
A Proof of Theorem 1

Before proceeding, we first define some auxiliary variables. For each hypercube p ∈ PT , we define
µ̄(p) = supx∈p µ(x) and

¯
µ(p) = infx∈p µ(x) be the best and worst expected quality over all

contexts x ∈ p. In some steps of the proofs, we need to compare the qualities at different positions
in a hypercube. As a point of reference, we define the context at (geometrical) center of a hypercube
p as x̃p and its expected quality µ̃(p) = µ(x̃p). Given Mt, xt, pt in each time slot, let µ̄t

p =

[µ̄(pt1), . . . , µ̄(p
t
Mt)],

¯
µt

p = [
¯
µ(pt1), . . . ,

¯
µ(ptMt)], µ̃t

p = [µ̃(pt1), . . . , µ̃(p
t
Mt)], and define S̃∗,t(pt)

S̃∗,t(pt) = argmax
S⊆Mt,|S|≤b

u(µ̃t
p,S) (10)

Let S̃t(pt) be the greedy optimal set in polynomial time to the problem in (10) and we will have

u(µ̃t
p, S̃

t(pt)) ≥ (1− 1/e) ·u(µ̃t
p, S̃

∗,t(pt)). The arm set S̃t(pt) is used to identify subsets of arms
which are bad to select. Let

Lt(pt) =
{

G ⊆Mt, |G| = B : u(
¯
µt

p, S̃
t(pt))− u(µ̄t

p, G) ≥ Atθ
}

(11)

be the set of suboptimal subsets of arms for hypercubes pt, where A > 0 and θ < 0 are parameters
used only in the regret analysis. We call a subset G of arms in Lt(pt) suboptimal for pt, since the

sum of the worst expected reward in S̃t(pt) is at least an amount Atθ higher than the sum of the
best expected reward for subset G. We call subsets in StB\L

t(pt) near-optimal for pt. Here, StB
denotes the set of all B-element subsets of arm setMt. Then, the regret R(T ) can be divided into
the following three summands:

R(T ) = E[Re(T )] + E[Rs(T )] + E[Rn(T )] (12)

where the term E[Re(T )] is the regret due to exploration phases and the terms E[Rs(T )] and
E[Rn(T )] both correspond to regret in exploitation phases: E[Rs(T )] is the regret due to subop-
timal choices, i.e., the subsets of arms from Lt(pt) are selected; E[Rn(T )] is the regret due to
near-optimal choices, i.e., the subsets of arms from SB\Lt(pt) are selected. In the following, we
prove that each of the three summands is bounded.

We first give a bound of E[Re(T )], which depends on the choice of two parameters z and γ.

Lemma 2 (Bound for E(Re(T ))). Let K(t) = tz log(t) and hT = ⌈T γ⌉, where 0 < z < 1 and
0 < γ < 1

D . If the algorithm is run with these parameters, the regret E[Re(T )] is bounded by

E[Re(T )] ≤ (1−
1

e
)Brmax2D

(
T z+γD log(T ) + T γD

)
(13)

Proof of Lemma 2. Let t be an exploration phase and let pt = (ptm)m∈Mt be the hypercubes of ar-

rived arms. Then, according to the proposed algorithm, the set of under-explored hypercubes Pue,t
T

is non-empty, i.e., there exists at least one arm with context xt
m, such that a hypercube p satisfying

xt
m ∈ p has Ct(p) ≤ K(t) = tz log(t). Clearly, there can be at most ⌈T z log(T )⌉ exploration

phases in which arms in p are selected due to under-exploration of p. Since there are (hT )
D hy-

percubes in the partition, there can be at most (hT )
D⌈T z log(T )⌉ exploration phases. Notice the

random quality r(xt
m) for any m ∈ Mt, xt

m ∈ [0, 1]D, is bounded by rmax and the maximum
number of selected arms in each time slot is B. Considering the submodularity of reward function,
the maximum regret of wrong selection in one exploration phase is bounded by (1 − 1/e)Brmax.
Additionally, we have to take into account the loss due to exploitations in the case that the size of
Mue,t is smaller than B. In each of these exploration phases, the maximum additional regret is
(1 − 1/e)(B − 1)rmax. Therefore, we have

