
A Aggregated Exponential Family Models

Consider an observation model of the form

p(y|θ) = exp

(
yθ − c(θ)

τ

)
h(y, τ), (15)

where response y is one-dimensional, θ is a natural parameter corresponding to the statistic y, τ
is a dispersion parameter, and h(y, τ) is base measure. For simplicity, we will assume that natural
parameters corresponding to the other parts of the sufficient statistic are fixed and folded into the base
measure. Let η be the corresponding mean parameter, i.e.

η = Eθy =

∫
yp(y|θ)dy

and θ = F (η) be the link function mapping from mean to the natural parameters and G(θ) its inverse.
We wish to model the mean parameter η = η(x) using a Gaussian process on a domain X together
with a function Ψ which transforms the GP value to the natural parameter space, i.e.

η(x) = Ψ(f(x)), f ∼ GP(µ, k). (16)

For example, the mean parameter for some models is restricted to the positive part of the real line,
while the GP values cover the whole real line. We will consider the following examples:

• Normal (with fixed variance). F = G = idenity and Ψ can be identity, too, as there are no
restrictions on the mean parameter space.

• Poisson. F (η) = log η, G(θ) = eθ. Ψ should take a positive value, so we consider
Ψ(v) = ev or Ψ(v) = v2.
• Exponential. p(y|η) = exp(−y/η)/η and θ = −η, F (η) = −1/η, G(θ) = −1/θ. Ψ

should take a positive value, so we consider Ψ(v) = ev or Ψ(v) = v2

Note that the link function F is concave for all the examples above.

A.1 Bag model

We will consider the aggregation in the mean parameter space. Namely, let y1, . . . , yn be n indepen-
dent aggregate responses for each of the n bags of covariates xa = {xa1 , . . . , xaNa

}, a = 1, . . . , n.
We assume the following aggregation model:

ya ∼ p(y|ηa), ηa =

Na∑
i=1

wai η
a
i =

Na∑
i=1

wai Ψ(f(xai )), a = 1, . . . , n. (17)

where wai are fixed weights to adjust the scales among the individuals and the bag (e.g., adjusting for
population size).

We also can model individual (unobserved) variables yai (i = 1, . . . , Na), which follow:

yai ∼ p(y|ηai ), ηai = Ψ(f(xai )), i = 1, . . . , Na, a = 1, . . . , n. (18)

Note that we consider aggregation in mean parameters of responses, not in the responses themselves.
If we consider a case where underlying individual responses yai aggregate to ya as a weighted
sum, the form of the bag likelihood and individual likelihood would be different unless we restrict
attention to distribution families which are closed under both scaling and convolution. However,
when aggregation occurs in the mean parameter space, the form of the bag likelihood and individual
likelihood is always the same. This corresponds to the following measurement process:

• Each individual has a mean parameter ηai - if it were possible to sample a response for that
particular individual, we would obtain a sample yai ∼ p(·|ηai )

• However, we cannot sample the individual and we can only observe a bag response. But in
that case, only a single bag response is taken and depends on all individuals simultaneously.
Each individual contributes in terms of an increase in a mean bag response, but this measure-
ment process is different from the two-stage procedure by which we aggregate individual
responses.
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A.2 Marginal likelihood and ELBO

Let Y = (y1, . . . , yn) (bag observations). With the inducing points u = f(W ), the marginal
likelihood is

p(Y ) =

∫ ∫ n∏
a=1

p(ya|ηa)p(f |u)p(u)dudf. (19)

The evidence lower bound can be derived as

log p(Y ) = log

∫ ∫ { n∏
a=1

p(ya|ηa)
p(u)

q(u)

}
p(f |u)q(u)dudf

≥
∫ ∫

log
{ n∏
a=1

p(ya|ηa)
p(u)

q(u)

}
p(f |u)q(u)dudf

=

n∑
a=1

ya

τ

∫
F
(∑

i

wai Ψ(f(xai ))
)
q(f)df −

∫
c
(
F
(∑

i

wai Ψ(f(xai ))
))
q(f)df

−
∫
q(u) log

q(u)

p(u)
du, (20)

where q(f) =
∫
p(f |u)q(u)du.

By setting the variational distribution q(u) as Gaussian, the third term is tractable. The first and
second terms are however tractable only in limited cases. The cases we develop are the Poisson bag
model, described in the main text, as well as the normal bag model and the exponential bag model,
described below.

A.3 Normal bag model

Here we have that F is identity and c(θ) = θ2/2, which makes both the first and the second terms
tractable with the choice of Ψ(v) = v. However, if we consider only the aggregation in the mean
parameters as above, the model essentially ignores variance on the individual level. Hence, here we
opt for a different and more flexible approach, utilising the fact that normal family is closed under
convolutions. Consider a bag a of items {xai }

Na
i=1. Each item xai is assumed to have a weight wai . At

the individual level, we model the (unobserved) responses yai as

yai |xai ∼ N
(
wai µ

a
i , (w

a
i )

2
τai

)
(21)

where µai = µ(xai ), thus µai is a mean parameter per unit weight corresponding to the item xai and
it is assumed to be a function of both xai . Similarly, τai is a variance parameter per unit weight. At
the bag level, we consider the following model for the observed aggregate response ya, assuming
conditional independence of individual responses given covariates xa = {xa1 , . . . , xaNa

