�2 log2(k/�)) time.

Combining all these terms, we have our claim on running time.

E.2.1 Privacy Proof of PRIVATE-FROBENIUS-LRF

The following lemma proves Part 1 of Theorem 11.
Lemma 12. PRIVATE-FROBENIUS-LRF is (", �) differentially private.

Proof. We use the second claim of both Lemma 1 and Lemma 2, i.e., for all D, kDTk2
F
 (1 �

↵)kDk2
F

for T ⇠ DA and kD�k2
F
 (1�↵)kDk2

F
for� ⇠ DR. Let A and A0 be two neighboring

matrices such that E = A �A0 has Frobenius norm 1. Then kSEk2
F
 (1 + ↵)kEk2

F
= 1 + ↵.

Publishing Z preserves (", �)-differential privacy follows from considering the vector form of the
matrix SA and N2 and Theorem 5. Similarly, we use the fact that, for any matrix C of appropriate
dimension, k�Ck2  (1 � ↵)kCk2

F
, to prove that publishing A� + N1 preserves differential

privacy. The lemma follows by applying Lemma 3 and Theorem 4.

E.2.2 Correctness Proof of PRIVATE-FROBENIUS-LRF

We now prove Part 2 of Theorem 11. We first show the following result.

Theorem 12. Let Mk = UeVe⌃†[eUTZ]k be the product of the factorization outputted by the algo-
rithm in Figure 3. Then with probability 1�O(�) over � ⇠ DR and S ⇠ DA,

kMk �AkF  (1 + ↵)kA� [A]kkF + 3kS†N2kF + 2kN1([A]k�)
†[A]kkF .

Proof. We prove the result by proving a series of results. We provide an upper and a lower bound on
minX,r(X)k kYX�BkF in terms of kA� [A]kkF and the output of the algorithm.

Lemma 13. Let A be the input matrix. Let� ⇠ DR,S ⇠ DA be as in Figure 3 . Let Y = �A+N1

and B = A+ S†N2 for N1,N2 as defined in Figure 3. Then with probability 1� � over � ⇠ DR,

min
X

r(X)k

kYX�BkF  (1 + ↵)kA� [A]kkF + kS†N2kF + kN1([A]k�)
†[A]kkF .

Proof. Set r = k, P = [A]T
k

, and Q = AT in Lemma 1. Then using Lemma 1, we have

k[A]T
k
X0 �ATk  (1 + ↵)min

X
k[A]T

k
X�ATkF ,
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where X0 = argminX k�T([A]T
k
X�AT)kF . Let [A]k = Uk⌃kVT

k
. Taking the transpose and the

fact that the Frobenius norm is preserved under transpose and X0 = (([A]k�)T)†(A�)T, we have
with probability 1� � over � ⇠ DR,

kA�([A]k�)
†[A]k �AkF  (1 + ↵)min

X
k[A]T

k
X�ATkF  (1 + ↵)kA� [A]kkF , (18)

where the inequality follows by setting X = UkUT
k

.

Moreover, since ([A]k�)†[A]k has rank at most k, B = A + S†N2, and Y = A� + N1, with
probability 1� � over � ⇠ DR,

min
X

r(X)k

kYX�BkF  kA�([A]k�)
†[A]k +N1([A]k�)

†[A]k �BkF

= kA�([A]k�)
†[A]k +N1([A]k�)

†[A]k �A� S†N2kF
 kA�([A]k�)

†[A]k �AkF + kN1([A]k�)
†[A]kkF + kS†N2kF (19)

Combining equation (18) and equation (19), we have with probability 1� � over � ⇠ DR,

min
X

r(X)k

kYX�BkF  (1 + ↵)kA� [A]kkF + kN1([A]k�)
†[A]kkF + kS†N2kF . (20)

This completes the proof of Lemma 13.

Lemma 13 relates minX,r(X)k kYX�Bk with (1+↵)kA� [A]kkF , kN1([A]k�)†[A]kkF , and
kS†N2kF . Since U is the orthonormal basis for the column space of Y, we further have

min
X

r(X)k

kUX�BkF  min
X

r(X)k

kYX�BkF . (21)

Combining equation (20) and equation (21), we have with probability 1� � over � ⇠ DR,

min
X

r(X)k

kUX�BkF  (1 + ↵)kA� [A]kkF + (kN1([A]k�)
†[A]kkF + kS†N2kF ). (22)

Lemma 14. Let U,B,A,S,N1, and N2 be as above, and let eX = argminX,r(X)=k kS(UX �
B)kF . Let DA be a distribution that satisfies (↵, �)-subspace embedding. Then with probability
1� 4� over S ⇠ DA,

k(UeX�B)kF  (1 + ↵)2kA� [A]kkF + (1 + ↵)(kS†N2kF + kN1([A]k�)
†[A]kkF ).

Proof. Set p = k/↵, D = U and E = B in the statement of Lemma 2. Let us restrict
our attention to rank k matrices X and denote by bX = argminX,r(X)=k kUX � EkF and
eX = argminX,r(X)=k kS(UX�B)kF . Then we have with probability 1� � over S ⇠ DA,

(1 + ↵) min
X

r(X)=k

kUX�BkF = kUbX�BkF � (1 + ↵)1/2kS(UbX�B)kF

� (1 + ↵)1/2 min
X

r(X)

kS(UX�B)kF

= (1 + ↵)1/2kS(UeX�B)kF � k(UeX�B)kF . (23)

Combining equation (23) with equation (22), we have with probability 1 � 2� over � ⇠ DR and
S ⇠ DA,

k(UeX�B)kF  (1 + ↵)2kA� [A]kkF + (1 + ↵)(kS†N2kF + kN1([A]k�)
†[A]kkF ). (24)

This completes the proof of Lemma 14.

To finalize the proof of Theorem 12, we need to compute eX = argminX,r(X)k kS(UX �B)kF
and lower bound k(UeX�B)kF . Invoking [21, Lem 4.2] with O = eU and Z = SB, we get

[eUTZ]k = [eUTSB]k = argmin
X

r(X)k

keUX� SBkF .
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This in particular implies that

eX = eVe⌃†[eUTZ]k = argmin
X

r(X)k

kS(UX�B)kF . (25)

Using equation (25) in equation (24), and the fact that B = A+ S†N2, we have the final result.

kUeVe⌃†[eUTZ]k �AkF � kS†N2kF  kUeVe⌃†[eUTSA]k �BkF
 (1 + ↵)2kA� [A]kkF + (1 + ↵)(kS†N2kF + kN1([A]k�)

†[A]kkF ).

This implies that

kUeVe⌃†[eUTZ]k �AkF  (1 + 3↵)kA� [A]kkF + 3kS†N2kF + 2kN1([A]k�)
†[A]kkF .

This completes the proof of Theorem 12.

Lemma 15. Let N1 ⇠ N (0, ⇢2)m⇥t. Then

kN1([A]k�)
†[A]kkF = O(⇢

p
km)

with probability 99/100 over � ⇠ DR.

Proof. Let C = N1([A]k�)†[A]k. Then C� = N1([A]k�)†[A]k�. Now ([A]k�)†[A]k� is a
projection unto a random subspace of dimension k. Since every entries of N1 is picked i.i.d. from
N (0, ⇢2), C� = N1([A]k�)†[A]k� = eN1, where eN1 is an m⇥k matrix with every entries picked
i.i.d. from N (0, ⇢2). This is because we can write ([A]k�)†[A]k� is a projection unto a random
subspace of dimension k. Using Lemma 4, this implies that

E[kC�k2
F
] = E

h
k eN1k2F

i
=
X

i,j

E[( eN1)
2
ij
] = km⇢

2
.

The result follows using Markov’s inequality, the fact that kC�k2
F
= (1+ ↵)kCk2

F
, and ↵ < 1.

Lemma 16. Let N2 ⇠ N (0, ⇢2)v⇥n. Then kS†N2kF = O(⇢
p

vn) with probability 99/100 over
S ⇠ DA.

Proof. Let C = S†N2. Then SC = SS†N2. Now SS† is a projection unto a random subspace of
dimension k. Since every entries of N2 is picked i.i.d. from N (0, ⇢2), SC = eN2, where eN1 is an
v ⇥ n matrix with every entries picked i.i.d. from N (0, ⇢2). Using Lemma 4, this implies that

E[kSCk2
F
] = E

h
k eN2k2F

i
=
X

i,j

E[( eN2)
2
ij
] = vn⇢

2
.

The result follows using Markov’s inequality and the fact that kSCk2
F

= (1 + ↵)kCk2
F

and ↵ 
1.

Theorem 11 now follows from Theorem 12, Lemma 15, Lemma 16, and the choice of ⇢ in Lemma 12.

F Differentially private LRF Under General Turnstile Model

In this section, we are interested in computing a low-rank factorization of a private matrix in the
general turnstile update model while preserving differential privacy. In this setting, we are allowed
only one pass over the private matrix, and by the end of the stream, we are required to output a
low-rank factorization. In Appendix F.1, we give a differentially private low rank factorization under
Priv1. We give a differentially private low rank factorization under a much stronger privacy guarantee,
Priv2, in Appendix F.2.
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PRIVATE-STREAMING-SPACE-OPTIMAL-LRF

Initialization. Set ⌘ = max
�
k, ↵

�1
 

, and the dimension of random projections to be
t = O(⌘↵

�1 log(k/�)), v = O(⌘↵
�2 log(k/�)). Let ⇢1 =

p
(1 + ↵) ln(1/�)/" and ⇢2 =

(1 + ↵)
p
ln(1/�)/". Set �min = 16 log(1/�)

p
t(1 + ↵)(1� ↵)�1 ln(1/�)/".

1. Sample⌦ ⇠ N (0, 1)m⇥t. Let� 2 R
(m+n)⇥m

, 2 R
t⇥m such that�T ⇠ DR, ⇠ DR

satisfies Lemma 1.
2. Let S 2 R

v⇥m
,T 2 R

v⇥(m+n) such that S ⇠ DA, TT ⇠ DA satisfies Lemma 2.
3. Sample N1 ⇠ N (0, ⇢2

1)
t⇥(m+n) and N2 ⇠ N (0, ⇢2

2)
v⇥v. Define b� = t

�1�⌦ 2
R

(m+n)⇥t.

Update Stage. Set bA =
�
0m⇥n

�minIm

�
. Compute Yc = bAb�, Y0

r
=  bA, and Z0 = SbATT

.

Update rule. When (i⌧ , j⌧ ,�⌧ ), where (i⌧ , j⌧ ) 2 [m] ⇥ [n] and �⌧ 2 R, is streamed, update
the matrices by the following rule: (i) Yc = Yc + A⌧

b�, (ii) Y0
r
= Y0

r
+ A⌧ , and (iii) Z0 =

Z0 +SA⌧TT, where A⌧ is an m⇥ (n+m) matrix with only non-zero entry�⌧ in position (i⌧ , j⌧ )..

Computing the factorization. Once the matrix is streamed, we follow the following steps.

1. Compute Yr = Y0
r
+N1 =  bA+N1, and Z = Z0 +N2 = SbATT +N2.

2. Output FACTOR(Yc,Yr, Z,S,T, m, m + n, k, t, v).

FACTOR(Yc,Yr, Z,S,T, m, n, k, t, v)

1. Compute a matrix U 2 R
m⇥t whose columns are orthonormal basis for the column space

of Yc and matrix V 2 R
t⇥n whose rows are the orthonormal basis for the row space of Yr.

2. Compute a SVD of SU := eUs
e⌃s
eVT

s
2 R

v⇥t and a SVD of VTT := eUt
e⌃t
eVT

t
2 R

t⇥v
.

3. Compute a SVD of eVs
e⌃†

s
[eUT

s
ZeVt]k e⌃†

t
eUT

t
. Let it is be U0⌃0V0T.

4. Output the matrix eU = UU0 compromising of left singular vectors, diagonal matrix
e⌃ = ⌃0, and the matrix eV = VTV0 with right-singular vectors.

Figure 4: Differentially private LRF Under Priv1 in Turnstile Update Model

F.1 Space Optimal Differentially private Low-rank Factorization Under Priv1

The main idea behind the differentially private algorithm for low-rank factorization under Priv1

in turnstile update model is that the corresponding algorithm (PRIVATE-SPACE-OPTIMAL-LRF)
maintains linear sketches. It has been shown by Li et al. [63] that in general turnstile update model,
it is better off to just use linear sketches. Together with our low space algorithm, this gives us the
insight to develop a private algorithm in the general turnstile update model. Figure 4 gives the detail
description of our algorithm. We show the following:

Theorem 13. Let m, n, k 2 N and ↵, ", � be the input parameters. Let s = max{m, n}, u =
min {m, n},  = (1 + ↵)/(1 � ↵), ⌘ = max

�
k, ↵

�1
 

, and �min = 16 log(1/�)
p

t ln(1/�)/".
Given an m⇥n matrix A in a turnstile update model, PRIVATE-STREAMING-SPACE-OPTIMAL-LRF,
described in Figure 4, outputs a factorization eU, e⌃, eV such that

1. PRIVATE-STREAMING-SPACE-OPTIMAL-LRF is (3", 3�) differentially private under Priv1.

2. Let Mk = eUe⌃eVT
. With probability 9/10 over the random coins of PRIVATE-STREAMING-

SPACE-OPTIMAL-LRF,

k (A 0)�MkkF  (1 + ↵)kA� [A]kkF + O(�min
p

u + "
�1
p

ks ln(1/�)),

3. The space used by PRIVATE-STREAMING-SPACE-OPTIMAL-LRF is O((m +
n)⌘↵

�1 log(k/�)).
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PRIVATE-STREAMING-FROBENIUS-LRF

Initialization. Set ⌘ = max
�
k, ↵

�1
 

t = O(⌘↵
�1 log(k/�)), v = O(⌘↵

�2 log(k/�)), and ⇢ =p
(1 + ↵) ln(1/�)/". Sample N1 ⇠ N (0, ⇢2)m⇥t

,N2 ⇠ N (0, ⇢2)v⇥n. Sample � 2 R
m⇥t from

DR as in Lemma 1 and S 2 R
v⇥n from DR as in Lemma 2. Initialize an all zero m⇥ t matrix Y0

and an all zero v ⇥ n matrix Z0.

Update rule. Suppose at time ⌧ , the stream is (i⌧ , j⌧ ,�⌧ ), where (i⌧ , j⌧ ) 2 [m]⇥ [n]. Let A⌧ be a
matrix with only non-zero entry �⌧ in position (i⌧ , j⌧ ). Update the matrices by the following rule:
Y0 = Y0 +A⌧� and Z0 = Z0 + SA⌧ .

Computing the factorization. Once the matrix is streamed, we follow the following steps.
1. Compute Y = Y0 +N1 and Z = Z0 +N2.
2. Compute a matrix U 2 R

m⇥t whose columns are an orthonormal basis for the column
space of Y.

3. Compute the singular value decomposition of SU 2 R
v⇥t. Let it be eUe⌃eVT

.

4. Compute the singular value decomposition of eVe⌃†[eUTZ]k. Let it be U0⌃0V0T.
5. Output eU = UU0, e⌃ = ⌃0 and eV = V0.

Figure 5: Differentially private LRF Under Priv2 in Turnstile Update Model

4. The initialization time is O((m + n)u log(k/�)) and the total computational time is

O

✓
nn(A) log(1/�) +

(m + n)⌘2 log2(k/�)

↵2
+

⌘
3 log3(k/�)

↵5

◆
.