E[Re(T )] ≤ (1− 1/e)Brmax(hT )
D⌈T z log(T )⌉

= (1− 1/e)Brmax⌈T γ⌉D⌈T z log(T )⌉

Using ⌈T γ⌉D ≤ (2T γ)D = 2DT γD, it holds

E[Re(T )] ≤ (1− 1/e)Brmax2DT γD (T z log(T ) + 1)

= (1− 1/e)Brmax2D
(
T z+γD log(T ) + T γD

)
(14)
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Next, we give a bound for E[Rs(T )]. This bound also depends on the choice of two parameters z
and γ. Additionally, a condition on these parameters has to be satisfied.

Lemma 3 (Bound for E(Rs(T ))). Let K(t) = tz log(t) and hT = ⌈T γ⌉, where 0 < z < 1 and 0 <
γ < 1

D . If the algorithm is run with these parameters, Assumption 1 holds true and the additional

condition 2H(t) + 2BLD
α
2 h−α

T ≤ Atθ is satisfied for all 1 ≤ t ≤ T where H(t) = Brmaxt−
z
2 ,

the regret E[Rs(T )] is bounded by

E[Rs(T )] ≤ (1−
1

e
)B2rmax

(
Mmax

B

)
π2

3
(15)

Proof of Lemma 3. For 1 ≤ t ≤ T , let W t = {Pue,t = ∅} be the even that slot t is an exploitation
phase. By the definition of Pue,t, in this case, it holds that Ct(ptm) > K(t) = tz log(t), ∀p ∈ pt.
Let V t

G be the event that subset G ∈ Lt(pt) is selected at time slot t. Then, it holds that

Rs(T ) =

T∑

t=1

∑

G∈Lt(pt)

I{V t
G
,W t} ×

(

(1−
1

e
)u

(
rt,S∗,t(xt)

)
− u

(
rt, G

)
)

(16)

where, in each time slot, the loss due to selecting a suboptimal subset G ∈ Lt(pt) is considered.
Since the maximum regret of selecting G is bounded by (1 − 1

e )Brmax, we have

Rs(T ) ≤ (1 −
1

e
)Brmax

T∑

t=1

∑

G∈Lt(pt)

I{V t
G
,W t}, (17)

and taking the exception, the regret is hence bounded by

E[Rs(T )] ≤ (1−
1

e
)Brmax

T∑

t=1

∑

G∈Lt(pt)

E

[

I{V t
G
,W t}

]

= (1−
1

e
)Brmax

T∑

t=1

∑

G∈Lt(pt)

Prob
{
V t
G,W

t
}

(18)

In the event of V t
G, by the design of the algorithm, this means that with the estimated arm quality,

the rewards of selecting arms in G is at least as high as the reward of selecting arms in S̃t(pt), i.e.,

u(r̂tp, G) ≥ u(r̂tp, S̃
t(pt)). Thus, we have:

Prob
{
V t
G,W

t
}
≤ Prob

{

u(r̂tp, G) ≥ u(r̂tp, S̃
t(pt))

}

(19)

The event in the right-hand side of (19) implies at lease one of the three following events for any
H(t) > 0:

E1 =
{
u(r̂tp, G) ≥ u(µ̄t

p, G) +H(t),W t
}

E2 =
{

u(r̂tp, S̃
t(pt)) ≤ u(

¯
µt

p, S̃
t(pt))−H(t),W t

}

E3 =
{

u(r̂tp, G) ≥ u(r̂tp, S̃
t(pt)), u(r̂t

p, G) < u(µ̄t
p, G) +H(t),

u(r̂t
p, S̃

t(pt)) > u(
¯
µt

p, S̃
t(pt))−H(t),W t

}

.