}:

ya =

Na∑
i=1

yai , i.e. ya|xa ∼ N (waµa, (wa)2τa), µa =

Na∑
i=1

wai
wa

µai , τ
a =

∑Na

i=1(wai )2τai
(wa)2

(22)

where µa and τa are the mean and variance parameters per unit weight of the whole bag a and
wa =

∑Na

i=1 w
a
i is the total weight of bag a. Note under this model formulation, the variance

parameter is also aggregated unlike previously. Although we can take τai to also be a function
of the covariates, here for simplicity, we take τai = τa to be constant per bag (note the abuse of
notation). We can now compute the negative log-likelihood (NLL) across bags (assuming conditional
independence given the xa):

`0 = − log [Πn
a=1p(y

a|xa)] =
1

2

n∑
a=1

log

(
2πτa

Na∑
i=1

(wai )2

)
+

(
ya −

∑Na

i=1 w
a
i µ

a
i

)2

∑Na

i=1(wai )2τa

 (23)

where µai = f(xai ) is the function we are interested in, and τa are the variance parameters to be
learnt.
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We can now consider the lower bound to the marginal likelihood as below (assuming wai = 1 here to
simplify notation, while the analogous expression with non-uniform weights is straightforward):

log p(y|Θ) = log

∫ ∫
p(y, f, u|X,W,Θ)dfdu

= log

∫ ∫ ( n∏
a=1

1√
2πNaτa

exp

(
−

(ya −
∑Na

i=1 f(xai ))2

2Naτa

))
p(u|W )

q(u)
p(f |u)q(u)dfdu

≥
∫ ∫

log

{
n∏
a=1

1√
2πNaτa

exp

(
−

(ya −
∑Na

i=1 f(xai ))2

2Naτa

)
p(u|W )

q(u)

}
p(f |u)q(u)dfdu

= −1

2

∑
a

∫ ∫ 
(ya)2 − 2ya

∑Na

i=1 f(xai ) +
(∑Na

i=1 f(xai )
)2

Naτa

 p(f |u)q(u)dfdu

− 1

2

∑
a

log(2πNaτ
a)−

∫
q(u) log

q(u)

p(u|W )
du. (24)

Using again a Gaussian distribution for q(u), we have q(f) =
∫
p(f |u)q(u)du, which is a normal

distribution and let qa(fa) be its marginal normal distribution of fa = (f(xa1), . . . , f(xaNa
)) with

mean and covariance given by ma and Sa as before in (9).

Then all expectations with respect to q(f) are tractable and the ELBO is simply

L(q, θ) = −1

2

n∑
a=1

{
(ya)2 − 2ya1>ma + 1>

(
Sa +ma(ma)>

)
1

Naτa

}
− 1

2

∑
a

log(2πNaτ
a)

−KL(q(u)||p(u|W )). (25)

A.4 Exponential bag model

In this case, we have F (η) = −1/η. We can apply the similar argument as in Lemma 1. For any
αi > 0 with

∑
i αi = 1, by the concavity of F ,∫
F

(∑
i

wiΨ(vi)

)
q(vi)dvi =

∫
F

(∑
i

αiwi/αiΨ(vi)

)
q(vi)dvi

≥
∫ ∑

i

αiF (wi/αiΨ(vi)) q(vi)dvi

=
∑
i

αi

∫
F (wi/αiΨ(vi)) q(vi)dvi.

For F (η) = −1/η, the last line is equal to∑
i

α2
i

wi

∫
1

Ψ(vi)
q(vi)dvi.

When using a normal q, this is tractable for several choices of Ψ including ev and v2. If we let
ξi :=

∫
1

Ψ(vi)
q(vi)dvi, and maximize ∑

i

α2
i

ξi
wi

under the constraint
∑
i αi = 1, we obtain

αi =
(wi/ξi)∑
`(wi/ξi)

.
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Finally, we have a lower bound∫
F

(∑
i

wiΨ(vi)

)
q(vi)dvi ≥ −

∑
i(wi/ξi)∑
i(wi/ξi)

2
(26)

where
ξi =

∫
1

Ψ(vi)
q(vi)dvi.

which is tractable for a Gaussian variational family. Also with an explicit form of Ψ, it is easy to take
the derivatives of the resulting lower bound with respect to the variational parameters in q(v).

B Alternative approaches

Constant For the Poisson model, we can take λai = λac , a constant rate across the bag, then:

λ̂ac =
ya

pa

hence the individual level predictive distribution is the form yai ∼ Poisson(λ̂ac ), and for unseen bag
r, λ̂bag

c = 1∑n
a=1 p

a

∑n
a=1 y

a, with predictive distribution given by yr ∼ Poisson(prλ̂bag
c ).

bag-pixel: Bag as Individual Another baseline is to train a model from the weighted average of
the covariates, given by xa =

∑Na

i=1
pai
pax

a
i in the Poisson case, and xa =

∑Na

i=1
wa

i

wax
a
i in the normal

case. The purpose of this baseline is to demonstrate that modelling at the individual level is important
during training. Since we now have labels and covariates at the bag level, we can consider the
following model:

ya|xa ∼ Poisson(paλ(xa))
with λ(xa) = Ψ(f(xa)) for the Poisson model. For the normal model, we have:

ya|xa ∼ Normal(waµ(xa), (wa)2τ)

where µ(xa) = f(xa) and τ is a parameter to be learnt (assuming constant across bags). Now we
observe that these models are identical to the individual model, except for a difference in indexing.
Hence, after learning the function f at the bag level, we can transfer the model to the individual
level. Essentially here we have created fake individual level instances by aggregation of individual
covariates inside a bag.