Proof. Part 3 follows immediately by setting the values of t and v. Part 4 of Theorem 13 re-
quires some computation. More precisely, we have the following. Computing Yc requires
O(nn(A) log(1/�)) + mt

2 time and computing Yr requires O(nn(A) log(1/�)) + (m + n)t2

time. Computing U and V requires O((m + n)⌘2
↵
�2 log2(k/�)) time. Computing a SVD of

the matrix SU and TVT requires vt
2 + tv

2 = O(k3
↵
�5 log2(k/�)). Computing Z requires

O(nn(A) log(k/�) + ⌘
2
/↵

2 log2(k/�) + n⌘
2
↵
�2 log2(k/�)) Computation of [eUT

s
ZeV]k requires

O�(nn(A)) + tv
2 = O(nn(A) + k

3
↵
�5 log3(k/�)) time. Computation of the last SVD requires

O((m + n)⌘2
↵
�2 log2(k/�)) time. Combining all these terms, we have our claim on the running

time.

Furthermore, combining Lemma 4, Lemma 7, Lemma 8, Claim 2, Claim 3, and Lemma 9, we have
part 2 while part 1 follows from Lemma 11. This completes the proof of Theorem 13.

F.2 Differentially private Low-rank Factorization Under Priv2 in Turnstile Update Model

We describe and analyze the algorithm when m � n, i.e., s = m and u = n in the theorem that
follows. The case when m < n follows by symmetry. We prove the following.
Theorem 14. Let m, n 2 N and ↵, ", � be the input parameters. Let k be the desired rank of the
factorization and ⌘ = max

�
k, ↵

�1
 

. Let s = max {m, n} and u = min {m, n}. Given a private
input matrix A 2 R

m⇥n recieved in a turnstile model, the factorization eU, e⌃, eV outputted by the
algorithm, PRIVATE-STREAMING-FROBENIUS-LRF, presented in Figure 5, is a k-rank factorization
and satisfies the following properties:

1. PRIVATE-STREAMING-FROBENIUS-LRF is (", �)-differentially private under Priv2.

2. Let Mk := eUe⌃eVT. With probability 9/10 over the coins of PRIVATE-STREAMING-
FROBENIUS-LRF,

kA�MkkF  (1 + ↵)kA� [A]kkF + O

 ✓p
ks +

r
u⌘

↵2

◆ p
log(1/�)

"

!
.
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PRIVATE-COVARIANCE-LRF

Initialization. Set ⌘ = max
�
k, ↵

�1
 

t = O(⌘↵
�1 log(k/�)), v = O(⌘↵

�2 log(k/�)), and ⇢ =p
(1 + ↵) ln(1/�)/". Sample N1 ⇠ N (0, ⇢2)n⇥t

,N2 ⇠ N (0, ⇢2)v⇥n. Sample � 2 R
n⇥t from

DR as in Lemma 1 and S 2 R
v⇥n from DR as in Lemma 2. Initialize an all zero n⇥ t matrix Y0

and an all zero v ⇥ n matrix Z0.

Update rule. Suppose at time ⌧ , the stream is an index-row tuple (i⌧ ,Ai⌧ ), where i⌧ 2 [m] and
Ai⌧ 2 R

n. Let A⌧ be a matrix with only non-zero row Ai⌧ in the row i⌧ . Update the matrices by
the following rule: Y0 = Y0 +AT

⌧
A⌧� and Z0 = Z0 + SAT

⌧
A⌧ .

Computing the factorization. Once the matrix is streamed, we follow the following steps.
1. Compute Y = Y0 +N1 and Z = Z0 +N2.
2. Compute a matrix U 2 R

m⇥t whose columns are an orthonormal basis for the column
space of Y.

3. Compute the singular value decomposition of SU 2 R
v⇥t. Let it be eUe⌃eVT

.

4. Compute the singular value decomposition of eVe⌃†[eUTZ]k. Let it be U0⌃0V0T.
5. Output eU = UU0, e⌃ = ⌃0 and eV = V0.

Figure 6: Differentially private Covariance Approximation Under Priv2 in Row-wise Update Model

3. The space used by PRIVATE-STREAMING-FROBENIUS-LRF is O((m +
n↵

�1)⌘↵
�1 log(k/�)).

4. The time required to compute the factorization is

O

✓
(nn(A) log(1/�) +

(m + n↵
�2)⌘2 log2(k/�)

↵2
+

⌘
3 log3(k/�)

↵s3

◆
.

Proof. The space required by the algorithm is the space required to store Y and Z, which is mt+nv =
O((m+n↵

�1)k↵
�1 log k log(1/�)). This proves part 3 of Theorem 14. For the running time of part 4

of Theorem 14, we have the following. Computing the sketch Y requires O(nn(A) log(k/�)) +mt
2

time and computing the sketch Z requires O(nn(A) log(k/�)) + nv
2. Computing the orthonormal

basis U requires mt
2 = O(m⌘

2
↵
�2 log2(k/�)) time. Computing a SVD of the matrix SU requires

vt
2 = O(⌘3

↵
3 log3(k/�)). Computation of [eUTZ]k requires O(n⌘

2
↵
�2 log2(k/�)). Computing a

SVD in Step 4 requires nt
2 = O(n⌘

2
↵
�2 log2(k/�)) time. Combining all these terms, we have our

claim on running time.

Part 2 follows from Lemma 16, Lemma 15, and Theorem 12. Part 1 follows from Lemma 12. This
completes the proof of Theorem 14.

G Case Study: Normalized Row Matrices

An important class of matrices is matrices with normalized rows. In this section, we give a bound on
such matrices. Figure 6 is the detailed description of the algorithm. It receives the matrix row-wise
and computes the low-rank factorization.

Theorem 15. Let m, n 2 N and ↵, ", � be the input parameters (with m > n). Let k be the
desired rank of the factorization and ⌘ = max

�
k, ↵

�1
 

. Given a private input matrix A 2 R
m⇥n

recieved in a row wise update model, the factorization eU, e⌃, eV outputted by the algorithm, PRIVATE-
COVARIANCE-LRF, presented in Figure 5, is a k-rank factorization and satisfies the following
properties:

1. PRIVATE-COVARIANCE-LRF is (", �)-differentially private under Priv2.

23



2. Let Mk := eUe⌃eVT. With probability 9/10 over the coins of PRIVATE-COVARIANCE-LRF,

kATA�MkkF  (1 + ↵)kATA� [ATA]kkF + O

 p
n⌘ log(1/�)

"↵

!
.

3. The space used by PRIVATE-COVARIANCE-LRF is O(n↵
�2

⌘ log(k/�)).

Proof. The space required by the algorithm is the space required to store Y and Z, which is mt+nv =
O((m + n↵

�1)k↵
�1 log k log(1/�)). This proves part 3 of Theorem 15.

Part 2 follows from Lemma 16, Lemma 15, and Theorem 12. For part 1, first notice that since every
row has bounded norm 1, the sensitivity of the function ATA is at most 1; i.e., the sensitivity of the
vector form of ATA is at most 1. Part 1 then follows from Lemma 12. This completes the proof
of Theorem 15.

H Case Study 2: Low-rank factorization Under Continual Release Model

In this section, we are interested in computing a low-rank factorization of a private matrix in the
continual release model while preserving differential privacy. In this setting, we are allowed only
one pass over the private matrix, and at every time epoch, we are required to output a low-rank
factorization (see Definition 3 for a formal definition). In Appendix H.1, we give a differentially
private low rank factorization under Priv1. We give a differentially private low rank factorization
under a much stronger privacy guarantee, Priv2, in Appendix H.2.

In past, there are known algorithms for converting any “one-shot" algorithm for any monotonic
function to an algorithm that continually release the output [37]. Since optimization function like
low-rank factorization are not monotonic, it is not clear whether we can use the generic transformation.
Our algorithm generates and maintains linear sketches during the updates and later compute low-rank
factorization using these sketches. This allows us to use the generic transformation to maintain
the updates. For computing the factorization, we collect all the sketches for any range using range
queries.

H.1 Differentially Private Continual Release Low Rank Factorization Under Priv2

We start by giving a differentially private algorithm under Priv2 that continually release a low rank
factorization. We first give an overview of our algorithm with the details of the algorithm appearing
in Figure 7.

The idea behind our algorithm for continual release is the fact that the factorization stage only uses a
small space sketches of the matrix and the sketches are linear sketches. Since the sketches are linear,
we can use the binary tree mechanism [19, 37] to get low-rank factorization under continual release
model. The algorithm stores the sketches of matrix generated at various time epochs in the form of
a binary tree. Every leaf node ⌧ stores the sketches of A⌧ , where A⌧ is the stream at time ⌧ . The
root node stores the sketch of the entire matrix streamed in [0, T ], and every other node n stores the
sketch corresponding to the updates in a time range represented by the leaves of the subtree rooted at
n, i.e., bYi and bZi stores sketches involving 2i updates to A. If a query is to compute the low-rank
factorization of the matrix from a particular time range [1, ⌧ ], we find the nodes that uniquely cover
the time range [1, ⌧ ]. We then use the value of Y(⌧) and Z(⌧) formed using those nodes to compute
the low-rank factorization. From the binary tree construction, every time epoch appears in exactly
O(log T ) nodes (from the leaf to the root node). Moreover, every range [1, ⌧ ] appears in at most
O(log T ) nodes of the tree (including leaves and root node). A straightforward application of the
analysis of Chan et al. [19] to Theorem 14 gives us the following

Theorem 16. Let A be an m ⇥ n matrix with nn(A) non-zero entries with m  n. Let ⌘ =
max

�
k, ↵

�1
 

. Then there is an (", �)-differentially private algorithm, PRIVATE-FROBENIUS-
CONTINUAL-LRF defined in Figure 7, under Priv2 that receives A as a stream and outputs a rank-k
factorization eU := bUk(⌧), e⌃ := b⌃k(⌧), eV := bVk(⌧) under the continual release for T time epochs
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PRIVATE-FROBENIUS-CONTINUAL-LRF

Input: A time upper bound T , privacy parameters ", �, and a stream s 2 R
T .

Output: At each time step ⌧ , output a factorization bUk(⌧), b⌃k(⌧), and bVk(⌧).

Initialization: Set t, v,�,S as in Figure 3. Every bYi and bZi are initialized to an all zero matrices
for i 2 [log T ]. Set "

0 = "/
p
log T , �

0 = �/2 log T and ⇢ =
p
(1 + ↵) ln(1/�)/"

0.

Estimating the LRF at time t. On receiving an input (r, c, s⌧ ) where s⌧ 2 R at 1  ⌧  T , form
a matrix A⌧ 2 R

m⇥n which is an all zero matrix except with only non-zero entry s⌧ at location
(r, c) 2 [m]⇥ [n].

1. Compute i := min {j : ⌧j 6= 0}, where ⌧ =
P

j
⌧j · 2j is the binary expansion of ⌧ .

2. Compute bYi := A⌧�+
P

j<i
bYj and bZi := SA⌧ +

P
j<i
bZj .

3. For j := 0, · · · , i � 1, set Yj = bYj = 0 and Zj = bZj = 0. Compute Yi = bYi +

N (0, ⇢2)⇥n and Zi = bZi + N (0, ⇢2)m⇥v
. Compute Y(⌧) =

P
j:⌧j=1 Yj and Z(⌧) =P

j:⌧j=1 Zj .

4. Compute a matrix U 2 R
m⇥t whose columns are an orthonormal basis for the column

space of Y(⌧).
5. Compute the singular value decomposition of SU 2 R

v⇥t. Let it be eUe⌃eVT
.

6. Compute the singular value decomposition of eVe⌃† eUT[eUeUTZ(⌧)]k. Let it be U0⌃0V0T.
7. Output bUk(⌧) := UU0, b⌃k(⌧) := ⌃0 and bVk(⌧) := V0.
8. Let Mk(⌧) := Uk(⌧)⌃k(⌧)Vk(⌧)T.

Figure 7: Differentially private Low-rank Factorization Under Continual Release

such that, with probability 9/10,

kA�MkkF  (1 + ↵)kA� [A]kkF + O

 ✓p
km +

r
n⌘

↵2

◆ p
log(1/�) log T

"

!

where Mk = eUe⌃eVT and A(⌧) is the matrix received till time ⌧ .

H.2 Differentially Private Continual Release Low Rank Factorization Under Priv1

We can also convert the algorithm PRIVATE-SPACE-OPTIMAL-LRF to one that outputs a low-rank
factorization under continual release by using less space than PRIVATE-CONTINUAL-FROBENIUS-
LRF and secure under Priv2. We make the following changes to PRIVATE-CONTINUAL-FROBENIUS-
LRF: (i) Initialize ( bYc)i, ( bYr)i, and (bZ)i as we initialize Yc,

bYr and bZ in Figure 4 for all i 2 [log T ],
(ii) we maintain (Yc)j , ( bYc)j , (Yr)j , ( bYr)j , Zj , and bZj . A straightforward application of the
analysis of Chan et al. [19] to Theorem 13 gives us the following theorem.
Theorem 17. Let A be an m ⇥ n matrix with nn(A) non-zero entries with m  n. Let
⌘ = max

�
k, ↵

�1
 

. Let s = max{m, n}, u = min {m, n},  = (1 + ↵)/(1 � ↵), and �min =

16 log(1/�)
p

t ln(1/�)/". Then there is an (", �)-differentially private algorithm under Priv1 that
receives A as a stream and outputs a rank-k factorization eU := bUk(⌧), e⌃ := b⌃k(⌧), eV := bUk(⌧)
under the continual release for T time epochs such that, with probability 9/10,

k (A(⌧) 0)�MkkF  (1 + ↵)kA(⌧)� [A(⌧)]kkF + O

⇣⇣
�min
p

u + "
�1
p

ks ln(1/�)
⌘
log T

⌘
,

where Mk = eUe⌃eVT and A(⌧) is the matrix received till time ⌧ .

I Space Lower Bound for Low-rank Factorization When � 6= 0

This section is devoted to proving a lower bound on the space requirement for low-rank factorization
with non-trivial additive error. It is well known that any private algorithm (not necessarily differentially
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private) incurs an additive error o(
p

k(m + n)) [47] due to linear reconstruction attack. On the other
hand, the only known space lower bound of Clarkson and Woodruff [21] holds when � = 0; therefore,
one might hope to construct an improve space algorithm when we allow � 6= 0. In this section, we
show that for any non-trivial values of �, this is not the case. This directly implies that our algorithm
uses optimal space for a large range of parameters.
Theorem 18. Let m, n, k 2 N and ↵ > 0. Then the space used by any randomized single-pass
algorithm for (↵, 5/6, O(m + n), k)-LRA in the general turnstile model is at least ⌦((m + n)k/↵).

Theorem 18 shows that PRIVATE-SPACE-OPTIMAL-LRF uses optimal space when � = O(m + n)
and k � 1/↵. If we set ↵ =

p
2 � 1 (as in Hardt and Roth [47]) and note any non-trivial result

implies that � = o(m + n), we have a matching lower bound for all k � 3.

The space lower bound in the turnstile update model is shown by showing that any algorithm Alg in
the turnstile model yields a single round communication protocol for some function f . The idea is as
follows. On input x, Alice invokes Alg on its input to compute Alg(x). She then sends the state st to
Bob, who computes Alg(xky) using his input y and st, and uses this to compute the function f . The
communication is therefore the same as the space required by the algorithm. In what follows, we use
the notation C:i to denote the i-th column of the matrix C.

We give a reduction to the augmented indexing problem, AIND. It is defined as follows.
Definition 8. (AIND problem). Alice is given an N -bit string x and Bob is given an index ind 2 [N ]
together with xind+1, · · · , xN . The goal of Bob is to output xind.

The communication complexity for solving AIND is well known due to the result of Miltersen et
al. [72].
Theorem 19. The minimum bits of communication required to solve AIND with probability 2/3,
when the message is sent only in one direction, i.e., either from Alice to Bob or from Bob to Alice, is
⌦(n). This lower bound holds even if the index, ind, and the string, x, is chosen uniformly at random.

Before we state our result and its proof, we fix a notation. For a matrix A and set of indices C, we
use the notation A(C) to denote the submatrix formed by the columns indexed by C.