Hence, we have for the original event in (19)

{

u(r̂tp, G) ≥ u(r̂tp, S̃
t(pt))

}

⊆ E1 ∪ E2 ∪ E3 (20)
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The probability of the three event E1, E2, and E3 will be bounded separately. Let start by bounding
E1. Recall that the best expected quality of arms in set p is µ̄(p) = supx∈p µ̄(x). Therefore, the
expected quality of arm m in G is bounded by

E
[
r̂(ptm)

]
=E




1

|Et(ptm)|

∑

(τ,k):xτ
k
∈pτ

m,n∈Sτ

r(xτ
k)





=
1

|Et(ptm)|

∑

(τ,k):xτ
k
∈pτ

m,n∈Sτ

︸ ︷︷ ︸

|Et(pt
m)|summands

µ(xτ
k)

︸ ︷︷ ︸

≤µ̄(pt
m)

≤µ̄(ptm) (21)

This implies

Prob{E1} = Prob
{
u(r̂tp, G) ≥ u(µ̄t

p, G) +H(t),W t
}

≤ Prob

{

r̂(ptm) ≥ µ̄(ptm) +
H(t)

B
, ∃m ∈ G,W t

}

≤ Prob

{

r̂(ptm) ≥ E
[
r̂(ptm)

]
+

H(t)

B
, ∃m ∈ G,W t

}

=
∑

m∈G

Prob

{

r̂(ptm) ≥ E
[
r̂(ptm)

]
+

H(t)

B
,W t

}

The first inequality comes from the fact that
{
u(r̂tp, G) ≥ u(µ̄t

p, G) +H(t)
}

⊆
{

r̂(ptm) ≥ µ̄(ptm) + H(t)
B , ∃m ∈ G

}

, which can be easily verified by reductio ad absurdum

and submodularity property. Now, applying Chernoff-Hoeffding bound [10] (note that for each
arm, the estimated quality is bounded by rmax) and exploiting that event W t implies that at least
tz log(t) samples were drawn, we get

Prob{E1} ≤
∑

m∈G

Prob

{

r̂(ptm)− E
[
r̂(ptm)

]
≥

H(t)

B
,W (t)

}

≤
∑

m∈G

exp

(
−2|Et(ptm)|H(t)2

B2(rmax)2

)

≤
∑

m∈G

exp

(
−2H(t)2tz log(t)

B2(rmax)2

)

(22)

Analogously, it can be proven for event E2, that

Prob{E2} = Prob
{

u(r̂t
p, S̃

t(pt)) ≥ u(
¯
µt

p, S̃
t(pt))−H(t),W t

}

≤
∑

m∈S̃
t
(pt)

exp

(
−2H(t)2tz log(t)

B2(rmax)2

)

(23)

To bound the event E3, we first make some additional definitions. First, we rewrite the estimate
r̂(p), p ∈ PT as follows:

r̂(p) =
1

|Et(p)|

∑

(τ,k):xτ
k
∈p,m∈St

r(xτ
k)

=
1

|Et(p)|

∑

(τ,k):xτ
k
∈p,m∈St

µ(xτ
k) + ǫτk

where ǫτk denotes the deviation from the expected quality of an arm k ∈Mτ with context xτ
k . Addi-

tionally, we define the best and worst context for a hypercube p ∈ PT as xbest(p) , argmaxx∈p µ(x)
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and xworst(p) , argminx∈p µ(x), respectively. Finally, we define the best and worst quality of an
arm in hypercube p as

rbest(p) =
1

|Et(p)|

∑

(τ,k):xτ
k
∈p,m∈St

µ(xbest(p)) + ǫτk (24)

rworst(p) =
1

|Et(p)|

∑

(τ,k):xτ
k
∈p,m∈St

µ(xworst(p)) + ǫτk (25)

By Hölder condition from Assumption 1, since xbest(p) ∈ p and only contexts from hypercube p are
used for calculating the estimated quality r̂(p), it can be shown that

rbest(p)− r̂(p) ≤ LD
α
2 h−α

T (26)

holds. Analogously, we have

r̂(p) − rworst(p) ≤ LD
α
2 h−α

T (27)