Nyström: Bayesian MAP for Poisson regression on explicit feature maps Instead of the pos-
terior based on the model (6), we can also consider an explicit feature map in order to directly
construct a MAP estimator. While this method does not provide posterior uncertainty over λai , it does
provide an interesting connection to the settings we have considered and also manifold-regularized
neural networks, as discussed below. Let Kzz be the covariance function defined on covariates
{z1, . . . zn}, and consider its low rank approximation Kzz ≈ kzWK

−1
WWkWz with landmark points

W = {w`}m`=1 and kzW = (k(z, w1), . . . , k(z, w`))
T . By using landmark points W , we have

avoided computation of the full kernel matrix, reducing computational complexity. Under this setup,
we have that Kzz ≈ ΦzΦ

>
z , with Φz = kzWK

− 1
2

WW being the explicit (Nyström) feature map. Using
this explicit feature map Φ, we have the following model:

fai = φai β, β ∼ N (0, γ2I)

ya|xa ∼ Poisson

(
Na∑
i=1

pai λ(xai )

)
, λ(xai ) = Ψ(fai ),

where γ is a prior parameter and φai is the corresponding ith row of Φxa . We can then consider a
MAP estimator of the model coefficients β:

β̂ = argmaxβ log[Πn
a=1p(y

a|β,xa)] + log p(β). (27)
This essentially recovers the same model as in (3) with the standard l2 loss regularising the complexity
of the function. This model can be thought of in several different ways, for example as a weight space
view of the GP ([26] for an overview), or as a MAP of the Subset of Regressors (SoR) approximation
[27] of the GP when σ = 1. Additional we may include manifold regulariser as part of the prior, see
discussion below about neural network.
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NN: Manifold-regularized neural networks The next approach we consider is a parametric model
for f as in [13], and search the best parameter to minimize negative log-likelihood `0 across bags. This
paper considers a neural network with parameters θ for the model f , and uses the back-propagation to
learn θ and hence individual level model f . However, since we only have aggregated observations at
the bag level, but lots of individual covariate information, it is useful to incorporate this information
also, by enforcing smoothness on the data manifold given by the unlabelled data. To do this, following
[13] and [22], we pursue a semisupervised view of the problem and include an additional manifold
regularisation term [2] (rescaling with N2

total during implementation):

`1 =

Ntotal∑
w=1

Ntotal∑
u=1

(fu − fw)2kL(xu, xw) = f>L f (28)

where we have suppressed the bag index, Ntotal represents the total number of individuals, kL(·, ·) is
some user-specified kernel10, f = [f1, . . . , fNtotal ]

>, L is the Laplacian defined as L = diag(KL1
>)−

KL, where 1 is just [1, . . . , 1] and KL is a kernel matrix. Although this term involves calculation of a
kernel matrix across individuals, in practice we consider stochastic gradient descent (SGD) and also
random Fourier features [25] or Nyström approximation (see Appendix C), with scale parameter λ1

to control the strength of the regularisation. Similarly, one can also consider manifold regularisation
at the bag level, if bag-level covariates/embeddings are available, for further details, see Appendix D.

In fact, the same regularisation can be applied to the MAP estimation with the explicit feature maps.
This is equivalent to having a prior β ∼ N (0, σ2I + (λ1Φ>LΦ)−1) that is data dependent and
incorporates the structure of the manifold 11.

For implementation, we consider a one hidden layer neural network, with also an output layer, for a
fair comparison to the Nyström approach. For activation function, we consider the Rectified Linear
Unit (ReLU).

MAP estimation of GP We introduce p(f, u) = p(f |u)p(u|W ) and consider the posterior given
by p(u|f, y, w, θ), where here the conditional distribution f |u is given by:

f |u ∼ GP (µ̃u, K̃), (29)

µ̃(z) = µz + kzWK
−1
WW (u− µW ), K̃(z, z′) = k(z, z′)− kzWK

−1
WWkWz′

where kzW = (k(z,W1), . . . , k(z,W`))
T . Using Bayes rule, we obtain:

log[p(u|f, y, w)] = log[p(y|f, u)p(f, u|X,W )]

= log[p(y|f)p(f |u,X)p(u|W )]

=

n∑
a=1

ya log(paλa) +

n∑
a=1

paλa −
n∑
a=1

log(ya!) + log(p(f |u,X)) + log(p(u|W ))

where p(f |u,X) ∼ N (µ̃u, K̃) given by above, and p(u|W ) ∼ N (µW ,ΣWW ), i.e.

log p(f |u,X)+log p(u|W ) = −1

2
(log(|K̃||ΣWW |)+(f−µ̃u)>K̃−1(f−µ̃u)+(u−µW )>Σ−1

WW (u−µW )

(30)
Here, we can not perform SGD, as the latter terms does not decompose into a sum over the data.
More importantly, here we require the computation of K̃, which contains the kernel matrix K, even
after the use of landmarks. This direct approach is not feasible for large number of individuals, which
is true in our target application, and hence we do not pursue this method, and consider Nyström and
NN as baselines.