Proof of Theorem 18. We adapt the proof of Clarkson and Woodruff [21] for the case when � 6= 0.
Suppose m � n and let a = k/20↵. Without loss of generality, we can assume that a is at most n/2.
Let ` be the word size. We assume Alice has a string x 2 {�1,+1}(m�a)a and Bob has an index
ind 2 [(m � a)a]. The idea is to define the matrix A with high Frobenius norm. The matrix A is
the summation of the matrix eA constructed by Alice and Ā constructed by Bob. We first define how
Alice and Bob construct the instant A = eA+ Ā.

Alice constructs its matrix eA as follows. Alice partitions the set {1, · · · , a} in to ` disjoint sets
I1, · · · , I` such that Ii := {(i� 1)a/` + 1, · · · ia/`} . Let M (Ii) be an (m � a) ⇥ a/` matrix for
all 1  i  `. We form a bijection between entries of x and the entries of M in the following
manner. Every entry of M (Ii) is defined by a unique bit of x, i.e., M (Ii)j,k = (�1)xd(10)i for
d = (i� 1)(m� a)a/` + (k � 1)(m� a) + j. The matrix eA is now defined as follows.

eA =

✓
0a⇥a 0a⇥(n�a)

M 0(m�a)⇥(n�a)

◆
,

where M = (MI1 · · · MI`).

Suppose Bob is given an index ind 2 [(m� a)a] such that xind corresponds to the sub-matrix M (I✓)
for some 1  ✓  `. Then we can assume that Bob also knows every entry in the sub-matrix
M (I✓0) for ✓

0
> ✓. Bob forms a second level partition of the columns of M (I✓) in to equal size

groups G1, · · · , Ga/k`. Due to our construction, there exists a unique r such that xind maps to an
entry in the sub-matrix formed by columns indexed by one of the second level partition Gr. Let
C = {c, c + 1, · · · , c + k � 1} be the columns corresponding to the k-size group of I✓ in which
ind is present. As its input, Bob streams a matrix Ā which is an all-zero matrix, except for entries
Āc+i,c+i = ⇣ for 0  i  k�1 and ⇣ to be chosen later. In other words, Bob inserts a scaled identity
matrix in the stream, where the scaling parameter ⇣ is large enough to make sure that most of the
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error of any randomized algorithm is due to other columns of A. As we shall see later, we set the
value of ⇣ as a large polynomial in the approximation error of the algorithm.

Let A be the algorithm that computes LRA under the turnstile model. Alice feeds its matrix eA to A
in the turnstile manner and send the state of the algorithm by the end of her feed to Bob. Bob uses
the state received by Alice and feed the algorithm A with its own matrix Ā in a turnstile manner.
Therefore, the algorithm A gets as input a matrix A = eA+ Ā and it is required to output a rank-k
matrix B with additive error � = O(m + n). We will show that any such output allows us to solve
AIND. Denote by A(C) the sub-matrix formed by the columns C := {c, c + 1, · · · , c + k � 1}.

Let us first understand the properties of the constructed matrix A. To compute the Frobenius norm
of this matrix, we need to consider two cases: the case for sub-matrices in which ind belongs, i.e,
M (Ir), and the rest of the matrix. For the sub-matrix corresponding to the columns indexed by C,
the columns of A (I✓) have Euclidean length (⇣2 + (m � a)100✓)1/2. For ✓

0
< ✓, every columns

have Euclidean norm (a(m� a))1/210✓
0
. Therefore, we have the following:

kA� [A]kk2F 
((a� k)(m� a)100✓

`
+
X

✓0<✓

a(m� a)100✓
0

`

 ((a� k)(m� a)100✓

`
+

a(m� a)100✓

99`
 2 · (100)✓m2

/` = �

In order to solve (↵, �, �, k)-LRF, the algorithm needs to output a matrix B of rank at most k such
that, with probability 5/6 over its random coins,

kA�Bk2
F

h
(1 + ↵)

p
�+ �

i2
 2(1 + ↵)�+ 2�2

 2�+ 100✓
k(m� a)

✓
1

10
+

1

99

◆
+ 2�2

 4 · (100)✓m2
/` +

100✓
k(m� a)

5
+ 2�2

Let us denote by ⌥ := 4 · (100)✓m2
/` + 100✓

k(m� a)
�

1
10 + 1

99

�
+ 2�2. The proof idea is now to

show the following:

(i) Columns of B corresponding to index set in C are linearly independent.

(ii) Bound the error incurred by kA�BkF in terms of the columns indexed by Gr.

The idea is to show that most of the error is due to the other columns in B; and therefore, sign in the
submatrix A(C) agrees with that of the signs of those in the submatrix B(C). This allows Bob to
solve the AIND problem as Bob can just output the sign of the corresponding position.

Let
R := {ra/k + 1, · · · , (r + 1)a/k}

and
C := {c, · · · , c + k � 1} .

Let Y be the submatrix of B formed by the rows indexed by R and columns indexed by C.

The following lemma proves that when ⇣ is large enough, then the columns of B corresponding to
index set C are linearly independent. This proves part (i) of our proof idea.

Lemma 17. Let B(C) := [B:c · · ·B:c+k�1] be the columns corresponding to the sub-matrix
formed by columns c, · · · , c + k � 1 of B. If ⇣ � 2⌥2, then the columns of B(C) spans the column
space of [A]k.

Proof. We will prove the lemma by considering the k ⇥ k sub-matrix, say Y. Recall that Y is
a submatrix of B formed by the rows indexed by R and the columns indexed by C. For the
sake of brevity and abuse of notation, let us denote the restriction of B to this sub-matrix Y :=
[Y:1, · · · ,Y:k]. In what follows, we prove a stronger claim that the submatrix Y is a rank-k matrix.
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Suppose, for the sake of contradiction that the vectors {Y:1, · · · ,Y:k} are linearly dependent. In
other words, there exists a vector Y:i and real numbers a1, · · · , ak, not all of which are identically
zero, such that

Y:i =
kX

j=1,j 6=i

ajY:j .

From the construction, since Bob inserts a sub-matrix ⇣Ik, we know that
kX

j=1

(Yj,j � ⇣)2  kA�Bk2
F
 ⌥. (26)

kX

j=1

X

p 6=j

Y2
p,j
 kA�Bk2

F
 ⌥. (27)

From equation (26) and choice of ⇣ , for all j, we have Yj,j � ⌥2. Further, equation (27) implies that
Yp,j 

p
⌥. We have

Yi,i =
kX

j=1,j 6=i

ajYi,j � ⌥2

imply that there is an p 2 {1, · · · , k} \ {i} such that |ap| � ⌥2

k
p

⌥
.

Let ĩ be the index in {1, · · · , k} \ {i} for which |a
ĩ
| attains the maximum value. We have |aeiYĩ,̃i

| �
|aei|⌥2 and |ajYĩ,j

|  |aei|
p
⌥. Now consider the ĩ-entry of Y:i. Note that ĩ 6= i. Since ⌥ depends

quadratically on m and �, we have
������

kX

j=1,j 6=i

ajYĩ,j

������
� |a|(⌥2 � k

p
⌥) � (⌥2 � k

p
⌥)

⌥2

k
p
⌥

>

p
⌥.

This is a contradiction because Yp,j 
p
⌥ due to equation (27) for p 6= j. This completes the

proof.

For the sake of brevity, let V:1, · · · ,V:k be the columns of B(C) and eV:1, · · · , eV:k be the restriction
of these column vectors to the rows a + 1, · · · , m. In other words, vectors eV:1, · · · , eV:k are the
column vectors corresponding to the columns in M. We showed in Lemma 17 that the columns
B(C) spans the column space of B. We can assume that the last n � a columns of B are all zero
vectors because B is a rank-k matrix. We can also assume without any loss of generality that, except
for the entries in the row indexed by R, all the other entries of B(C) are zero. This is because we
have shown in Lemma 17, we showed that the submatrix of B(C) formed by rows indexed by R and
columns indexed by C have rank k.

Now any row i of B can be therefore represented as
P

⌘i,jV:j , for real numbers ⌘i,j , not all of
which are identically zero. The following lemma proves part (ii) of our proof idea. For

Lemma 18. Let V:1, · · · ,V:k be as defined above. Then column i of B can be written as linear
combination of real numbers ⌘i,1, · · · ⌘i,k of the vectors V:1, · · · ,V:k such that, for all j and i 2 R,
⌘
2
i,j
 4/⌥3.

Proof. Let M:1, · · ·M:a be the columns of M, where M is the (m� a)⇥ a submatrix of the matrix
eA corresponding to the input of Alice. We have

⌥ � kA�Bk2
F

kX

i=1

(⇣ �Vr(a/k)+i,i)
2 +

kX

i=1

X

j 6=i

V2
r(a/k)+i,j

+
kX

i=1

kM:r(a/k)+i � eV:ik2

+
X

i/2R

kX

j=1

0

@⌘i,jVra/k+j,j +
X

j0 6=j

⌘i,j0Vra/k+j,j0

1

A
2

+
X

i/2R

������
M:i �

kX

j=1

⌘i,j
eV:j

������

2

.
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As in the proof of Lemma 17, we have |V2
r(a/k)+i,j

| 
p
⌥ and |Vr(a/k)+i,i| � ⌥2. Let ji be the

index such that |⌘i,ji | is the maximum. Then the above expression is at least |⌘i,ji |2(⌥2 � k
p
⌥)2 �

|⌘i,ji |2⌥4
/4. Since this is less than ⌥, the result follows from the definition of ji.

We can now complete the proof. First note that since M is a signed matrix, each eVi in the third term
of the above expression is at least

p
⌥. Therefore, for all i /2 S and all j

������

kX

j=1

⌘i,j
eV:j

������
 4k⌥1/2

⌥3/2
=

4k

⌥
.

As M:i is a sign vector and if � = O(m + n) = O(m), this implies that

X
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kX

j=1

⌘i,j
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������
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/`)�O(100✓
a)

kX
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kX
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m�aX

j=1

(Mj,r(a/k)+i � (eVi)j)
2  100✓

k(m� a)
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+ O(100✓

a)

Now, since there are in total k(m� a) entries in the submatrix formed by the columns indexed by
C, at least 1�

�
1
10 + 1

99 + o(1)
�

fraction of the entries have the property that the sign of Mj,ra/k+i

matches the sign of eVj,i. Since ind is in one of the columns of M:ra/k+1, · · ·M:ra/k+k, with
probability at least 1�

�
1
10 + 1

99 + o(1)
�
, if Bob outputs the sign of the corresponding entry in B,

then Bob succeeds in solving AIND. This gives a lower bound of ⌦((m� a)a) = ⌦(mk`/↵) space.
The case when m  n is analogous and gives a lower bound of ⌦(nk`/↵). Thus, there is a lower
bound of ⌦((m + n)k`/↵).

J Noninteractive Local Differentially Private PCA

Till now, we have considered a single server that receives the private matrix in a streamed manner.
We next consider a stronger variant of differential privacy known as local differential privacy (LDP)
[34, 36, 42, 97]. In the local model, each individual applies a differentially private algorithm locally to
their data and shares only the output of the algorithm—called a report—with a server that aggregates
users’ reports. A multi-player protocol is "-LDP if for all possible inputs and runs of the protocol, the
transcript of player i’s interactions with the server is "-LDP.

One can study two variants of local differential privacy depending on whether the server and the
users interact more than once or not (see Figure 8). In the interactive variant, the server sends several
messages, each to a subset of users. In the noninteractive variant, the server sends a single message
to all the users at the start of the protocol and sends no message after that. Smith, Thakurta, and
Upadhyay [89] argued that noninteractive locally private algorithms are ideal for implementation.
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coins

d1

di

dn

Analysts

Users

zi

s

…
…

Q1

Qi

Qn

Server
z1

zn

public 
random 
coins

d1

di

dn

Analysts

Figure 8: LDP with (left) and without (right) interaction.

The natural extension of Problem 1 in the local model is when the matrix is distributed among the
users such that every user has one row of the matrix and users are responsible for the privacy of
their row vector. Unfortunately, known private algorithms (including the results presented till now)
do not yield non trivial additive error in the local model. For example, if we convert Theorem 1 to

29



the local model, we end up with an additive error eO(
p

kmn). This is worse than the trivial bound
of O(

p
mn), for example, when A 2 {0, 1}m⇥n, a trivial output of all zero matrix incurs an error

at most O(
p

mn). In fact, existing lower bounds in the local model suggests that one is likely to
incur an error which is O(

p
m) factor worse than in the central model, where m is the number of

users. However, owing to the result of Dwork et al. [40], we can hope to achieve non-trivial result for
differentially private principal component analysis (see, Definition 4) leading us to ask
Question 1. Is there a locally private algorithm for low rank principal component analysis?

This problem has been studied without privacy under the row-partition model [8, 64, 61, 17, 44, 83,
84, 91]). Even though there is a rich literature on local differentially private algorithms [5, 11, 34,
41, 42, 49, 58, 73, 97], the known approaches to convert existing (private or distributed non-private)
algorithms to locally private algorithms either leads to a large additive error or require interaction.
We exploit the fact that our meta algorithm only stores differentially private sketches of the input
matrix to give a noninteractive algorithm for low-rank principal component analysis (PCA) under
local differential privacy.

Tight upper and lower bounds known on the achievable accuracy for many problems; however,
low-rank factorization (and even low-rank approximation) has not been studied in this model. The
naive approach to convert existing algorithms to locally private algorithms leads to a large additive
error and are interactive. On the other hand, low-rank factorization is a special optimization problem
and the role of interaction in local differentially private optimization was recently investigated by
Smith et al. [89].
Theorem 20. Let m, n 2 N and ↵, ", � be the input parameters. Let k be the desired rank of the
factorization and ⌘ = max

�
k, ↵

�1
 

. Let t = O(⌘↵
�1 log(k/�)) and v = O(⌘↵

�2 log(k/�)).
Given a private input matrix A 2 R

m⇥n distributed in a row-wise manner amongst m users, the
output U of the algorithm, PRIVATE-LOCAL-LRF, presented in Figure 9, is a k-rank orthonormal
matrix such that

1. PRIVATE-LOCAL-LRF is a non-interactive (", �)-local differentially private under Priv2.

2. With probability 9/10 over the coins of PRIVATE-LOCAL-LRF,

kA�UUTAkF  (1 + O(↵))kA� [A]kkF + O

⇣
v

p
m log(1/�)/✏

⌘
.

3. The words of communication used by every users in PRIVATE-LOCAL-LRF is O(v2) words.

Our algorithm only produces an (✏, �)-locally differentially private algorithm; however, it is non-
interactive. This allows us to use the generic transformation of Bun et al. [18] to get the following
result. The above theorem gives the first instance of non-interactive algorithm that computes low-rank
principal component analysis in the model of local differential privacy. The best known lower bound
on additive error for (✏, �)-differentially private PCA is by Dwork et al. [40] in the central model for
static data matrix. Their lower bound on the additive error is e⌦(k

p
n) for squared Frobenius norm

and has no multiplicative error. An interesting question from our result is to investigate how close or
far we are from optimal error.

The proof for local private algorithm is little different from previous proofs. Therefore, we first give a
proof sketch without privacy. The proof becomes more involved with privacy.

P1 := argmin k (AkX�A)kF , P2 : argmin k(AkX�A)kF
P3 : argmin k(XP1 �A)�kF , P4 := argmin kXP1 �AkF

Using the normal form of Frobenius regression problem, P1 = ( Ak)† A and P3 = A�(P1�)†.
Then we can show that

kA�(P1�)
†P1 �AkF  (1 + ↵)min

X
kXP1 �AkF  (1 + ↵)2kAk �AkF

Since (P1�)†( bAk)† is a rank-k matrix, we have

min
r(X)k

kA�X A�AkF  kA�(P1�)
†P1 �AkF
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PRIVATE-LOCAL-LRF

Initialization. Let ⌘ = max
�
k, ↵

�1
 

, t = O(⌘↵
�1 log(k/�)), v = O(⌘↵

�2 log(k/�)). Let ⇢1 =p
(1 + ↵) ln(1/�)/", ⇢2 = (1 + ↵)

p
ln(1/�)/". Sample � ⇠ N (0, 1)n⇥t,  ⇠ N (0, 1)t⇥m,

S ⇠ N (0, 1)v⇥m, and T ⇠ N (0, 1)n⇥v . Make them public.