We apply (26) and (27) to arms in G and S̃t(pt). Consider the arm set sequentially selected
by greedy algorithm, for any k ≤ B, we have the marginal gain ∆(rbest,t

p , {mk}|Sk−1) ≤

∆(r̂t
p, {mk}|Sk−1) + LD

α
2 h−α

T . Therefore

u(rbest,t
p , G)− u(r̂tp, G) ≤

∑

m∈G

(
rbest(ptm)− r̂(ptm)

)
≤ BLD

α
2 h−α

T (28)

and summing over the S̃t(pt) yields

u(r̂tp, S̃
t(pt))− u(rworst,t

p , S̃t(pt)) ≤
∑

m∈S̃t(pt)

(
r̂(ptm)− rworst(ptm)

)
≤ BLD

α
2 h−α

T (29)

Now the three components of event E3 are considered separately. By definition of rbest(p) and
rworst(p) in (24) and (25). The first component of E3 holds that

{

u(r̂t
p, G) ≥ u(r̂t

p, S̃
t(pt))

}

⊆
{

u(rbest,t
p , G) ≥ u(rworst,t

p , S̃t(pt))
}

(30)

For the second component, using (28), we have
{
u(r̂tp, G) < u(µ̄t

p, G) +H(t)
}

⊆
{
u(rbest,t

p , G)−BLD
α
2 h−α

T < u(µ̄t
p, G) +H(t)

}

=
{
u(rbest,t

p , G) < u(µ̄t
p, G) +BLD

α
2 h−α

T +H(t)
}

(31)

For the third component, we have
{

u(r̂t
p, S̃

t(pt)) > u(
¯
µt

p, S̃
t(pt))−H(t)

}

⊆
{

u(rworst,t
p , S̃t(pt)) +BLD

α
2 h−α

T > u(
¯
µt
p, S̃

t(pt))−H(t)
}

=
{

u(rworst,t
p , S̃t(pt)) > u(

¯
µt
p, S̃

t(pt))−BLD
α
2 h−α

T −H(t)
}

(32)

Therefore, using (30), (31) and (32), the probability of event E3 is bounded by

Prob{E3}

≤ Prob
{

W t, u(rbest,t
p , G) ≥ u(rworst,t

p , S̃t(pt)),

u(rbest,t
p , G) < u(µ̄t

p, G) +BLD
α
2 h−α

T +H(t)

u(rworst,t
p , S̃t(pt)) > u(

¯
µt

p, S̃
t(pt))−BLD

α
2 h−α

T −H(t)
}

. (33)
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We want to find a condition under which the probability for E3 is zero. For this purpose, it is
sufficient to show that the probability for the right-hand side in (33) is zero. Suppose that the
following condition is satisfied:

2H(t) + 2BLD
α
2 h−α

T ≤ Atθ (34)

Since G ∈ Lt(pt), we have u(
¯
µt
p, S̃

t(pt))−u(µ̄t
p, G) ≥ Atθ, which together with (34) implies that

u(
¯
µt
p, S̃

t(pt))− u(µ̄t
p, G)−

(
2H(t) + 2BLD

α
2 h−α

T

)
≥ 0 (35)

Rewriting yields

u(
¯
µt

p, S̃
t(pt))−H(t)−BLD

α
2 h−α

T ≥ u(µ̄t
p, G) +H(t) +BLD

α
2 h−α

T (36)

If (36) holds true, the three components of the right-hand side in (33) cannot be satisfied at the
same time: Combining the second and third component of (33) with (36) yields u(rbest,t

p , G) <

u(rworst,t
p , S̃t(pt)), which contradicts the first term of (33). Therefore, under condition (34), it fol-

lows that Prob{E3} = 0.