C Random Fourier Features on Laplacian

Here we discuss using random Fourier features [25] to reduce computational cost in calculation of
the Laplacian defined as L = diag(K1>)−K, where 1 is just [1, . . . , 1] and K. Suppose the kernel

10In practice, this does not have to be a positive semi-definite kernel, it can be derived from any notion of
similarity between observations, including k-nearest neighbours.

11In order to guarantee positive definiteness of Laplacian, one can add εI , where ε > 0.
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is stationary i.e. kw(x − y) = k(x, y) (some examples include the gaussian and matern kernel),
then using random Fourier features, we obtain K ≈ ΦΦ>, where Φ ∈ RbN×m, bN denotes the total
number of individuals in the batch and m denotes the number of frequencies. Now we have:

f>Lf ≈ f>diag(ΦΦ>1>)f − f>ΦΦ>f = f>diag(ΦΦ>1>)f − ||Φ>f ||22 (31)
In both terms, we can avoid computing the kernel matrix, by carefully selecting the order of computa-
tion. Note another option is to consider Nyström approximation with landmark points {z1, . . . zm},
then K ≈ KnmK

−1
mmKmn, where Kmm denotes the kernel matrix on landmark points, while Knm

is the kernel matrix between landmark and data. Then Φ = KnmK
− 1

2
mm.

D Bag Manifold regularisation

Suppose we have bag covariates sa (note these are for the entire bag), and also some summary
statistics of a bag, e.g. mean embeddings [19] given by Ha = 1

Na

∑Na

i=1 h(xai ), with some user-
defined h. Then similarly to individual level manifold regularisation, we can consider manifold
regularisation at the bag level (assuming a seperable kernel for simplicity), i.e.

`2 =

n∑
l=1

n∑
m=1

(F l − Fm)2ks(s
l, sm)kh(H l, Hm) = F>LbagF (32)

where F a = 1
Nl

∑Na

i=1 f
a
i , ks is a kernel on bag covariates sa, kµ is a kernel on Ha, Lbag is the bag

level Laplacian with the corresponding kernel, and F = [F 1, . . . , Fn]>. Combining all these terms,
we have the following loss function to minimise:

` =
1

b
`0 +

λ1

b2N
`1 +

λ2

b2N
`2 (33)

where b is the mini-batch size in SGD, BN is the total number of individuals in each mini-batch, λ1

and λ2 are parameters controlling the strength of the respective regularisation.

E Additional details for Poisson variational derivation

E.1 Log-sum lemma

Lemma 2. Let v = [v1, . . . , vN ]> be a random vector with probability density q(v), and let wi ≥ 0,
i = 1, . . . , N . Then, for any non-negative valued function Ψ(v),∫

log
( N∑
i=1

wiΨ(vi)
)
q(v)dv ≥ log

( N∑
i=1

wie
ξi
)
,

where
ξi :=

∫
log Ψ(vi)qi(vi)dvi.

Proof. Let α1, . . . , αN be non-negative numbers with
∑N
i=1 αi = 1. It follows from Jensen’s

inequality that ∫
log
( N∑
i=1

wiΨ(vi)
)
q(v)dv =

∫
log
( N∑
i=1

αi
wi

αi
Ψ(vi)

)
q(v)dv ≥

N∑
i=1

αi

[∫
log
(

Ψ(vi)
)
q(vi)dvi + log

wi
αi

]
=

N∑
i=1

αiξi +

N∑
i=1

αi log
wi
αi
. (34)
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By Lagrange multiplier method, maximizing the last line with respect to α gives

αi =
wie

ξi∑N
j=1 wje

ξj
.

Plugging this to (34) completes the proof.

E.2 A lower bound of marginal likelihood for Ψ(f) = ef and Ψ(f) = f2

Using Lemma 2, we obtain that∫
log
( N∑
i=1

paiΨ(vai )
)
q(va)dva ≥ log

( N∑
i=1

paiΨ(ξai )
)
, (35)

where

ξai =

∫
log Ψ(vai )qai (vai )dvai .

The above lower bound is tractable for the popular functions Ψ(v) = v2 and Ψ(v) = ev under the
normal variational distributions qa(va) ∼ N (ma, Sa) . In particular,

Ψ(v) = ev : ξai =

∫
vai q

a
i (vai )dvai = ma

i ,

Ψ(v) = v2 : ξai =

∫
log(vai )2qai (vai )dvai = −G

(
− ma

i

2Saii

)
+ log

(
Saii
2

)
− γ,

where γ is the Euler constant and

G(t) = 2t

∞∑
j=0

j!

(2)j (3/2)j
tj

is the partial derivative of the confluent hypergeometric function [17, 1]. However, in this work we
focus on the Taylor series approximation for Ψ(v) = v2, as implementation of the above bound uses
a large look-up table and involves linear interpolation. Furthermore, it is suggested in experiments
that the secondary lower bound proposed above in Lemma 2 can lead to poor calibration, for more
details, refer to Section 4.