User-i computation. On input the row Ai:, user-i does the following:
1. Sample N1,i ⇠ N (0, ⇢2

1)
1⇥t, N2,i ⇠ N (0, ⇢2

2)
t⇥v and N3,i ⇠ N (0, ⇢2

2)
v⇥v .

2. Set bAi: 2 R
m⇥n such that every row other than row-i is an all zero vector. Compute

Yi: = Ai:�+N1,i, eYi: =  bAi:T+N2,i, and Zi: = SbAi:T+N3,i.

Server side computation. Once the server receives the reports from all the users, it follows the
following steps.

1. Form Y whose row-i is Yi:. Compute Z =
P

Zi: and eY =
P eYi:. Compute bY = SY.

2. Compute eX := argminrk(X)k k bYX eY � ZkF . Compute a SVD of eX. Let it is be
U0⌃0V0T.

3. Output the orthonormal basis U for the span of YU0.

Figure 9: Non-interactive Local Differentially private LRF Under Priv1

Now we are done because of the following. Suppose U is the orthonormal basis in the span of A�eX,
where

eX := argmin
rank(X)k

kSA�X AT� SATkF ,

then by picking P =  A,

kUUTA�AkF = kA�eX(A�eX)†A�AkF  kA�eXP�AkF
 (1 + ↵)kS(A�eX A�A)TkF = min

r(X)k

kS(A�X A�A)TkF

 (1 + ↵) min
r(X)k

kA�X A�AkF ,

where the last inequality follows as in the case of Appendix E.1.

Proof. The local privacy is easy to follow from the Gaussian mechanism and as in Lemma 11 with
the choice of ⇢1 and ⇢2. For the communication cost, note that every user i has to send a sketch Yi:,
bYi:, and Zi:. The sketch Yi: is a real 1⇥ t matrix, bYi: is an t⇥ v real matrix, and Zi: is a v ⇥ v real
matrix. The total communication cost is O((tv + v

2) log(nm)) words. Since t  v, the result on the
communication cost follows.

We now prove Part 2 of Theorem 20. Let N1 be a random Gaussian matrices whose row-i is
N1,i. Let N2 =

P
N2,i,N3 =

P
N3,i. Note that N1 ⇠ N (0, ⇢2

1)
m⇥t, N2 ⇠ N (0, m⇢

2
2)

t⇥v, and
N2 ⇠ N (0, m⇢

2
2)

v⇥v . Let Y be the matrix whose row-i is Yi:. Further, Z =
P

Zi: and eY =
P eYi:.

If the matrix distributed among the users is A, then it means that Y = �A+N1, eY =  AT+N3

and Z = SAT+N2.

Let the singular value decomposition of [A]k be [A]k = Uk⌃kVT
k

. Let C =  (A + †N2T†).
We will use Lemma 1 to relate minrk(X)k kYXC � (A + S†N3T†)kF with kA � [A]kkF . Set
� =  , P = [A]k, Q = A+ †N2T† in Lemma 1. For

eX := ( [A]k)
†( A+N2T

†) = ( [A]k)
†C = argmin

X
k ([A]kX�A+ ( †N2T

†))k,

we have with probability 1� � over ⇠ DR,

k[A]k eX� (A+ †N2T
†)kF  (1 + ↵)min

X
k[A]kX� (A+ †N2T

†)kF

 (1 + ↵)k[A]k �AkF + (1 + ↵)k †N2T
†kF . (28)
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In the above, the second inequality follows by setting X = VkVT
k

.

Let WT := eX = ( [A]k)†C. We now use Lemma 1 on the following regression problem:

min
X
k�T(WX�B)k and min

X
kWX�BkF , where B = (A+N1�

†)T

with the candidate solutions
bX = argmin

X
k�T(WX�A)kF and eX = argmin

X
k(WX�A)kF

One of the candidate solutions to argminX k�T(WX � A)kF is bX := (�TW)†(�TB). Since
[A]k has rank k, Lemma 1 and equation (28) gives with probability 1� � over ⇠ DR

kbXTWT �BTkF  (1 + ↵)min
X
kXTWT �BTkF  (1 + ↵)k[A]k( [A]k)

†C�BTkF

 (1 + ↵)k[A]k( [A]k)
†C�AkF + (1 + ↵)kN1�

†kF
 (1 + ↵)2kA� [A]kkF + (1 + ↵)(2 + ↵)k †N2T

†kF + (1 + ↵)kN1�
†kF

This in particular implies that

kbXTWT �AkF  (1 + ↵)2kA� [A]kkF + (1 + ↵)(2 + ↵)k †N2T
†kF + (2 + ↵)kN1�

†kF .

Let
⌧1 = (1 + ↵)(2 + ↵)k †N2T

†kF + (2 + ↵)kN1�
†kF

be the additive error due to the effect of noise N1 and N2.

Substituting the value of bXT := (BT�)(WT�)† = (A� + N1)(WT�)† = Y(WT�)†, with
probability 1� 2� over �T

, ⇠ DR, we have

kY(WT�)†( [A]k)
†C�AkF  (1 + ↵)2kA� [A]kkF + ⌧1.

Let X⇤ := (WT�)†( [A]k)†, i.e.,

kYX⇤C�AkF  (1 + ↵)2kA� [A]kkF + ⌧1.

Let E = A+ S†N3T†. Since X⇤ has rank at most k, this implies that
min

X
rk(X)k

k(YXC�E)kF  k(YX⇤C�E)kF

 k(YX⇤C�A)kF + kS†N3T
†kF

 (1 + ↵)2kA� [A]kkF + ⌧1 + kS†N3T
†kF .

Since ↵ 2 (0, 1) and substituting the value of ⌧1, we can get an upper bound on the additive terms.

min
X

rk(X)k

k(YXC�E)kF  (1 + ↵)2kA� [A]kkF + O
�
⌧1 + kS†N3T

†kF
�
. (29)

Now consider the following two regression problems:
min

X
rk(X)k

kSYXCT� SETkF and min
X

rk(X)k

kYXC�EkF (30)

with candidate solutions eX := argmin X
rk(X)k

kSYXCT � SETkF and bX :=

argmin X
rk(X)k

kYXC � EkF , respectively. Set p = k/↵, D = YXC and E = A + S†N3T† in
the statement of Lemma 2. Then we have with probability 1� 2� over S.T ⇠ DA,

min
X

r(X)=k

kYXC�Ek2
F
= kY bXC�Ek2

F
= kY bXC� (A+ S†N3T

†)k2
F

� (1 + ↵)kS(Y bXC� (A+ S†N3T
†))Tk2

F

� (1 + ↵)min
X

r(X)

kSYXCT� S(A+ S†N3T
†))TkF

= (1 + ↵)k bY eX eY � ZkF . (31)
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The second and last equality follows from the definition, the first inequality follows from Lemma 2
and the second inequality follows from the fact that minimum is smaller than any other choice of X,
more specifically X = bX. Since U is in the span of YU0, where U0 is the left singular vectors of eX,
we have the following:

kUUTE�EkF = k(YU)(YU)†E�EkF
= min

X
k(YU0)X�EkF  kY eX Q�EkF

 (1 + ↵)kSY eX QT� SETkF = (1 + ↵)k bY eX eY � ZkF .

The second equality comes from the normal form of Frobenius norm. Combining equation (31)
and equation (29), and subadditivity of norm after putting in the value of E, this implies that

k(I�UUT)AkF  (1 + O(↵))kA� [A]kkF + O
�
k †N2T

†kF + kN1�
†kF + kS†N3T

†kF
�
.

As in the proof of Theorem 3, for the choice of v and t, for every matrices D, kSDkF  (1+↵)kDkF ,
kDTkF  (1+↵)kDkF , k DkF  (1+↵)kDkF , and kD�kF  (1+↵)kDkF . In other words,
k †N2T†kF  (1 + ↵)kN2kF , kN1�†kF 

p
1 + ↵kN1kF , kS†N3T†kF  (1 + ↵)kN3kF .

Since ↵ 2 (0, 1),

k(I�UUT)AkF  (1 + O(↵))kA� [A]kkF + O (kN2kF + kN1kF + kN3kF ) .

The result follows using Lemma 4, Markov’s inequality, and values of ⇢1 and ⇢2.

K Empirical Evaluation of Our Algorithms

Any algorithm to compute the low-rank factorization In this section, we give the experimental
evaluation of our algorithms and compare it with the best known results. We ran our algorithms on
a 2.7 GHz Intel Core i5 processor with 16 GB 1867 MHz DDR3 RAM. Our algorithms keep on
sampling a random matrix randomly until we sample a matrix with number of columns more than
200.

K.1 Empirical Evaluation of PRIVATE-OPTIMAL-SPACE-LRF

We first start with the discussion on the empirical evaluation of PRIVATE-OPTIMAL-SPACE-LRF
(see Figure 1 for the detail description and the supplementary materials for the source code). Since the
error incurred by PRIVATE-FROBENIUS-LRF is strictly less than that by PRIVATE-OPTIMAL-SPACE-
LRF, we only concern ourselves with PRIVATE-OPTIMAL-SPACE-LRF. For the private setting, we
sampled matrices from the following distributions:

1. All the entries are sampled uniformly from the interval [1, 5000]
2. All the entries are integers sampled uniformly from the interval [1, 5000].

In our experimental set-up, we keep the value of ↵ = 0.25 and k = 10 fixed to get a better
understanding of how the approximation changes with the changing values of dimensions.

We start by explaining what every columns in Table 3 means. The first two columns are the dimension
of the private matrix, the third column is the desired rank of the output matrix, and the fourth column
is the value of multiplicative approximation. For the ease of comparison, we have set k and ↵ to be a
constant parameter in this experiment and let the dimension to be the free parameters.

Recall that the problem of the low-rank factorization is to output a singular value decomposition
eU, e⌃, eV such that Mk = eUe⌃eVT is a rank-k matrix and

kA�MkkF  (1 + ↵)kA� [A]kkF + �,

where � is the additive error. The fifth and the sixth columns enumerate the value of the expres-
sion resulting from running our algorithm PRIVATE-OPTIMAL-SPACE-LRF and that by Hardt and
Roth [47], respectively. The last column represents the optimal low-rank factorization, kA� [A]kkF .

There is no way to compute the actual additive error, �, empirically. This is because there is a factor
of multiplicative error and it is tough to argue what part of error is due to the multiplicative factor
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alone. In other words, the best we can compute is ↵�k + � or the total approximation error incurred
by our algorithm. From the practitioner point of view, the total error is a much useful parameter than
the ↵�k + �. Therefore, in this section, we use the total approximation error (kA�MkkF ) as the
measure for our evaluation.

Distribution of A Rows Columns k ↵
Our error Hardt-Roth [47] Optimal Error

kA�MkkF kA�MkkF kA� [A]kkF

Uniform real

535 50 10 0.25 223649.755822 552969.553361 190493.286508
581 57 10 0.25 254568.54093 491061.894752 213747.405532
671 65 10 0.25 295444.274372 470153.533646 250629.568178
705 70 10 0.25 317280.295345 546149.007321 269647.886009
709 68 10 0.25 309627.397618 664748.40864 265799.14431
764 74 10 0.25 344154.666385 529618.155224 291053.598305
777 50 10 0.25 270458.465497 436864.395454 235057.184632
861 57 10 0.25 311968.552859 494331.526734 269761.822539
1020 65 10 0.25 367175.274642 562322.74973 317998.616149
1054 70 10 0.25 389357.219211 490379.45171 338605.316751
1061 68 10 0.25 386772.176623 497648.401337 334581.574424
1137 74 10 0.25 413134.221292 528692.808214 364187.907915
1606 158 10 0.25 736233.063187 848827.366953 654600.528481
1733 169 10 0.25 786963.961154 932695.219591 706550.246496

Uniform integers

522 50 10 0.25 217497.498819 496080.416815 185817.742179
555 51 10 0.25 229555.549295 463022.451669 195569.953293
605 60 10 0.25 267625.256679 525350.686285 225614.671569
714 70 10 0.25 316232.378407 477066.707503 270968.006565
804 51 10 0.25 284102.975661 548426.535153 241720.509615
899 86 10 0.25 402886.168791 554702.285328 346840.731082
906 60 10 0.25 328747.816311 455091.762984 284433.77154
913 90 10 0.25 412114.948358 634520.151202 358345.162361
1061 106 10 0.25 486139.117249 618819.626784 423775.149619
1063 70 10 0.25 395772.128472 485655.074685 339950.706212
1305 86 10 0.25 488729.886028 551863.893152 427234.256941
1383 90 10 0.25 513573.18853 595195.801858 451019.165808
1486 145 10 0.25 677118.945777 776008.62945 600584.597101
1481 146 10 0.25 670290.341074 733574.295922 600877.636254
1635 106 10 0.25 616323.217861 652624.510827 541305.826364
1848 180 10 0.25 836139.102987 884143.446663 755160.753156
1983 194 10 0.25 896926.450848 1005652.63777 814717.343468

Table 3: Empirical Comparison Between PRIVATE-OPTIMAL-SPACE-LRF and Hardt and Roth [47].

The empirical evaluations, listed in Table 3, reflect that our algorithm perform consistently better
than that of Hardt and Roth [47] for all the dimension range. This agrees with our analysis and our
discussion in the main text. In particular, we showed that theoretically we perform better than Hardt
and Roth [47] by a factor of O(c

p
k), where c is the largest entry in their projection matrix.

Another observation that one can make from our evaluation is that the error of our algorithm is quiet
close to the actual error of approximation for all the dimension range. On the other hand, the error of
Hardt and Roth [47] is close to optimal error in the large dimensional matrices. For small dimensional
matrices, the error incurred by Hardt and Roth [47] is lot more than the actual error. The error of
Hardt and Roth [47] starts getting better as the dimension increases. We believe that the fact that
our algorithm performs well over all the range of dimensions makes it more stable with respect to
different datasets. In practice, this is highly desirable as one would like the algorithm to perform well
on both large and small datasets.

The last key observation one can gather from the empirical evaluation is that though the total error
depends on the Frobenius norm, the additive error is independent of the Frobenius norm of the
original matrix. It is expected that the total error depends on the Frobenius norm because of the
multiplicative factor, but if we see the difference between the errors (of both our and Hardt and Roth’s
algorithm) and the optimal error, the difference scales proportional to the dimensions of the matrices.
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Rows Columns k ↵ Our additive error Hardt-Roth Additive Error Expected Additive Error
546 50 10 0.25 665.797531323 13971.0499468 818.4149601308452
780 50 10 0.25 777.586619111 16772.4716145 915.2974642186384
532 51 10 0.25 719.492368601 23512.4449181 817.9937262895351
808 51 10 0.25 796.220653146 14613.575971 932.3276903711178
655 62 10 0.25 845.550304391 34161.5584705 941.6210056415899
951 62 10 0.25 903.21367849 14101.7225434 1055.244933017033
891 89 10 0.25 1040.90463257 17863.8728746 1190.7199415503355
1344 89 10 0.25 1273.05275389 18646.717977 1342.904603982863
522 50 10 0.25 691.996294265 23193.0915951 806.8851715645378
791 50 10 0.25 764.535817382 16245.8487264 919.3095213779045
1449 140 10 0.25 1392.08606822 20835.1618122 1639.1144500265145
2143 140 10 0.25 1518.90720786 13521.4077062 1827.1906485042728
834 80 10 0.25 969.883327308 22051.2853027 1119.4759720856953
1234 80 10 0.25 1005.64736332 13617.4286089 1257.2282266407094
682 64 10 0.25 833.555604169 19875.8713339 965.2425226826088
967 64 10 0.25 872.993347497 15774.1091244 1073.4637306190796
924 90 10 0.25 1024.67412984 20018.1421648 1208.8365389072335
1374 90 10 0.25 1168.33857697 15267.6596425 1357.3931639793143
1981 194 10 0.25 2845.12484193 19457.1056713 2035.7863227397222
2945 194 10 0.25 1938.83169063 14210.6828353 2263.796573983761
1022 100 10 0.25 1130.29734323 14839.3883841 1298.0001587502882
1530 100 10 0.25 1289.31236852 14886.7349415 1458.2654318931454
1867 182 10 0.25 1806.04962492 13443.8218792 1952.5511080639412
2757 182 10 0.25 1983.37270829 13509.2925192 2168.928742648721

Table 4: Empirical Comparison of Additive Error of PRIVATE-OPTIMAL-SPACE-LRF and Hardt and
Roth [47].