So far, the analysis was performed with respected to an arbitrary H(t) > 0. In the remainder of the

proof, we choose H(t) = Brmaxt−z/2. Then, using (22) and (23), we have

Prob{E1} ≤ B exp

(
−2H(t)2tz log(t)

B2(rmax)2

)

≤ B exp (−2 log(t)) ≤ Bt−2 (37)

and analogously

Prob{E2} ≤ Bt−2 (38)

To sum up, under condition (34), using (20), the probability in (19) is bounded by

Prob
{
V t
G,W

t
}
≤ Prob {E1 ∪ E2 ∪ E3} ≤ Prob {E1}+ Prob {E2}+ Prob {E3} ≤ 2Bt−2

Given this we have:

E[Rs(T )] ≤(1−
1

e
)Brmax ×

T∑

t=1

∑

G∈Lt(pt)

Prob
{
V t
G,W

t
}

≤(1−
1

e
)Brmax

(
Mmax

B

) T∑

t=1

2Brmaxt−2

≤(1−
1

e
)B2(rmax)2

(
Mmax

B

)

· 2
∞∑

t=1

t−2

≤(1−
1

e
)B2(rmax)2

(
Mmax

B

)
π2

3
(39)

where
(
Mmax

B

)
is maximum possible number of subsets of size B in each time slot.

Now we give a bound for E [Rn(T )].

Lemma 4 (Bound for E(Rn(T ))). Let K(t) = tz log(t) and hT = ⌈T γ⌉, where 0 < zn < 1 and
0 < γ < 1

D . If the algorithm is run with these parameters, Assumption 1 holds true, the regret
E[Rn(T )] is bounded by

E[Rn(T )] ≤ 3BrmaxLD
α
2 T 1−γα +

A

1 + θ
T 1+θ (40)

Proof of Lemma 4. For 1 ≤ t ≤ T , consider the event W t as in the previous proof, the regret due to
near-optimal subsets can be written as

Rn(T ) =

T∑

t=1

I{W t,St∈Sb\Lt(pt)} ×

(

(1−
1

e
) · u

(
rt,S∗,t(xt)

)
− u

(
rt,St

)
)

(41)
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where in each time slot in which the selected subset St is near-optimal, i.e., St ∈ Sb\Lt(pt), the
regret is considered for selecting St instead of the S∗t(xt). Let Qt = W t ∩ {St ∈ Sb\Lt(pt)}
denotes the event of selecting a near-optimal arm set. Then, we have

E [Rn(T )] =

T∑

t=1

E

[

I{Qt} ×

(

(1−
1

e
) · u

(
rt,S∗,t(xt)

)
− u

(
rt,St

)
)]

By the definition of conditional expectation, this is equivalent to

E [Rn(T )] =

T∑

t=1

Prob{Q(t)} · E

[

(1 −
1

e
) · u

(
rt,S∗,t(xt)

)
− u

(
rt,St

)
| Q(t)

]

≤
T∑

t=1

E

[

(1 −
1

e
) · u

(
rt,S∗,t(xt)

)
− u

(
rt,St

)
| Q(t)

]

Now, let t be the time slot, where Q(t) holds true, i.e., the algorithm enters an exploitation phase
and J ∈ Sb\Lt(pt). By the definition of Pue,t, it holds that Ct(ptm) > K(t) = tz log(t) for all
ptm ∈ pt. In addition, since J ∈ Sb\Lt(pt), it holds

u(
¯
µt

p, S̃
t(pt))− u(µ̄t

p, J) < Atθ (42)

To bound the regret, we have to give an upper bound on

∑T

t=1
E

[

(1 −
1

e
) · u

(
rt,S∗,t(xt)

)
− u

(
rt, J

)
| Q(t)

]

=
∑T

t=1

(

(1 −
1

e
) · u

(
µt,S∗,t(xt)

)
− u

(
µt, J

)
)

(43)

Applying Hölder condition several times yields:

(1 −
1

e
) · u

(
µt,S∗,t(xt)

)
− u

(
µt

x, J
)

≤(1 −
1

e
) · u

(
µ̃t
p,S

∗,t(xt)
)
+BLD

α
2 h−α

T − u
(
µt

x, J
)