E.3 KL Term

Since q(u) and p(u|W ) are both normal distribution, the KL divergence is tractable:

KL(q(u)||p(u|W )) =
1

2

{
Tr[K−1

WWΣu]+log
|KWW |
|Σu|

−m+(µW−ηu)TK−1
WW (µW−ηu)

}
(36)

E.4 Taylor series approximation in the variational method

We consider the integral ∫
log
( N∑
i=1

pai (vai )2
)
qa(va)dva

where qa is N (ma, Sa). We note that this can be written as E log ‖V a‖2, where V a ∼ N(m̃a, S̃a),
with P a = diag

(
pa1 , . . . , p

a
Na

)
, m̃a = P a1/2ma and S̃a = P a1/2SaP a1/2. Note that ‖V a‖2

follows a non-central chi-squared distribution. We now resort to a Taylor series approximation for
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E log ‖V a‖2 (similar to [29]) around E ‖V a‖2 = ‖m̃a‖2 + trS̃a, resulting in

E log
(
‖V a‖2

)
= log

(
E ‖V a‖2

)
+E

‖V a‖2 − E ‖V a‖2

E ‖V a‖2
−

(
‖V a‖2 − E ‖V a‖2

)2

2
(
E ‖V a‖2

)2 +O
((
‖V a‖2 − E ‖V a‖2

)3
)

≈ log
(
‖m̃a‖2 + trS̃a

)
−

2m̃a>S̃am̃a + tr

((
S̃a
)2
)

(
‖m̃a‖2 + trS̃a

)2 .

As commented in [29], approximation is very accurate when E ‖V a‖2 is large, but the caveat is that
the Taylor series converges only for ‖V ‖2 ∈ (0, 2E ‖V ‖2) so this approach effectively ignores the
tail of the non-central chi-squared.

F Code

All of our models were implemented in TensorFlow, and code will be published and available for use.

G Additional Malaria Experimental Results

Here we provide additional experimental results for the malaria dataset. In table 1, we provide
results for bag level performance for NLL and MSE with 10 different test sets (after retrial of the
experiments, splitting the data across train, early-stop, validation and testing). Statistical significance
was not establish for the best performing Nyström method versus the VBAgg methods, this is shown
in Table 2. We further provide additional prediction/uncertainty patches for 3 different splits to
highlight the general behaviour of the trained models, with further explanation and details below.

It is also noted in all cases λai is the incidence rate per 1000 people. For VBAgg and Nyström, we
use an additive kernel, between an ARD kernel and a Matern kernel:

k((x, sx), (y, sy)) = γ1 exp

(
−1

2

18∑
k=1

1

`k
(xk − yk)2

)
+γ2

(
1 +

√
3||sx − sy||2

ρ

)
exp

(
−
√

3||sx − sy||2
ρ

)
(37)

where x, y are covariates, and sx, sy are their respective spatial location. Here, we learn any scale
parameters and weights during training. For the NN, we also use this kernel as part of manifold
regularisation, however we use an RBF kernel instead of an ARD kernel, due to parameter tuning
reasons (we can no longer learn these scales).

For constant model, bag rate predictions are computed by, paλ̂bag
c ,where λ̂bag

c = 1∑n
a=1 p

a

∑n
a=1 y

a.
This essentially takes into account of population.

Table 1: Results for the Poisson Model on the malaria dataset with 10 different re-splits of train,
early-stopping, validation and test. Approximately, 191 bags are used for test set. Bag performance is
measured on a test set, with MSE computed between log(ya) and log(

∑Na

i=1 p
a
i λ̂

a
i ). Brackets include

standard deviation.
Bag NLL Bag MSE (Log)

Constant 173.1 (31.2) 4.08 (0.13)
Nyström-Exp 88.1 (25.1) 1.31 (0.15)
VBAgg-Sq-Obj 94.1 (34.0) 1.21 (0.05)
VBAgg-Exp-Obj 97.2 (39.6) 1.04 (0.11)
VBAgg-Sq 97.6 (39.0) 1.38 (0.18)
VBAgg-Exp 99.2 (39.8) 1.21 (0.19)
NN-Exp 164.4 (127.8) 1.82 (0.29)
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Table 2: p-values from a Wilcoxon signed-rank test for Nyström-Exp versus the methods below for
Bag NLL and MSE for the malaria dataset. The null hypothesis is Nyström-Exp performs equal or
worse than the considered method on the test bag performance.

NLL MSE
Constant 0.0009766 0.0009766
NN-Exp 0.00293 0.0009766
VBAgg-Sq-Obj 0.1162 0.958
VBAgg-Sq 0.1377 0.1611
VBAgg-Exp-Obj 0.08008 1.0
VBAgg-Exp 0.09668 0.958

Table 3: p-values from a Wilcoxon signed-rank test for VBAgg-Sq versus the methods below for Bag
NLL and MSE for the malaria dataset. The null hypothesis is VBAgg-Sq performs equal or worse
than the considered method on the test bag performance.