K.1.1 Empirical Evaluation of Additive Error for various dimension

As we mentioned earlier, if the matrix has rank greater than k, it is not possible to empirically evaluate
the additive error. However, we believe it is still imperative to analyze the effect of differential
privacy on the low-rank approximation of matrices. This in turn implies that one should also define
experiments to empirically evaluate the additive error. One easy way to do this is to take as input
a matrix with rank exactly k and compare the error incurred with that of expected error promised
by our theoretical results. In the next experiment we do the same and prune the last n� k columns
of the matrix and make it identically zero (see Figure 1 for the detail description). The result of our
experiment is presented in Table 4. Since every entries of the matrix is identically zero, we notice
that the same trend as in Table 3:

1. The additive error incurred by our algorithm is way less than the additive error incurred by
Hardt and Roth [47] for all ranges of the dimension. We note that the matrices are highly
incoherent as all the entries are sampled i.i.d. We believe the reason for this behavior is
the fact that the theoretical result provided by Hardt and Roth [47] for incoherent matrices
depended on the Frobenius norm of the input matrix.

2. Our algorithm consistently perform better than the additive error guaranteed by the theo-
retical results, but the difference becomes smaller as the dimension increases. This trend
can be seen as due to the fact that our results are asymptotic and we believe as m and n are
sufficiently large, our theoretical result would match the empirical results.

K.1.2 Empirical Evaluation of Additive Error for various values of ↵.

An important parameter that comes in our bounds and is absent in the bounds of Hardt and Roth [47]
is the factor of ↵. This is because Hardt and Roth [47] consider a constant ↵. Therefore, we feel it is
important to analyze the additive error with respect to the change in ↵ in order to better understand
the effect of differential privacy on the low-rank approximation of matrices. Again, we take as input
a matrix with rank exactly k and compare the error incurred with that of expected error promised by
our theoretical results while keeping the dimensions and the value of k constant (see Figure 1 for the
detail description). The result of our experiment is presented in Table 5. Since every entries of the
matrix is identically zero, we notice that the same trend as in Table 3:
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1. The additive error incurred by our algorithm is way less than the additive error incurred by
Hardt and Roth [47] for all ranges of the dimension. We note that the matrices are highly
incoherent as all the entries are sampled i.i.d. We believe the reason for this behavior is
the fact that the theoretical result provided by Hardt and Roth [47] for incoherent matrices
depended on the Frobenius norm of the input matrix.

2. Our algorithm consistently perform better than the additive error guaranteed by the the-
oretical results, except for certain values of the dimensions and multiplicative error
(m = 2800, n = 200, ↵ = 0.24). Even in these cases, the error is not that far from
what is predicted from the theoretical analysis.

Rows Columns k ↵ Expected Additive Error Our additive error Hardt-Roth Additive Error
1800 200 10 0.1 7889.477972559828 8056.91337611 18155.7964938
1800 200 10 0.12 7114.371042156239 6986.62461896 16748.9933963
1800 200 10 0.14 6234.5851506132285 6171.60624904 26904.2257957
1800 200 10 0.16 6234.5851506132285 5982.88510433 16983.3495414
1800 200 10 0.18 5190.996544903864 4956.753081 15746.884528
1800 200 10 0.2 5190.996544903864 5044.67253402 14124.190425
1800 200 10 0.22 5190.996544903864 5012.95041479 18030.3508985
1800 200 10 0.24 5190.996544903864 4951.97119364 18013.7573095
2800 200 10 0.1 8690.661799154163 8550.34968943 12281.3954039
2800 200 10 0.12 7846.020358487806 7607.18833498 14296.1174909
2800 200 10 0.14 6887.309251977769 6494.49329799 11674.4990144
2800 200 10 0.16 6887.309251977769 6603.16942717 13860.6899516
2800 200 10 0.18 5750.100760072804 5417.53433303 13425.7590356
2800 200 10 0.2 5750.100760072804 5612.34884207 12731.6645942
2800 200 10 0.22 5750.100760072804 5524.92292528 10703.6065701
2800 200 10 0.24 5750.100760072804 6450.77223767 12610.5718019

Table 5: Empirical Comparison of Additive Error of PRIVATE-OPTIMAL-SPACE-LRF for various
values of ↵ with Hardt and Roth [47].

K.1.3 Empirical Evaluation of Additive Error for various values of k.

The last parameter that comes in our bounds and in the bounds of Hardt and Roth [47] is the factor
of k. Therefore, we feel it is important to analyze the additive error with respect to the change in
k in order to better understand the effect of differential privacy on the low-rank approximation of
matrices. Again, we take as input a matrix with rank exactly k and compare the error incurred with
that of expected error promised by our theoretical results while keeping the dimensions and the value
of k constant (see Figure 1 for the detail description and). The result of our experiment is presented
in Table 6. Since every entries of the matrix is identically zero, we notice that the same trend as in
Table 3:

1. The additive error incurred by our algorithm is way less than the additive error incurred by
Hardt and Roth [47] for all ranges of the dimension. We note that the matrices are highly
incoherent as all the entries are sampled i.i.d. We believe the reason for this behavior is
the fact that the theoretical result provided by Hardt and Roth [47] for incoherent matrices
depended on the Frobenius norm of the input matrix.

2. Our algorithm is almost the same as the additive error guaranteed by the theoretical results.

K.2 Empirical Evaluation of PRIVATE-LOCAL-LRF

In this section, we understand the result of our empirical evaluation of PRIVATE-LOCAL-LRF
(see Figure 1 for the detail description). Recall that in this case, we output a rank-k orthonormal
matrix U such that UUTA well approximates the matrix A with high probabiliy, i.e.,

kA�UUTAkF  (1 + ↵)kA� [A]kkF + �

with probability at least 1� �.
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Rows Columns k ↵ Expected Additive Error Our additive error Hardt-Roth Additive Error
450 50 10 0.25 1955.5571620375354 1898.46860098 20016.9761114
450 50 11 0.25 1967.6211924065349 2067.40361185 24063.2388836
450 50 12 0.25 1979.148228191017 1915.44710901 23731.1221157
450 50 13 0.25 1990.2041707005583 1975.07412336 28148.8596261
450 50 14 0.25 2000.8424524636212 1937.32846282 44746.5335036
450 50 15 0.25 2395.058604918562 2656.30764859 38466.5764635
450 50 16 0.25 2404.9864394488554 2396.43074838 51068.6496986
450 50 17 0.25 2414.6085814624234 2518.70267919 59951.048053
450 50 18 0.25 2423.9516422006986 2412.15253004 49652.4140161
450 50 19 0.25 2433.0385823622364 2421.29320351 60475.2111995
700 50 10 0.25 2210.505167206932 2137.57732175 18322.4177099
700 50 11 0.25 2225.805492035416 2244.60952111 15915.3100262
700 50 12 0.25 2240.424768215734 2341.16599056 18904.9300369
700 50 13 0.25 2254.4465757300545 2356.95623935 23088.1856217
700 50 14 0.25 2267.9386809066186 2251.25863623 29899.7509467
700 50 15 0.25 2707.304866721297 2948.78705396 33654.4497548
700 50 16 0.25 2719.895940227483 2906.80323902 36885.4983615
700 50 17 0.25 2732.0993162013783 2677.54649011 36275.4890195
700 50 18 0.25 2743.9487446109097 2849.04550002 37581.6388795
700 50 19 0.25 2755.473345587197 2658.52670606 47314.5277845

Table 6: Empirical Comparison of Additive Error of PRIVATE-OPTIMAL-SPACE-LRF and Hardt and
Roth [47] for various values of k.

Rows Columns k ↵ Our error (kA�UUTAkF ) Optimal Error (kA� [A]kkF )
460 50 10 0.25 26730.7062683 18376.5128345
486 50 10 0.25 28080.8322915 18964.3784188
516 55 10 0.25 30526.641347 20870.0427927
553 56 10 0.25 29787.7727748 21862.0631087
568 59 10 0.25 31632.1354094 22760.6941581
616 64 10 0.25 33981.2524409 25159.7572035
709 50 10 0.25 36449.213243 23110.1192303
730 50 10 0.25 35232.7419048 23414.630713
742 50 10 0.25 36167.200779 23613.9643873
805 56 10 0.25 38175.3014108 26613.9920423
817 56 10 0.25 38604.715515 26721.6604408
846 59 10 0.25 39702.5550961 28179.965914
907 64 10 0.25 41889.0912424 30717.3035814
924 101 10 0.25 50376.7374653 40511.7157875
1195 130 10 0.25 66049.3867783 53122.2489582
1262 138 10 0.25 70596.6678822 56526.8303644
1433 101 10 0.25 63976.8587336 50810.8395315
1698 186 10 0.25 91159.7299285 77358.5067276
1857 130 10 0.25 85812.7647106 66588.7353796
1956 138 10 0.25 82720.7186764 70710.4258919

Table 7: Empirical Evaluation of PRIVATE-LOCAL-LRF.

For empirical evaluation of our locally-private algorithm, we sampled matrices such that every
entries are uniform real number between [0, 500]. In our experimental set-up, we keep the value of
↵ = 0.25 and k = 10 fixed to get a better understanding of how the approximation changes with the
changing values of dimensions. Our empirical results are listed in Table 7. From the table, we can
immediately see the effect of the role of the dimension m and can see the difference between the
optimal approximation and our approximation scale faster than in the case of PRIVATE-OPTIMAL-
SPACE-LRF. However, even in the case of very large matrices, our approximation error is very small
compared to the actual approximation error. In other words, this evaluation gives us a hint that our
algorithm does not pay a lot for local model of computation. We make this more explicit in our next
set of experiments given in the following sections when we empirically evaluate the additive error to
better understand the effect of local differential privacy on the accuracy of the algorithm.
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Rows Columns k ↵ Our Additive Error Expected Additive Error
454 50 10 0.25 1591.70826988 2236.0029137367846
494 53 10 0.25 1659.12206578 2348.466431926056
511 52 10 0.25 1737.01336788 2395.0391957271527
562 60 10 0.25 2000.5063552 2530.799729601783
622 66 10 0.25 1580.25894963 2683.7137939487484
643 70 10 0.25 1962.46122303 2735.6746706859394
645 70 10 0.25 2172.80349046 2740.583809665359
702 50 10 0.25 1989.93430285 2877.768275821911
728 52 10 0.25 2059.26581077 2938.6953727048567
743 53 10 0.25 1993.78092528 2973.406277353555
844 60 10 0.25 2328.32881246 3199.4689043324324
853 94 10 0.25 2557.29517064 3219.0131110666084
925 66 10 0.25 2484.75888129 3372.181278187486
981 70 10 0.25 2198.25471982 3487.6698882062387
983 70 10 0.25 2597.33562269 3491.7393627228817

1055 113 10 0.25 3217.07445615 3635.863197534171
1190 131 10 0.25 4220.63858322 3894.742583462755
1320 94 10 0.25 2808.85540377 4131.88571345083
1583 113 10 0.25 3870.14181092 4581.675389464531
1713 186 10 0.25 4445.32063486 4791.555177594492
1835 131 10 0.25 5447.86868861 4982.106342591863
1900 206 10 0.25 4732.78855445 5081.305279633226
2213 158 10 0.25 4145.11357428 5539.0037396773205
2888 206 10 0.25 6234.47976474 6436.032325032722

Table 8: Empirical Evaluation of Additive Error of PRIVATE-LOCAL-LRF for varying values of
dimensions.

K.2.1 Empirical Evaluation of Additive Error for Various Dimension

As we argued earlier, it is still imperative to analyze the effect of differential privacy on the principal
component analysis of matrices. This in turn implies that one should also define experiments to
empirically evaluate the additive error. As earlier, we take as input a matrix with rank exactly k and
compare the error incurred with that of expected error promised by our theoretical results. In the next
experiment we do the same and prune the last n� k columns of the matrix and make it identically
zero (see Figure 1 for the detail description). The result of our experiment is presented in Table 8.
Recall that the additive error incurred by our algorithm is

� := O

⇣
⌘↵

�2 log(k/�)
p

m log(1/�)/✏

⌘

for ⌘ = max {k, 1/↵} .

Since every entries of the matrix A� [A]k is identically zero, the error listed in the Table 8 is the
additive error. We note that the trend of Table 8 shows the same trend as in Table 7.

Our algorithm consistently perform better than the additive error guaranteed by the theoretical results
(except for m = 1835 and n = 131), but the difference becomes smaller as the dimension increases.
This trend can be seen as due to the fact that our results are asymptotic and we believe when m is
sufficiently large, our theoretical result would match the empirical results.

K.2.2 Empirical Evaluation of Additive Error for various values of ↵.

An important parameter that comes in our bounds is the factor of ↵. Our theoretical result shows
a tradeoff between the additive error and the multiplicative approximation factor. This makes it
important to analyze the additive error with respect to the change in ↵ in order to better understand
the effect of differential privacy on the low-rank approximation of matrices. Again, we take as input
a matrix with rank exactly k and compare the error incurred with that of expected error promised by
our theoretical results while keeping the dimensions and the value of k constant. The result of our
experiment is presented in Table 9.

Recall that the additive error incurred by our algorithm is

� := O

⇣
⌘↵

�2 log(k/�)
p

m log(1/�)/✏

⌘
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for ⌘ = max {k, 1/↵} .

Since every entries of the matrix A� [A]k is identically zero, the error listed is the additive error
incurred by our algorithm. We notice that the same trend as in Table 7.

We ran our algorithm for m = {450, 700} and n = 50 with k = 10 and ↵ ranging from 0.10 to 0.24
in the step-size of 0.02. Our algorithm consistently perform better than the additive error guaranteed
by the theoretical results. The empirical error is way better than the error predicted by the theoretical
result for small values of ↵ and it starts getting closer as the values of ↵ increases.

Rows Columns k ↵ Our Additive Error Expected Additive Error
450 50 10 0.10 750.710811389 14088.628533821675
450 50 10 0.12 748.91024846 9639.587944193776
450 50 10 0.14 764.598714683 7415.067649379828
450 50 10 0.16 727.388618355 5190.54735456588
450 50 10 0.18 748.286674358 4449.040589627896
450 50 10 0.20 722.269126382 3707.533824689914
450 50 10 0.22 695.354504806 2966.027059751931
450 50 10 0.24 687.993333996 2224.520294813948
700 50 10 0.1 932.294964215 18195.922623848826
700 50 10 0.12 937.676945315 12449.841795264987
700 50 10 0.14 939.872486613 9576.801380973067
700 50 10 0.16 942.039074746 6703.760966681148
700 50 10 0.18 909.247538784 5746.08082858384
700 50 10 0.20 948.147219877 4788.400690486534
700 50 10 0.22 860.725294579 3830.7205523892267
700 50 10 0.24 882.673634462 2873.04041429192

Table 9: Empirical Evaluation of Additive Error of PRIVATE-LOCAL-LRF for various values of ↵.