≤(1 −
1

e
) · u

(
µ̃t
p,S

∗,t(pt)
)
+BLD

α
2 h−α

T − u
(
µt

x, J
)

≤u
(
µ̃t
p,S

t(pt)
)
+BLD

α
2 h−α

T − u
(
µt

x, J
)

≤u
(

¯
µt
p,S

t(pt)
)
+ 2BLD

α
2 h−α

T − u
(
µt

x, J
)

≤u
(

¯
µt
p,S

t(pt)
)
+ 3BLD

α
2 h−α

T − u
(
µ̄t

p, J
)

≤3BLD
α
2 h−α

T +Atθ

where the third inequality follows the definition of S̃∗,t(pt) and S̃t(pt). Using h−α
T = ⌈T γ⌉−α ≤

T−γα, we further have

E
[
u
(
rt,S∗,t(xt)

)
− u

(
rt, J

)
| Q(t)

]
≤ 3BLD

α
2 T−αγ +Atθ (44)

Therefore, the regret can be bounded by

E[Rn(T )] ≤
T∑

t=1

(
3BLD

α
2 T−αγ + Atθ

)
≤ 3BLD

α
2 T 1−αγ +

A

1 + θ
T 1+θ. (45)

The over all regret is now bounded by applying the above Lemmas.

Proof of Theorem 1. First, let K(t) = tz log(t) and hT = ⌈T γ⌉, where 0 < z < 1 and 0 < γ < 1
D ;

let H(t) = Brmaxt−z/2; let the condition 2H(t) + 2BLD
α
2 T−αγ ≤ Atθ be satisfied for all
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1 < t < T . Combining the results of Lemma 1, 2, 3, the regret R(T ) is bounded by

R(T ) ≤(1 −
1

e
) ·Brmax2D

(
log(T )T z+γD + T γD

)
+ (1−

1

e
) · B2rmax

(
Mmax

B

)
π2

3

+ 3BLD
α
2 T 1−αγ +

A

1 + θ
T 1+θ

The summands contribute to the regret with leading orders O(log(T )T z+γD), O(T 1−γα) and

O(T 1+θ). In order to balance the leading orders, we select the parameters z, γ, A, θ as follow-

ing values z = 2α
3α+D ∈ (0, 1), γ = z

2α ∈ (0, 1
D ), θ = − z

2 , and A = 2Brmax + 2BLDα/2. Note

that the condition (34) is satisfied with these values. The the regret R(T ) reduces to

R(T ) ≤(1−
1

e
) · Brmax2D

(

log(T )T
2α+D
3α+D + T

D
3α+D

)

+ (1−
1

e
) ·B2rmax

(
Mmax

B

)
π2

3
+

(

3BLDα/2 +
2Brmax + 2BLDα/2

(2α+D)/(3α+D)

)

T
2α+D
3α+D

Then the leading order is O
(

(1 − 1
e )Brmax2DT

2α+D
3α+D log(T )

)

.
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B Simulation Extension

B.1 Regret Analysis

In Fig. 7, we explicitly depict the regret achieved by CC-MAB and other benchmarks. It can be
observed clearly that CC-MAB is able to achieve a sublinear regret as proved in Theorem 1. By
contrast, the regrets of other benchmarks grow dramatically over time.
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Figure 7: Regret analysis.

B.2 Impact of Arm Arrival

The arm arrival pattern in the previous simulations is determined by real dataset as shown in Fig. 8.
To verify the impact of stochastic arm arrival on CC-MAB, we add a data pre-processing procedure
to change the arm arrival pattern. Specifically, we assume that the number of arms arriving at each
slot follows a normal distributionN (µarm, σ

2
arm), where µarm is set to 50 according to the analysis on

Yelp data. The parameter σarm is used to control the stochasticity of the arm arrival pattern. Fig. 9
shows the performances achieved by Oracle and CC-MAB under various arm arrival patterns. It can
be observed that CC-MAB works well under all three considered arm arrival patterns.

Figure 8: Real arm arrival pattern.
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Figure 9: Impact on stochastic arm arrival.
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