NLL MSE
Constant 0.0009766 0.0009766
NN-Exp 0.01855 0.001953
VBAgg-Sq-Obj 0.6234 0.9861
Nyström-Exp 0.8838 0.8623
VBAgg-Exp-Obj 0.6875 1.0
VBAgg-Exp 0.3477 0.9346

G.1 Predicted log malaria incidence rate for various models

Constant: Bag level observed incidences This is the baseline with λ̂ai being constant throughout
the bag, as shown in Figure 3. For training, we only use 60% of the data.

Figure 3: Predicted λ̂ai on log scale using constant model, for 3 different re-splits of the data.× denote
non-train set bags.

VBAgg-Sq-Obj This is the VBAgg model with Ψ(v) = v2 and tuning of hyperparameters is
performed based on training objective, the lower bound to the marginal likelihood, we ignore early-
stop and validation set here. The uncertainty of the model seems reasonable, and we also observe that
in general the areas that are not in the training set have higher uncertainties. Furthermore, in all cases,
malaria incidence was predicted to be higher near the river, as discussed in Section 4.2.
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Figure 4: Top: Predicted λ̂ai on log scale for VBAgg-Sq-Obj. Bottom: Standard deviation of the
posterior v in (9) with VBAgg-Sq-Obj.

VBAgg-Sq This is the VBAgg model with Ψ(v) = v2 and tuning of hyperparameters is performed
based on NLL at the bag level. Predicted incidence are similar to the VBAgg-Sq-Obj model.
The uncertainty of the model is less reasonable here, this is expected behaviour, as we are tuning
hyperparameters based on NLL here. In the first patch, the same parameters was chosen as VBAgg-
Sq-Obj.

Figure 5: Top: Predicted λ̂ai on log scale for VBAgg-Sq. Bottom: Standard deviation of the posterior
v in (9) with VBAgg-Sq.

VBAgg-Exp-Obj This is the VBAgg model with Ψ(v) = ev and tuning of hyperparameters
is performed based on training objective, the lower bound to the marginal likelihood, we ignore
early-stop and validation set here. Predicted incidence seem to be stable in general, though some
smoothness is observed. The uncertainty of the model is also not very reasonably here, but this
behaviour was observed in the Toy experiments, and likely due to an additional lower bound.
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Figure 6: Top: Predicted λ̂ai on log scale for VBAgg-Exp-Obj.Bottom: Standard deviation of the
posterior v in (9) with VBAgg-Exp-Obj.

VBAgg-Exp This is the VBAgg model with Ψ(v) = ev and tuning of hyperparameters is performed
based on NLL. For details, see discussion above for the VBAgg-Exp-Obj model.

Figure 7: Top: Predicted λ̂ai on log scale for VBAgg-Exp. Bottom: Standard deviation of the
posterior v in (9) with VBAgg-Exp.

Nyström-Exp This is the Nyström-Exp model, it is clear that while it performs best in terms of bag
NLL, sometimes prediction are too smooth in the pixel space, this is because it optimises directly bag
NLL. This pattern might be seen to be unrealistic, and may cause useful covariates to be neglected.
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Figure 8: Predicted λ̂ai on log scale for Nyström-Exp.

NN-Exp We can see that the model is not very stable, this can be potentially due to the model
does not have an inbuilt spatial smoothness function unlike other methods. It only uses manifold
regularisation for training. Also, the maximum predicted pixel level intensity rate λ̂ai is over 1000 in
some cases, this is clearly physically impossible given λai is rate per 1000 people.

Figure 9: Predicted λ̂ai on log scale for NN-Exp.

G.2 Remote Sensing covariates that provide the existence of a river

Here, we provide figures for some covariates that give information that there is a river as indicated by
the triangles in Figure 2.

Figure 10: Topographic wetness index, measures the wetness of an area, rivers are wetter than others,
as clearly highlighted.
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Figure 11: Land Surface Temperature at night, river is hotter at night, due to river being able to retain
heat better.

H Additional Toy Experimental Results

In this section, we provide additional experimental results for the Normal and Poisson model. In
particular, we provide results on test bag level performance, and provide also prediction, calibration
and uncertainty plots.

For the VBAgg model, during the tuning process, it is possible to choose tuning parameters (e.g.
learning rate, multiple-initialisations, landmark choices) based on NLL with an additional validation
set or on the objective L1 on the training set. To compare the difference, we denote the model tuned
on NLL as VBAgg and the model tuned on L1 as VBAgg-Obj. Intuitively, as VBAgg-Obj attempts to
obtain as tight a bound to the marginal likelihood, we would expect better performance in calibration,
i.e. more accurate uncertainties.

For calibration plots, we compute the α quantiles of the approximated posterior distribution and
consider the ratio of times the underlying rate parameter λai (or µai for the normal model) appear
inside the quantiles of the posterior distribution. If the model provides good uncertainties/calibration,
we should expect to see the quantiles to match with the observed ratio.

In the case of Ψ(v) = v2, the approximated posterior distribution is simply a non-central χ2

distribution, while for Ψ(v) = ev, this is a log-normal distribution. For the Normal Model, it is
simply a normal distribution, as we do not have any transformations. Calibration plots can be found
in Figure 20 and Figure 21 for the Normal Model, with Figure 14 and Figure 15 for the Poisson
Model.