Rows Columns k ↵ Our Additive Error Expected Additive Error
450 50 10 0.2 739.297184071 2966.027059751931
450 50 11 0.2 792.139775851 3707.533824689914
450 50 12 0.2 827.193502967 3707.533824689914
450 50 13 0.2 857.238846842 4449.040589627896
450 50 14 0.2 881.890196768 4449.040589627896
450 50 15 0.2 877.407208023 5190.54735456588
450 50 16 0.2 955.688935848 5190.54735456588
450 50 17 0.2 942.773082147 5932.054119503862
450 50 18 0.2 1019.96432587 5932.054119503862
450 50 19 0.2 1033.82124639 6673.560884441846
700 50 10 0.2 921.415775041 3830.7205523892267
700 50 11 0.2 903.693226831 4788.400690486534
700 50 12 0.2 961.550364155 4788.400690486534
700 50 13 0.2 1055.58902486 5746.08082858384
700 50 14 0.2 1102.54543656 5746.08082858384
700 50 15 0.2 1139.854348 6703.760966681148
700 50 16 0.2 1188.983938 6703.760966681148
700 50 17 0.2 1216.1836631 7661.441104778453
700 50 18 0.2 1207.76296999 7661.441104778453
700 50 19 0.2 1303.58983727 8619.121242875759

Table 10: Empirical Evaluation of Additive Error of PRIVATE-LOCAL-LRF for various values of k.

K.2.3 Empirical Evaluation of Additive Error for various values of k.

The last parameter that comes in our bounds for local differentially private algorithm is the factor
of k. Therefore, we feel it is important to analyze the additive error with respect to the change in
k in order to better understand the effect of differential privacy on the low-rank approximation of
matrices. Again, we take as input a matrix with rank exactly k for varying values of k and compare
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Rows Columns k ↵ Total error (kA�MkkF ) Optimal Error (kA� [A]kkF )
498 52 10 0.25 203636.487171 197577.81058
565 62 10 0.25 241322.216245 234585.873351
600 66 10 0.25 258293.615653 251581.697045
634 68 10 0.25 272545.864945 265331.39875
701 50 10 0.25 236960.63674 230358.636959
719 76 10 0.25 311278.453125 302812.926139
736 50 10 0.25 243505.180195 236083.969219
775 52 10 0.25 255720.933052 248391.690752
780 86 10 0.25 348405.00368 340148.071775
818 90 10 0.25 364630.812101 355410.694701
888 62 10 0.25 306043.651247 297740.00906
954 66 10 0.25 330351.384387 321254.463405
966 68 10 0.25 337962.399198 329606.663985

1102 76 10 0.25 385372.431742 376530.056249
1149 127 10 0.25 529627.844251 516435.343938
1184 130 10 0.25 545340.762064 531377.485355
1206 86 10 0.25 434705.450777 424823.785653
1288 90 10 0.25 461257.277745 451382.89648
1549 169 10 0.25 729124.244066 701894.583657
1612 113 10 0.25 587309.340404 575305.302626
1802 127 10 0.25 666645.03627 650960.768662
1866 130 10 0.25 686638.036543 669968.400955
2367 169 10 0.25 904435.683545 870912.869511

Table 11: Empirical Evaluation of OPTIMAL-SPACE-LRF.

the error incurred with that of expected error promised by our theoretical results while keeping the
dimensions and the value of k constant. The result of our experiment is presented in Table 10.

Recall that the additive error incurred by our algorithm is

� := O

⇣
⌘↵

�2 log(k/�)
p

m log(1/�)/✏

⌘

for ⌘ = max {k, 1/↵} .

Since every entries of the matrix A� [A]k is identically zero, the error of our algorithm is due to the
additive error. Again as predicted by our results, we notice that the same trend as in Table 7:

We run our algorithm for m = {450, 700} and n = 50 with ↵ = 0.25 and k ranging from 10 to 19.
Our algorithm consistently perform better than the additive error guaranteed by the theoretical results.
The empirical error is way better than the error predicted by the theoretical result for small values of
↵ and it starts getting closer as the values of ↵ increases.

K.3 Empirical Evaluation of OPTIMAL-SPACE-LRF

In this section, we understand the result of our empirical evaluation of PRIVATE-LOCAL-LRF for the
detail description). Recall that in the non-private setting, we want to output a low-rank factorization
such that its product Mk satisfies the following inequality with high probability:

kMk �AkF  (1 + ↵)kA� [A]kkF .

For the empirical evaluation of our non-private algorithm, we sampled matrices such that every
entries are uniform real number between [0, 5000]. In our experimental set-up, we keep the value
of ↵ = 0.25 and k = 10 fixed to get a better understanding of how the approximation changes with
the changing values of dimensions. Our empirical results are listed in Table 11. We see that for all
the ranges of dimensions we evaluated on, the value in the column marked as kA�MkkF is well
within a (1 + ↵) factor of the corresponding entries marked under the column kA� [A]kkF . In fact,
empirical evidence suggests that our algorithms gives a much better approximation than ↵ = 0.25
(in fact, it is closer to ↵ = 0.05). This gives a clear indication that our algorithm performs as the
theoretical bound suggests for a large range of dimensions.
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L Future Work

In this paper, we initialize the study of low-rank factorization when the data matrix is streamed or
is distributed over multiple servers giving various upper and lower bounds. Our work raises few
questions which would shed more light on differentially private algorithms in various setting.

1. In the streaming setting, our results suggest interesting research directions by making the relation-
ship between low-space algorithms and low error differential private algorithms more explicit In
this context, some previous works used it implicitly to improve run-time efficiency [15, 11, 59, 92]
and additive error [13, 92] — Blocki et al. [13] also incur a multiplicative error that can lead to
large error for dense graphs. Some direct questions are as follows:

1. propose streaming algorithms that are robust against sketches being noisy (and not leaky storage
for which error-correcting or leakage resilient techniques suffice [78]), and

2. characterize the relationship between low-space algorithms and privacy.
2. In the local model, an interesting question from our result is to investigate how close or far we are

from optimal error. Towards this goal, an interesting question is whether we can use the minimax
framework [4, 34, 96] to prove a lower bound on the accuracy. Our empirical evaluation shows
that we outperform Hardt and Roth [47] even when the matrices are incoherent. This raises the
question whether our algorithms achieve better results when matrices are incoherent?

M Analysis of Boutsidis et al. Under Noisy Storage

The algorithm of Boutsidis et al. [17] maintains fives sketches, M = TlATr, L = SATr, N =
TlAR, D = AR and C = SA, where S and R are the embedding for the generalized linear
regression and Tl and Tr are affine embedding matrices. It then computes

X⇤ = argmin
r(X)k

kNXL�MkF

and its SVD as X⇤ = U⇤⌃⇤VT
⇤ . It then outputs DU⇤,⌃⇤, and VT

⇤C. Note that it does not compute
a singular value decomposition of the low-rank approximation, but a different form of factorization.

Boutsidis et al, [17] prove the following three lemmas, combining which they get their result.
Lemma 19. For all matrices X 2 R

t⇥t, with probability at least 98/100, we have

(1� ↵)2kARXSA�Ak2
F
 kTl(ARXSA�A)Trk2F  (1 + ↵)2kARXSA�Ak2

F
.

Lemma 20. Let eX = argminr(X)k kARXSA�Ak2
F

. Then with probability at least 98/100, we
have

min
r(X)k

kTl(ARXSA�A)Trk2F  kARX⇤SA�Ak2
F
 kAReXSA�Ak2

F
.

Lemma 21. Let eX = argminr(X)k kARXSA�Ak2
F

. Then with probability at least 98/100, we
have

kAReXSA�Ak2
F
 (1 + ↵)�k(A)2.

To compute the value of eX, they use a result in generalized rank-constrained matrix approximations,
which says that

N† ⇥UNUT
NMVLV

T
L

⇤
k
L† = argmin

r(X)k

kNXL�MkF , (32)

where UN is the matrix whose columns are the left singular vectors of N and VL is the matrix whose
columns are the right singular vectors of L.

Now, in order to make the above algorithm differentially private, we need to use the same trick as
we used in the algorithm for PRIVATE-OPTIMAL-SPACE-LRF; otherwise, we would suffer from the
problems mentioned earlier in Section ??. More precisely, we compute bA = (A �minI) and then
store the following sketches: M = Tl

bATr +N1, L = SbATr +N2, N = Tl
bAR+N3, D = bAR

and C = SbA+N4, where R = t
�1⌦� with ⌦ being a Gaussian matrix.
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Neighbouring Data Multiplicative Error
Assumptions Additive Error

Theorem 3 A�A0 = uvT (1 + ↵)

(", �)-differential privacy No assumption eO
⇣⇣p

m⌘/↵+
p
kn

⌘
"
�1

⌘

Theorem 11 kA�A0kF = 1 (1 + ↵)

(", �)-differential privacy No assumption eO
⇣
(
p

m⌘↵�2 +
p
kn)"�1

⌘

Hardt-Roth [47] A�A0 = esv
T

p
2

(", �)-differential privacy µ0-coherent matrix eO
⇣

1
"

⇣p
km+ k

�
n
m

�1/4 p
µ0kAkF

⌘⌘

Kapralov and Talwar [57] kAk2 � kA0k2 = 1 1

(", 0)-differential privacy Singular-value separation (SVS) c�1, where �1 = ⌦
⇣

nk3

"c6

⌘

Upadhyay [93] A�A0 = esv
T poly(k)

(", �)-differential privacy No assumption eO
⇣
k
2
"
�1

p
(m+ n)

⌘

Hardt and Price [46] A�A0 = ese
T
t 1

(", �)-differential privacy Incoherence and SVS eO
✓

�1

p
kµ log d log(log d�k/(�k��k+1))

"(�k��k+1)

◆

Hardt and Price [46] A�A0 = ese
T
t 1

(", �)-differential privacy SVS eO
✓

�1

p
kd log d log(log(d)�k/(�k��k+1))

"(�k��k+1)

◆

Dwork et al. [40] A�A0 = esv
T 1

(", �)-differential privacy No assumptions eO (k
p
n/")

Jiang et al. [53] A�A0 = ese
T
t 1

(", 0)-differential privacy No assumption eO
�
n"

�1 log n
�

Table 12: Comparison of Models for Differentially Private k-Rank Approximation (� = O(1), u and
v are unit vectors, es is the s-th standard basis, and d = m + n).

As in the proof of Theorem 13, there are three terms that contributes to the additive error. The first
and the third term are the same as in the proof of Theorem 13. However, the second term differs. In
order to compute the additive error incurred due to the second term, we note that X in Lemma 19
needs to be

X := bX = argmin
r(X)k

kTl(bARXSbA� bA)Trk2F .

The reason for this value of bX is the same as in the proof of Claim 1. Moreover, all the occurrence of
A is replaced by bA. In other words, we get the following by combining Lemma 19, Lemma 20, and
Lemma 21.

(1� ↵)2kbARbX(SbA+N4)� bAk2F  (1 + ↵)�k(bA)2.

In other words, the additive error incurred by this expression is (1� ↵)kbARbXN4kF . Using equa-
tion (32), we have �2 = (1� ↵)kbARN† ⇥UNUT

NMVLVT
L

⇤
k
L†N4kF , where N,M, and L are as

defined above. This term depends on the singular values of bA and hence can be arbitrarily large.

N Problems Studied in Previous Works

Table 12 gives all the previous results under the assumptions made and the problem studied. Below,
we define each of these problems and their difference from the problem studied in this paper.

N.1 Low Rank Approximation With Respect to the Frobenius Norm

Hardt and Roth [47] and Upadhyay [93] studied the following problem.
Problem 2. (Approximation with respect to the Frobenius norm). Given parameters ↵, �, ⌧ , a private
m⇥ n matrix A (where m⌧ n) and the target rank k, find a rank-k matrix eAk such that

Pr

h
kA� eAkkF  (1 + ↵)kA� [A]kkF + ⌧

i
� 1� �.

Here, two matrices are neighbouring if they differ by single row of unit norm.
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Difference from this paper We consider low-rank factorization while Problem 2 studied only
low-rank approximation. Moreover, the granularity of privacy we consider is more general than
theirs.

N.2 Low Rank Approximation With Respect to the Spectral Norm

We can also study low-rank approximation when the approximation metric is spectral norm, which
was the focus of Kapralov and Talwar [57], Hardt and Roth [48], and Hardt and Price [46].
Problem 3. (Approximation with respect to the spectral norm). Given parameters ↵, �, ⌧ , a private
m⇥ n matrix A (where m⌧ n) and the target rank k, find a rank-k matrix eAk such that

Pr

h
kA� eAkk  (1 + ↵)kA� [A]kk+ ⌧

i
� 1� �.

Hardt and Price [46] and Jiang et al. [53] consider two matrices as neighboring if they differ in
exactly one entry by at most 1. Kapralov and Talwar [57] considered two matrices as neighboring if
the difference of their spectral norm is at most 1.

Difference from this paper We consider low-rank factorization with respect to the Frobenius norm
while Problem 3 studied only low-rank approximation with respect to the spectral norm. Moreover,
granularity of privacy we consider is more general than theirs.

N.3 Approximating the Right Singular Vectors

Dwork et al. [40] studied the following problem.
Problem 4. Given parameters ↵, �, ⌧ and an m⇥ n private matrix A (where m� n)), compute a
rank-k matrix eBk such that

Pr


kATA� eBkk  min

rank(Bk)k

kATA� [ATA]kk+ ⌧

�
� 1� �,

where k· denotes either the spectral or the Frobenius norm.

Dwork et al. [40] consider two matrices neighbouring if they differ by at most one row. They further
assume that the rows are normalized; therefore, their definition of neighbouring matrices is the same
as Hardt and Roth [47].

Difference from this paper We consider low-rank factorization of both the right and the left
singular vectors while Problem 4 studied low-rank “approximation" of the right singular vectors.
Moreover, granularity of privacy we consider is more general than theirs.

O Improving the Run-time Efficiency of Factorization

If we want a more efficient algorithm, then we can replace S by the product of a v ⇥ v
0 subsampled

randomized Hadamard matrix and a v
0 ⇥ m sparse subspace embedding matrix, also known as

count-sketch matrix [23, 71] (here, v = O(k↵
�3 log(k/↵)) and v

0 = O(k2
↵
�4 log6(k/↵))). Both

of these matrices satisfies Definition 7 [22, Lemma 46]. In that case, we have the following claim,
which is analogous to the result presented in Lemma 5. In other words, we can use the following
claim everywhere where Lemma 5 is used.
Lemma 22. Let S be the product formed by a v ⇥ v

0 subsampled randomized and normalized
Hadamard matrix and a v

0 ⇥m sparse subspace embedding matrix. Then with high probability, for
any v

0 ⇥ n matrix N, we have kS†NkF = kNkF .

Proof. First note that S = (⇧1..v0WD1)(HD2) , where D1 is a v⇥v diagonal matrix with non-zero
entries sampled from Rad(1/2), D2 is an m ⇥m diagonal matrix with non-zero entries sampled
from Rad(1/2), W is a normalized Hadamard matrix, and H is a matrix formed using a random hash
function h : [m]! [v] such that entry Hij = 1 if and only if h(j) = i and 0, otherwise. Therefore,
S† = ((⇧1..v0WD1)(HD2))

†.
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We claim that
p
(v/m)HD2 is a matrix with orthonormal rows. First note that D2 is a diagonal matrix

with only ±1 non-zero entries; therefore, if we prove that
p

v/mH is a matrix with orthonormal
rows, then we are done. Now, consider an entry (HH

T)ij . Let Hi: denote the i-th row of the matrix
H. Note that H is a full row-rank matrix. Therefore, by the construction of the matrix H, we have the
following:

(HH
T)ij =

⇢
0 i 6= j

kHi:k0 i = j
,

where kHi:k0 denotes the number of non-zero entries in the row Hi:. Now, since h(·) is a random
function that maps to every entry in [v] uniformly, E[kHi:k0] = m/v. Chernoff bound now gives
that, with high probability, kHk0 = m/v. Therefore, v/m(HH

T)ij = 1 when i = j. In other words,
with high probability, (HH

T)�1 = (v/m)I.