For uncertainty plots, we plot the standard deviation of the posterior of v ∼ N (ma, Sa) (i.e. before
transformation through Ψ), as this provides better interpretability. Uncertainty plots can be found in
Figure 17 and 23

To demonstrate statistical significance of our result, we aggregate the repetitions in each experiment
for each method and consider a one sided rank permutation test (Wilcoxon signed-rank test) to see
whether VBAgg is statistically significant better than other approaches for individual NLL and MSE.

H.1 Poisson Model

H.1.1 Swiss Roll Dataset

We provide additional results here for the experimental settings that we consider.
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Figure 12: Varying number of bags over 5 repetitions.Left Column: Individual average NLL and
MSE on train set. Right Column: Bag average NLL and MSE on test set (of size 500). Constant
prediction NLL and MSE is 2.23 and 0.85 respectively. bag-pixel model prediction NLL is above 2.4
and MSE is above 3.0, hence not shown on graph.

The varying number of bags experimental results is found in Figure 12, with the corresponding table
of p-values in Table 4, 5 demonstrating statistical significance of the VBAgg-Exp and VBAgg-Sq
method. Similarly, the varying number of individuals per bag through Nmean experimental result
can be found in Figure 13, with the corresponding table of p-values in Table 6, 7. The comparison
between VBAgg-Exp and VBAgg-Sq was found to be non-significant.

Table 4: p-values from a Wilcoxon signed-rank test for VBAgg-Sq versus the methods below for
the varying number of bags experiment for the Poisson model. The null hypothesis is VBAgg-Sq
performs equal or worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN-Exp 6.98e−06 0.00025
Nyström-Exp 0.00048 0.00015

Table 5: p-values from a Wilcoxon signed-rank test for VBAgg-Exp versus the methods below for
the varying number of bags experiment for the Poisson model. The null hypothesis is VBAgg-Exp
performs equal or worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN-Exp 2.48e−06 2.48e−05
Nyström-Exp 0.0005 0.00025
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Figure 13: Varying number of individuals per bagNmean over 5 repetitions.Left Column: Individual
average NLL and MSE on train set. Right Column: Bag average NLL and MSE on test set (of size
500). Constant prediction NLL and MSE is 2.23 and 0.85 respectively.

Table 6: p-values from a Wilcoxon signed-rank test for VBAgg-Sq versus the methods below for
the varying number of individuals per bag experiment for the Poisson model. The null hypothesis is
VBAgg-Sq performs equal or worse than NN or Nyström in terms of individual NLL or MSE on the
train set.

NLL MSE
NN-Exp 1.81e−05 9.53e−06
Nyström-Exp 0.062 0.041

Table 7: p-values from a Wilcoxon signed-rank test for VBAgg-Exp versus the methods below for
the varying number of individuals per bag experiment for the Poisson model. The null hypothesis is
VBAgg-Exp performs worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN-Exp 6.68e−05 0.00016
Nyström-Exp 0.049 0.062

Calibration Plots for the Swiss Roll Dataset In Figure 14 and 15, we provide calibration results
for both experiments that we have considered. See top of Appendix H for a further details. It is clear
that while VBAgg-Sq-Obj and VBAgg-Sq provides good calibration in general, this is not the case
for VBAgg-Exp-Obj and VBAgg-Exp. This is not surprising as the VBAgg-Exp methods uses an
additional lower bound.
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Figure 14: Absolute Error in coverage from 70% to 95% for the increasing number of bags experiment
for the Poisson Model. Shaded regions highlight the standard deviation. Perfect coverage would
provide a straight line at 0 error.
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Figure 15: Absolute Error in coverage from 70% to 95% for the increasing number of individuals
per bag Nmean and Nstd for the Poisson Model. Shaded regions highlight the standard deviation.
Perfect coverage would provide a straight line at 0 error.
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Prediction and uncertainty plots In Figure 16 and 17, we provide some prediction plots for
different models, and uncertainties for VBAgg models.
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Figure 16: Individual predictions on the train set for the swiss roll dataset with 150 bags for NN and
Nyström model. Here Nmean = 150, with Nstd = 50.
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Figure 17: Predictions and uncertainty on the swiss roll dataset with 150 bags for the VBAgg-Obj
models. Here Nmean = 150, with Nstd = 50. For uncertainty, we plot the standard deviation of the
posterior of v, coming from va ∼ N (ma, Sa) in (9).
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H.2 Normal Model

H.2.1 Swiss Roll Dataset

In this section, we provide some experimental results for the Normal model, where throughout we
assume τai = τ , same for all individuals.

We consider the same swiss roll dataset as in the Poisson model, here the colour of each point to be
the underlying mean µai . We then consider yai ∼ N (µa, τ) with τ = 0.1, hence bag observations are
given by ya =

∑Na

i=1 y
a
i ∼ N (µa, Naτ) with µa =

∑Na

i=1 µ
a
i . Here, the goal is to predict µai and τ ,

given bag observations ya only. The results for the experiments are shown below in Figure 18 and
Figure 19, which shows the VBAgg outperforming the NN and Nyström model. To show statistical
significance, we also report the corresponding table of p-values in Table 8 and Table 9. Furthermore,
we would also like to point out that the VBAgg is well calibrated as shown in Figure 20.
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Figure 18: Varying number of bags over 5 repetitions for the Normal model.Left Column: Individual
average NLL and MSE on train set. Right Column: Bag average NLL and MSE on test set (of size
500). Constant model individual MSE is 0.04.

Table 8: p-values from a Wilcoxon signed-rank test for VBAgg versus the methods below for the
varying number of bags experiment for the Normal model. The null hypothesis is VBAgg performs
equal or worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN 5.96e−07 4.79e−09
Nyström 4.01e−08 6.52e−09

Table 9: p-values from a Wilcoxon signed-rank test for VBAgg versus the methods below for the
varying number of individuals per bag Nmean experiment for the Normal nodel. The null hypothesis
is VBAgg performs worse than NN or Nyström in terms of individual NLL or MSE on the train set.

NLL MSE
NN 4.77e−06 4.77e−06
Nyström 4.77e−06 4.77e−06

Calibration Plots for the Swiss Roll Dataset In Figure 20 and 21, we provide calibration results
for both experiments that we have considered. See top of Appendix H for further details. It is clear
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Figure 19: Varying number of individuals per bagNmean over 5 repetitions.Left Column: Individual
average NLL and MSE on train set. Right Column: Bag average NLL and MSE on test set (of size
500). Constant model individual MSE is 0.039.

that VBAgg-Obj has better calibration in general, this is not surprising as it is tuned based on the
correct objective, rather than NLL.
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Figure 20: Absolute Error in coverage from 70% to 95% for the increasing number of bags experiment
for the Normal Model. Shaded regions highlight the standard deviation. Perfect coverage would
provide a straight line at 0 error.
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Figure 21: Absolute Error in coverage from 70% to 95% for the increasing number of individuals per
bag Nmean and Nstd for the Normal Model. Shaded regions highlight the standard deviation. Perfect
coverage would provide a straight line at 0 error.
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Prediction and uncertainty plots Here, we provide some prediction plots for different models.
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Figure 22: Individual predictions on the train set for the swiss roll dataset with 150 bags for NN and
Nyström model. Here Nmean = 150, with Nstd = 50.
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Figure 23: Predictions and uncertainty on the swiss roll dataset with 150 bags for the VBAgg-Obj
model. Here Nmean = 150, with Nstd = 50. For uncertainty, we plot the standard deviation of the
posterior of v, coming from va ∼ N (ma, Sa) in (9).

H.2.2 Elevators Dataset

For a real dataset experiment, we consider the elevators dataset12, which is a large scale regression
dataset13 containing 16599 instances, with each instance ∈ R17. This dataset is obtained from the
task of controlling F16 aircraft, with the label y being a particular action taken on the elevators of the
aircraft ∈ R. For the model formulation we assume each label follows a normal distribution, i.e.
yl ∼ N (µl, τ), where τ is a fixed quantity to be learnt. In practice, we can imagine the action taken
may differ according to the operator.

In order formulate this dataset in an aggregate data setting, we sample bag sizes from a negative
binomial distribution as before, with Nmean = 30 and Nstd = 15, and also take wai = 1. To place
observations into bags, similar to the swiss roll dataset, we consider a particular covariate, and place
instances into bags based on the ordering of the covariate. We now have the bag-level model given by
ya ∼ N (µa, Naτ), with individual model yai ∼ N (µai , τ) and it is our goal to predict µai (and also
infer τ ), given only ya. After the bagging process, we obtain approximately 225 bags for training,
and 33 bags each for early stopping, validation and testing (for bag level performance). Further,
in order to neglect variables that do not provide signal, we use an ARD kernel for the VBAgg and

12This dataset is publicly available at http://sci2s.ugr.es/keel/dataset.php?cod=94
13We have removed one column that is almost completely sparse.
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Table 10: Results for the Normal Model on the elevators dataset with 50 repetitions. Indiv represents
individuals on train set here, while bag performance is measured on a test set. Numbers in brackets
denotes p-values from a Wilcoxon signed-rank test for VBAgg versus the method. The null hypothesis
is VBAgg performs equal or worse than NN or Nyström in terms of individual NLL or MSE on the
train set. It is also noted MSE is computed on the observed yai or ya, rather than the unknown µai or
µa.

Indiv NLL Bag NLL Indiv MSE Bag MSE
Constant N/A N/A 0.010 0.366
VBAgg -1.69 0.003 0.0018 0.052
VBAgg-Obj -1.71 -0.02 0.0018 0.052
Nyström −1.57(1.5e−13) 0.003 0.0024 (8.9e−16) 0.041
NN -1.64 (0.0001258) 0.082 0.0021 (8.8e−10) 0.041

Nyström model, as below:

kard(x, y) = γscale exp

(
−1

2

d∑
k=1

1

`k
(xk − yk)2

)
(38)

and learn kernel parameters γscale and {`k}dk=1. We repeat this process and splitting of the dataset
50 times and report individual NLL results, and also MSE results in Table 10. From the results,
we observe that the VBAgg model performs better the Nyström and NN model, with statistical
significance.
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