Now returning to the proof, conditioned on the event that
p

v/mHD2 has orthonormal rows, we
can write S† = (HD2)† (⇧1..v0WD1)

†
. Let eS = (⇧1..v0WD1). Then we can invoke the proof

of Lemma 5 to say that eSN gives a matrix bN with entries of N permuted according to the permutation
⇧1..v0 . Therefore, we have kS†NkF = k(bHD2)† bNkF for some random v ⇥ n Gaussian matrix bN
whose entries are sampled i.i.d. from N (0, 1).

Since D2 is matrix with orthonormal columns, we have (HD2)† bN = D†
2H

† bN. Therefore, with high
probability,

kS†NkF = kH† bNkF = kHT(HH
T)�1 bNkF =

v

m
kHT bNkF .

Now, we can write v

m
kHT bNk2

F
as

v

m
kHT bNk2

F
=

v

m

mX

i=1

nX

j=1

 
vX

k=1

Hk,i
bNk,j

!2

=
v

m

mX

i=1

nX

j=1

bN2
h(i),j = k bNk2

F

which completes the proof of Lemma 22.
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P Source Codes for Our Experiments

We run our algorithm of random matrices of size that is randomly sampled. In other words, all the
private matrices used in our evaluation are dense matrices. As a result, there is no benefit of using
the random projection matrices of Clarkson and Woodruff [23]. Therefore, to ease the overload on
the code, we use random Gaussian matrices with appropriate variance as all our random projection
matrices.

P.1 Source Code for OPTIMAL-SPACE-LRF

import math
from numpy import l i n a l g as l a

def r andomGauss i anMat r ix ( rows , columns , v a r i a n c e ) :
G = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

f o r j in range ( columns ) :
G[ i ] [ j ] = np . random . normal ( 0 , v a r i a n c e )

re turn G

def c o m p u t e S i n g u l a r ( s i n g u l a r , M a t r i x ) :
Sigma = np . z e r o s ( np . shape ( Ma t r i x ) )
i = 0
whi le i < l e n ( Ma t r i x ) and i < l e n ( Ma t r i x [ 0 ] ) :

Sigma [ i ] [ i ] = s i n g u l a r [ i ]
i += 1

re turn Sigma

def lowrank ( k , A ) :
a = np . z e r o s ( np . shape (A) )
Le f t , s i n g u l a r , R i g h t = np . l i n a l g . svd (A, f u l l _ m a t r i c e s =1 , compute_uv =1)
s i n g u l a r m a t r i x = c o m p u t e S i n g u l a r ( s i n g u l a r ,A)
t o p _ r i g h t = R i g h t [ : k , : ]
t o p _ l e f t = L e f t [ : , : k ]
t o p _ s i n g u l a r = s i n g u l a r m a t r i x [ : k , : k ]
a += np . d o t ( np . d o t ( t o p _ l e f t , t o p _ s i n g u l a r ) , t o p _ r i g h t )
re turn a

def Upadhyay ( Ycolumn , Yrow , Z , S , T ) :
U, sc , Vc = np . l i n a l g . svd ( Ycolumn )
Ur , s r , V = np . l i n a l g . svd ( Yrow )
t = l e n ( Yrow )
v = l e n ( S )
U = U [ : , : t ]
V = V [ : t , : ]
TopU = np . d o t ( S , U)
TopV = np . d o t (V, T )
Us , Ss , Vs = np . l i n a l g . svd ( TopU )
Ut , St , Vt = np . l i n a l g . svd ( TopV )
i n n = np . d o t ( Us . T , np . d o t ( Z , Vt . T ) )
inn low = lowrank ( k , i n n )
S i n g u l a r S = c o m p u t e S i n g u l a r ( np . r e c i p r o c a l ( Ss ) , TopU )
S i n g u l a r T = c o m p u t e S i n g u l a r ( np . r e c i p r o c a l ( S t ) , TopV )
o u t e r T = np . d o t ( inn low , np . d o t ( S i n g u l a r T . T , Ut . T ) )
o u t e r S = np . d o t ( Vs . T , np . d o t ( S i n g u l a r S . T , o u t e r T ) )
B = np . d o t (U, np . d o t ( ou t e rS ,V) )
re turn B

def I n i t i a l i z a t i o n (A,m, n , k , a l p h a ) :
Ak = lowrank ( k , A)
t = i n t ( k / a l p h a )
v = i n t ( k / ( a l p h a ⇤⇤ 2 ) )
Ph i = randomGauss i anMat r ix ( n , t , 1 / t )
P s i = randomGauss i anMat r ix ( t ,m, 1 / t )
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S = randomGauss i anMat r ix ( v ,m, 1 / v )
T = randomGauss i anMat r ix ( n , v , 1 / v )
Ycolumn = np . d o t (A, Ph i )
Yrow = np . d o t ( Ps i , A)
Z = np . d o t ( S , np . d o t (A, T ) )
B =Upadhyay ( Ycolumn , Yrow , Z , S , T )
f r o b u p a d h y a y = l a . norm (A � B , ’ f r o ’ )
a c t u a l = l a . norm (A � Ak , ’ f r o ’ )
p r i n t (m, n , k , a lpha , f robupadhyay , a c t u a l )

i =1
n=50
whi le n< 200 :

m=9⇤n+ i n t (50⇤ np . random . r an d ( ) )
a l p h a =0 .25
k=10
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 1 , 5 0 0 0 ) , m, n , k , a l p h a )
I n i t i a l i z a t i o n (5000⇤ np . random . r an d (m, n ) , m, n , k , a l p h a )

m = 14 ⇤ n + i n t (50⇤ np . random . r an d ( ) )
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 1 , 5 0 0 0 ) , m, n , k , a l p h a )
I n i t i a l i z a t i o n (5000⇤ np . random . r an d (m, n ) ,m, n , k , a l p h a )
n=50 + ( i ⇤ i n t (20 ⇤ np . random . r an d ( ) ) )
i = i + 1

P.2 Source Code for Comparing Private Algorithms

In this section, we present our source code to compare our algorithm with that of Hardt and Roth [47].

import math
from numpy import l i n a l g as l a

def r andomGauss i anMat r ix ( rows , columns , v a r i a n c e ) :
G = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

f o r j in range ( columns ) :
G[ i ] [ j ] = np . random . normal ( 0 , v a r i a n c e )

re turn G

def randomMatr ix ( rows , columns , a , b ) :
A = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

f o r j in range ( columns ) :
A[ i ] [ j ] = np . random . r a n d i n t ( a , b )

re turn A

def c o m p u t e S i n g u l a r ( s i n g u l a r , M a t r i x ) :
Sigma = np . z e r o s ( np . shape ( Ma t r i x ) )
i = 0
whi le i < l e n ( Ma t r i x ) and i < l e n ( Ma t r i x [ 0 ] ) :

Sigma [ i ] [ i ] = s i n g u l a r [ i ]
i += 1

re turn Sigma

def lowrank ( k , A ) :
a = np . z e r o s ( np . shape (A) )
Le f t , s i n g u l a r , R i g h t = np . l i n a l g . svd (A, f u l l _ m a t r i c e s =1 , compute_uv =1)
s i n g u l a r m a t r i x = c o m p u t e S i n g u l a r ( s i n g u l a r ,A)
t o p _ r i g h t = R i g h t [ : k , : ]
t o p _ l e f t = L e f t [ : , : k ]
t o p _ s i n g u l a r = s i n g u l a r m a t r i x [ : k , : k ]
a += np . d o t ( np . d o t ( t o p _ l e f t , t o p _ s i n g u l a r ) , t o p _ r i g h t )
re turn a

def Upadhyay ( Ycolumn , Yrow , Z , S , T ) :
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U, sc , Vc = np . l i n a l g . svd ( Ycolumn )
Ur , s r , V = np . l i n a l g . svd ( Yrow )
t = l e n ( Yrow )
v = l e n ( S )
U = U [ : , : t ]
V = V [ : t , : ]
TopU = np . d o t ( S , U)
TopV = np . d o t (V, T )
Us , Ss , Vs = np . l i n a l g . svd ( TopU )
Ut , St , Vt = np . l i n a l g . svd ( TopV )
i n n = np . d o t ( Us . T , np . d o t ( Z , Vt . T ) )
inn low = lowrank ( k , i n n )
S i n g u l a r S = c o m p u t e S i n g u l a r ( np . r e c i p r o c a l ( Ss ) , TopU )
S i n g u l a r T = c o m p u t e S i n g u l a r ( np . r e c i p r o c a l ( S t ) , TopV )
o u t e r T = np . d o t ( inn low , np . d o t ( S i n g u l a r T . T , Ut . T ) )
o u t e r S = np . d o t ( Vs . T , np . d o t ( S i n g u l a r S . T , o u t e r T ) )
B = np . d o t (U, np . d o t ( ou t e rS ,V) )
re turn B

def I n i t i a l i z a t i o n (A,m, n , k , a l p h a ) :
Ak = lowrank ( k , A)
a c t u a l = l a . norm (A � Ak , ’ f r o ’ )
HR = Hard tRoth (A,m, n , k )
frobHR = l a . norm (A � HR, ’ f r o ’ )
m = m+n
e p s i l o n = 1
d e l t a = 1 / (m)
t = i n t ( k / a l p h a )
v = i n t ( k / ( a l p h a ⇤⇤ 2 ) )
Ph i = randomGauss i anMat r ix ( n , t , 1 / t )
P s i = randomGauss i anMat r ix ( t ,m, 1 / t )
S = randomGauss i anMat r ix ( v ,m, 1 / v )
T = randomGauss i anMat r ix ( n , v , 1 / v )
s igma = 4⇤math . l o g ( 1 / d e l t a )⇤ math . s q r t ( t ⇤math . l o g ( 1 / d e l t a ) ) / e p s i l o n
Ahat = A
s c a l e d I = sigma⇤np . i d e n t i t y ( n )
f o r i in range ( n ) :

Ahat = np . v s t a c k ( [ Ahat , s c a l e d I [ i ] ] )
f o r i in range ( n ) :

A = np . v s t a c k ( [ A, s c a l e d I [ i ] � s c a l e d I [ i ] ] )
rho1 = math . s q r t (�4⇤math . l o g ( d e l t a ) / e p s i l o n ⇤⇤2)
rho2 = math . s q r t (�6⇤math . l o g ( d e l t a ) / e p s i l o n ⇤⇤2)
Ycolumn = np . d o t ( Ahat , Ph i ) + randomGauss i anMat r ix (m, t , rho1 )
Yrow = np . d o t ( Ps i , Ahat )
Z = np . d o t ( S , np . d o t ( Ahat , T ) ) + randomGauss i anMat r ix ( v , v , rho2 )
L = np . d o t ( Yrow , T )
N = np . d o t ( S , Ycolumn )
B =Upadhyay ( Ycolumn , Yrow , Z , S , T )
f r o b u p a d h y a y = l a . norm ( Ahat � B , ’ f r o ’ )
p r i n t (m, n , k , a lpha , f robupadhyay , frobHR , a c t u a l )

def Hard tRoth (A,m, n , k ) :
Omega = randomGauss i anMat r ix ( n , 2⇤ k , 1 )
Y = np . d o t (A, Omega )
e p s i l o n = 1
d e l t a = 1 / (m)
sigma = � 32 ⇤ k ⇤ math . l o g ( d e l t a ) / e p s i l o n ⇤⇤2
N = randomGauss i anMat r ix (m, 2⇤k , s igma )
Y += N
Q = np . z e r o s (Y. shape )
f o r i in range (Y. shape [ 1 ] ) :

avec = Y [ : , i ]
q = avec
f o r j in range ( i ) :

q = q � np . d o t ( avec , Q [ : , j ] ) ⇤ Q [ : , j ]
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Q [ : , i ] = q / l a . norm ( q )
a = Q[ 0 ] [ 0 ]
f o r i in range (Y. shape [ 0 ] ) :

f o r j in range (Y. shape [ 1 ] ) :
i f a < Q[ i ] [ j ] :

a = Q[ i ] [ j ]
rho = 32⇤ ( a ⇤⇤2)⇤ k⇤math . l o g (8⇤ k / d e l t a )⇤ math . l o g ( 1 / d e l t a ) / e p s i l o n ⇤⇤2
i n n e r = np . d o t (Q. T , A) + randomGauss i anMat r ix (2⇤k , n , rho )
o u t p u t = np . d o t (Q, i n n e r )
re turn o u t p u t

i =1
n=50
whi le n < 200 :

m = 9 ⇤ n + i n t (50⇤ np . random . r and ( ) )
a l p h a = 0 . 2 5
k = 10
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 1 , 5 0 0 0 ) , m, n , k , a l p h a )
I n i t i a l i z a t i o n (5000⇤ np . random . r an d (m, n ) , m, n , k , a l p h a )

m = 14 ⇤ n + i n t (50⇤ np . random . r an d ( ) )
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 1 , 5 0 0 0 ) , m, n , k , a l p h a )
I n i t i a l i z a t i o n (5000⇤ np . random . r an d (m, n ) ,m, n , k , a l p h a )
n = 50 + ( i ⇤ i n t (20 ⇤ np . random . r and ( ) ) )
i = i + 1

P.3 Source Code for Analyzing Additive Error for OPTIMAL-SPACE-PRIVATE-LRF

import numpy as np
import math
from numpy import l i n a l g as l a

def r andomGauss i anMat r ix ( rows , columns , v a r i a n c e ) :
G = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

f o r j in range ( columns ) :
G[ i ] [ j ] = np . random . normal ( 0 , v a r i a n c e )

re turn G

def r andomMat r ixUni t ( rows , columns , a , b ) :
re turn ( b�a ) ⇤⇤ np . random . r an d ( rows , columns )

def randomMatr ix ( rows , columns , k , a , b ) :
A = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

a = 0
f o r j in range ( k ) :

A[ i ] [ j ] = np . random . r a n d i n t ( a , b )
re turn A

def c o m p u t e S i n g u l a r ( s i n g u l a r , M a t r i x ) :
Sigma = np . z e r o s ( np . shape ( Ma t r i x ) )
i = 0
whi le i < l e n ( Ma t r i x ) and i < l e n ( Ma t r i x [ 0 ] ) :

Sigma [ i ] [ i ] = s i n g u l a r [ i ]
i += 1

re turn Sigma

def lowrank ( k , A ) :
a = np . z e r o s ( np . shape (A) )
Le f t , s i n g u l a r , R i g h t = np . l i n a l g . svd (A, f u l l _ m a t r i c e s =1 , compute_uv =1)
s i n g u l a r m a t r i x = c o m p u t e S i n g u l a r ( s i n g u l a r , A)
t o p _ r i g h t = R i g h t [ : k , : ]
t o p _ l e f t = L e f t [ : , : k ]

48



t o p _ s i n g u l a r = s i n g u l a r m a t r i x [ : k , : k ]
a += np . d o t ( np . d o t ( t o p _ l e f t , t o p _ s i n g u l a r ) , t o p _ r i g h t )
re turn a

def Upadhyay (A, m, n , k , a lpha , e p s i l o n , d e l t a ) :
m = m + n
t = i n t ( 0 . 0 5 ⇤ k / a l p h a )
v = i n t ( 0 . 0 5 ⇤ k / ( a l p h a ⇤⇤ 2 ) )
Ph i = randomGauss i anMat r ix ( n , t , 1 / t )
P s i = randomGauss i anMat r ix ( t , m, 1 / t )
S = randomGauss i anMat r ix ( v , m, 1 / v )
T = randomGauss i anMat r ix ( n , v , 1 / v )
s igma =4⇤math . l o g (1 / d e l t a )⇤ math . s q r t ( t ⇤math . l o g (1 / d e l t a ) ) / e p s i l o n
Ahat = A
s c a l e d I = sigma ⇤ np . i d e n t i t y ( n )
f o r i in range ( n ) :

Ahat = np . v s t a c k ( [ Ahat , s c a l e d I [ i ] ] )
f o r i in range ( n ) :

A = np . v s t a c k ( [ A, s c a l e d I [ i ] � s c a l e d I [ i ] ] )
rho1 = math . s q r t (�4 ⇤ math . l o g ( d e l t a ) / e p s i l o n ⇤⇤ 2)
rho2 = math . s q r t (�6 ⇤ math . l o g ( d e l t a ) / e p s i l o n ⇤⇤ 2)
Ycolumn = np . d o t ( Ahat , Ph i ) + randomGauss i anMat r ix (m, t , rho1 )
Yrow = np . d o t ( Ps i , Ahat )
Z = np . d o t ( S , np . d o t ( Ahat , T ) ) + randomGauss i anMat r ix ( v , v , rho2 )
U, sc , Vc = np . l i n a l g . svd ( Ycolumn )
Ur , s r , V = np . l i n a l g . svd ( Yrow )
U = U [ : , : t ]
V = V [ : t , : ]
TopU = np . d o t ( S , U)
TopV = np . d o t (V, T )
Us , Ss , Vs = np . l i n a l g . svd ( TopU )
Ut , St , Vt = np . l i n a l g . svd ( TopV )
i n n = np . d o t ( Us . T , np . d o t ( Z , Vt . T ) )
inn low = lowrank ( k , i n n )
S i n g u l a r S = c o m p u t e S i n g u l a r ( np . r e c i p r o c a l ( Ss ) , TopU )
S i n g u l a r T = c o m p u t e S i n g u l a r ( np . r e c i p r o c a l ( S t ) , TopV )
o u t e r T = np . d o t ( innlow , np . d o t ( S i n g u l a r T . T , Ut . T ) )
o u t e r S = np . d o t ( Vs . T , np . d o t ( S i n g u l a r S . T , o u t e r T ) )
B = np . d o t (U, np . d o t ( ou t e rS , V) )
e x p e c t e d =sigma ⇤ math . s q r t ( n ) + math . s q r t (�k ⇤m ⇤ math . l o g ( d e l t a ) )
re turn (B , Ahat , e x p e c t e d )

def Hard tRoth (A, m, n , k , e p s i l o n , d e l t a ) :
Omega = randomGauss i anMat r ix ( n , 2 ⇤ k , 1 )
Y = np . d o t (A, Omega )
e p s i l o n = 1
d e l t a = 1 / (m)
sigma = � 32 ⇤ k ⇤ math . l o g ( d e l t a ) / e p s i l o n ⇤⇤ 2
N = randomGauss i anMat r ix (m, 2 ⇤ k , s igma )
Y += N
Q = np . z e r o s (Y. shape )
f o r i in range (Y. shape [ 1 ] ) :

avec = Y [ : , i ]
q = avec
f o r j in range ( i ) :

q = q � np . d o t ( avec , Q [ : , j ] ) ⇤ Q [ : , j ]

Q [ : , i ] = q / l a . norm ( q )
a = Q[ 0 ] [ 0 ]
f o r i in range (Y. shape [ 0 ] ) :

f o r j in range (Y. shape [ 1 ] ) :
i f a < Q[ i ] [ j ] :

a = Q[ i ] [ j ]
rho = 32⇤ ( a ⇤⇤2)⇤ k⇤math . l o g (8⇤ k / d e l t a )⇤ math . l o g ( 1 / d e l t a ) / e p s i l o n ⇤⇤2
i n n e r = np . d o t (Q. T , A) + randomGauss i anMat r ix (2 ⇤ k , n , rho )
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o u t p u t = np . d o t (Q, i n n e r )
re turn o u t p u t

def I n i t i a l i z a t i o n (m, n , k , a l p h a ) :
e p s i l o n = 1
d e l t a = 1 / (m ⇤⇤ 2)
A = randomMatr ix (m, n , k , 1 , 2 0 )
Ak = lowrank ( k , A)
a c t u a l = l a . norm (A � Ak , ’ f r o ’ )

HR = Hard tRoth (A, m, n , k , e p s i l o n , d e l t a )
frobHR = l a . norm (A � HR, ’ f r o ’ )

( Upadhyay16 , Ahat , e x p e c t e d )= Upadhyay (A,m, n , k , a lpha , e p s i l o n , d e l t a )
f r o b u p a d h y a y = l a . norm ( Ahat � Upadhyay16 , ’ f r o ’ )

p r i n t ( expec t ed , f robupadhyay , frobHR )

#Use t h i s p a r t o f t h e code f o r v a r y i n g d i m e n s i o n
i = 1
n = 50
whi le n < 200 :

m = 9 ⇤ n + i n t (50 ⇤ np . random . r an d ( ) )
a l p h a = 0 . 1
k = 10
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 0 , 5 ) , m, n , k , a l p h a )

m = 14 ⇤ n + i n t (5 ⇤ np . random . r an d ( ) )
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 0 , 5 ) , m, n , k , a l p h a )
n = 50 + ( i ⇤ i n t (5 ⇤ np . random . r an d ( ) ) )
i = i + 1

#Use t h i s p a r t o f t h e code f o r v a r y i n g a lpha
n=200
a l p h a = 0 . 1 0
whi le a l p h a < 0 . 2 5 :

m = 9 ⇤ n
k = 10
I n i t i a l i z a t i o n (m, n , k , a l p h a )

m = 14 ⇤ n
I n i t i a l i z a t i o n (m, n , k , a l p h a )
a l p h a = a l p h a + 0 . 0 2

#Use t h i s p a r t o f t h e code f o r v a r y i n g k
n=50
k = 10
a l p h a = 0 . 2 5
whi le k <20:

m = 9 ⇤ n
I n i t i a l i z a t i o n (m, n , k , a l p h a )

m = 14 ⇤ n
I n i t i a l i z a t i o n (m, n , k , a l p h a )
k +=1

P.4 Source Code for PRIVATE-LOCAL-LRF

import math
from numpy import l i n a l g as l a

def r andomGauss i anMat r ix ( rows , columns , v a r i a n c e ) :
G = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

f o r j in range ( columns ) :
G[ i ] [ j ] = np . random . normal ( 0 , v a r i a n c e )

re turn G
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def randomMatr ix ( rows , columns , a , b ) :
A = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

f o r j in range ( columns ) :
A[ i ] [ j ] = np . random . r a n d i n t ( a , b )

re turn A

def lowrank ( k , A ) :
a = np . z e r o s ( np . shape (A) )
Le f t , s i n g u l a r , R i g h t = np . l i n a l g . svd (A, f u l l _ m a t r i c e s =1 , compute_uv =1)
t o p _ l e f t = L e f t [ : , : k ]
a += np . d o t ( np . d o t ( t o p _ l e f t , t o p _ l e f t . T ) ,A)
re turn a

def Loca l (A, Ycolumn , L , Z , S ) :
N = np . d o t ( S , Ycolumn )
Un , Sn , Vn = np . l i n a l g . svd (N)
Ul , Sl , Vl = np . l i n a l g . svd ( L )
i n n e r = np . d o t ( Un , np . d o t ( Un . T , np . d o t ( Z , np . d o t ( Vl . T , Vl ) ) ) )
i n n e r l o w r a n k = lowrank ( k , i n n e r )
o u t p u t = np . d o t ( l a . p inv (N) , np . d o t ( i n n e r l o w r a n k , l a . p inv ( L ) ) )
U, s , V = np . l i n a l g . svd ( o u t p u t )
Y = np . d o t ( Ycolumn , U)
Q = np . z e r o s (Y. shape )
f o r i in range (Y. shape [ 1 ] ) :

avec = Y [ : , i ]
q = avec
f o r j in range ( i ) :

q = q � np . d o t ( avec , Q [ : , j ] ) ⇤ Q [ : , j ]
Q [ : , i ] = q / l a . norm ( q )

B = np . d o t (Q, np . d o t (Q. T ,A) )
re turn B

def I n i t i a l i z a t i o n (A,m, n , k , a l p h a ) :
t = i n t ( k / ( a l p h a ) )
v = i n t ( k / ( a l p h a ⇤⇤ 2 ) )
Ak = lowrank ( k , A)
a c t u a l = l a . norm (A � Ak , ’ f r o ’ )
e p s i l o n = 0 . 1
d e l t a = 1 / (m⇤⇤10)
Ph i = randomGauss i anMat r ix ( n , t , 1 / t )
P s i = randomGauss i anMat r ix ( t , m, 1 / t )
S = randomGauss i anMat r ix ( v , m, 1 / v )
T = randomGauss i anMat r ix ( n , v , 1 / v )
rho1 = math . s q r t (�4 ⇤ math . l o g ( d e l t a ) / e p s i l o n ⇤⇤2)
rho2 = m ⇤ math . s q r t (�6 ⇤ math . l o g ( d e l t a ) / e p s i l o n ⇤⇤2)
Ycolumn = np . d o t (A, Ph i ) + randomGauss i anMat r ix (m, t , rho1 )
Yrow = np . d o t ( np . d o t ( Ps i , A) , T ) + randomGauss i anMat r ix ( t , v , rho2 )
Z = np . d o t ( S , np . d o t (A, T ) ) + randomGauss i anMat r ix ( v , v , rho2 )
B = Loca l (A, Ycolumn , Yrow , Z , S )
f r o b u p a d h y a y = l a . norm (A � B , ’ f r o ’ )
p r i n t (m, n , k , a lpha , f robupadhyay , a c t u a l )

i =1
n=50
whi le n < 200 :

m = 9 ⇤ n + i n t (50⇤ np . random . r and ( ) )
a l p h a = 0 . 2 5
k = 10
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 1 , 5 0 0 0 ) , m, n , k , a l p h a )
I n i t i a l i z a t i o n (5000⇤ np . random . r an d (m, n ) , m, n , k , a l p h a )

m = 14 ⇤ n + i n t (50⇤ np . random . r an d ( ) )
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 1 , 5 0 0 0 ) , m, n , k , a l p h a )
I n i t i a l i z a t i o n (5000⇤ np . random . r an d (m, n ) ,m, n , k , a l p h a )
n = 50 + ( i ⇤ i n t (20 ⇤ np . random . r and ( ) ) )
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i = i + 1

P.5 Source Code for Analyzing Additive Error for PRIVATE-LOCAL-LRF

import math
from numpy import l i n a l g as l a

def r andomGauss i anMat r ix ( rows , columns , v a r i a n c e ) :
G = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

f o r j in range ( columns ) :
G[ i ] [ j ] = np . random . normal ( 0 , v a r i a n c e )

re turn G

def randomMatr ix ( rows , columns , k , a , b ) :
A = np . z e r o s ( ( rows , columns ) )
f o r i in range ( rows ) :

f o r j in range ( k ) :
A[ i ] [ j ] = np . random . r a n d i n t ( a , b )

re turn A

def lowrank ( k , A ) :
a = np . z e r o s ( np . shape (A) )
Le f t , s i n g u l a r , R i g h t = np . l i n a l g . svd (A, f u l l _ m a t r i c e s =1 , compute_uv =1)
t o p _ l e f t = L e f t [ : , : k ]
a += np . d o t ( np . d o t ( t o p _ l e f t , t o p _ l e f t . T ) ,A)
re turn a

def Loca l (A, Ycolumn , L , Z , S ) :
N = np . d o t ( S , Ycolumn )
Un , Sn , Vn = np . l i n a l g . svd (N)
Ul , Sl , Vl = np . l i n a l g . svd ( L )
i n n e r = np . d o t ( Un , np . d o t ( Un . T , np . d o t ( Z , np . d o t ( Vl . T , Vl ) ) ) )
i n n e r l o w r a n k = lowrank ( k , i n n e r )
o u t p u t = np . d o t ( np . l i n a l g . p inv (N) , np . d o t ( i n n e r l o w r a n k , np . l i n a l g . p inv ( L ) ) )
U, s , V = np . l i n a l g . svd ( o u t p u t )
Y = np . d o t ( Ycolumn , U)
Q = np . z e r o s (Y. shape )
f o r i in range (Y. shape [ 1 ] ) :

avec = Y [ : , i ]
q = avec
f o r j in range ( i ) :

q = q � np . d o t ( avec , Q [ : , j ] ) ⇤ Q [ : , j ]

Q [ : , i ] = q / l a . norm ( q )
B = np . d o t (Q, np . d o t (Q. T ,A) )
re turn B

def I n i t i a l i z a t i o n (m, n , k , a l p h a ) :
t = i n t ( 0 . 0 5⇤ k / ( a l p h a ) )
v = i n t ( 0 . 0 2⇤ k / ( a l p h a ⇤⇤ 2 ) )
A = randomMatr ix (m, n , k , 1 , 2 0 )
Ak = lowrank ( k , A)
a c t u a l = l a . norm (A � Ak , ’ f r o ’ )
e p s i l o n = 0 . 1
d e l t a = 1 / (m⇤⇤2)
Ph i = randomGauss i anMat r ix ( n , t , 1 / t )
P s i = randomGauss i anMat r ix ( t , m, 1 / t )
S = randomGauss i anMat r ix ( v , m, 1 / v )
T = randomGauss i anMat r ix ( n , v , 1 / v )
rho1 = math . s q r t (�4 ⇤ math . l o g ( d e l t a ) / e p s i l o n ⇤⇤2)
rho2 = m ⇤ math . s q r t (�6 ⇤ math . l o g ( d e l t a ) / e p s i l o n ⇤⇤2)

Ycolumn = np . d o t (A, Ph i ) + randomGauss i anMat r ix (m, t , rho1 )

52



Yrow = np . d o t ( np . d o t ( Ps i , A) , T ) + randomGauss i anMat r ix ( t , v , rho2 )
Z = np . d o t ( S , np . d o t (A, T ) ) + randomGauss i anMat r ix ( v , v , rho2 )
B = Loca l (A, Ycolumn , Yrow , Z , S )
f r o b u p a d h y a y = l a . norm (A � B , ’ f r o ’ )
e x p e c t e d = v ⇤ math . s q r t (�m ⇤ math . l o g ( d e l t a ) ) / e p s i l o n
p r i n t ( f robupadhyay , e x p e c t e d )

#Use t h i s p a r t o f t h e code f o r v a r y i n g d i m e n s i o n
i = 1
n = 50
whi le n < 200 :

m = 9 ⇤ n + i n t (50 ⇤ np . random . r an d ( ) )
a l p h a = 0 . 1
k = 10
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 0 , 5 ) , m, n , k , a l p h a )

m = 14 ⇤ n + i n t (5 ⇤ np . random . r an d ( ) )
I n i t i a l i z a t i o n ( randomMatr ix (m, n , 0 , 5 ) , m, n , k , a l p h a )
n = 50 + ( i ⇤ i n t (5 ⇤ np . random . r an d ( ) ) )
i = i + 1

#Use t h i s p a r t o f t h e code f o r v a r y i n g a lpha
i =1
n=200
a l p h a = 0 . 1 0
whi le a l p h a < 0 . 2 5 :

m = 9 ⇤ n
k = 10
I n i t i a l i z a t i o n (m, n , k , a l p h a )

m = 14 ⇤ n
I n i t i a l i z a t i o n (m, n , k , a l p h a )
a l p h a = a l p h a + 0 . 0 2

#Use t h i s p a r t o f t h e code f o r v a r y i n g k
n=50
k = 10
a l p h a = 0 . 2 5
whi le k <20:

m = 9 ⇤ n
I n i t i a l i z a t i o n (m, n , k , a l p h a )

m = 14 ⇤ n
I n i t i a l i z a t i o n (m, n , k , a l p h a )
k +=1
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