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1 Testing for significant discrimination

In general, neither Γ nor Γ can be computed exactly, as the expectations γa = Ep[L(Y, Ŷ ) | A = a]
and γ, for a ∈ A are known only approximately through a set of samples S = {(xi, ai, yi)}mi=1 ∼ pm
drawn from the (possibly class-conditional) population p. The Monte Carlo estimate,

γSa (Ŷ ) =
1

ma

m∑
i=1

L(yi, ŷi)1[ai = a] ,

with ma =
∑m
i=1 1[ai = a], may be used to form an estimate ΓS(Ŷ ) = |γS0 (Ŷ ) − γS1 (Ŷ )|. By

the central limit theorem, for sufficiently large m, γSa (Ŷ ) ∼ N (µa, σ
2
a/ma) and (γS0 − γS1 ) ∼

N (µ0−µ1, σ
2
0/m0 +σ2

1/m1). As a result, the significance of ΓS(Ŷ ) can be tested with a two-tailed
z-test or using the test of Woodworth et al. (2017). If sample sizes are small and the target binary, more
appropriate tests are available (Brown et al., 2001). In addition, we will often want to compare the
discrimination levels Γ(Ŷ ),Γ(Ŷ ′) of predictors Ŷ , Ŷ ′, resulting from different learning algorithms,
models, or sets of observed variables. The random variable |ΓS(Ŷ ) − ΓS(Ŷ ′)| is not Normal
distributed, but is an absolute difference of folded-normal variables. However, for any α ∈ {−1, 1},
Zα := α(γS0 (Ŷ )−γS1 (Ŷ ))− (γS0 (Ŷ ′)−γS1 (Ŷ ′)) is Normal distributed. Further, by enumerating the
signs of (γS0 (Ŷ )−γS1 (Ŷ )) and (γS0 (Ŷ ′)−γS1 (Ŷ ′)), we can show that |ΓS−ΓS

′| = minα∈{−1,1} |Zα|.
As a result, to reject the null hypothesis H0 : Γ = Γ′, we require that the observed values of both
Z−1 and Z1 are unlikely under H0 at given significance.

2 Additional experimental details

2.1 Datasets

• Adult Income Dataset (Lichman, 2013). The dataset has 32,561 instances. The target
variable indicates whether or not income is larger than 50K dollars, and the sensitive feature
is Gender. Each data object is described by 14 attributes which include 8 categorical and 6
numerical attributes. We quantize the categorical attributes into binary features and keep
the continuous attributes, which results in 105 features for prediction. We note the label
imbalance as 30% of male adults have income over 50K whereas only 10% of female adults
have income over 50K. Additionally 24% of all adults have salary over 50K, and the dataset
has 33% women and 67% men.

• Goodreads reviews Gnanesh (2017), only included in the supplemental materials. The
dataset was collected from Oct 12, 2017 to Oct 21, 2017 and has 13,244 reviews. The target
variable is the rating of the review, and the sensitive feature is the gender of the author.
Genders were gathered by querying Wikipedia and using pronoun inference, and the dataset
is a subset of the original Goodreads dataset because it only includes reviews about the
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Figure 1: Inverse power-laws (Pow3) fit to generalization error as a function of training set size
on synthetic data. Dotted lines are extrapolations from sample sizes indicated by black stars. This
illustrates the difficulty of estimating the Bayes error through extrapolation, here at N0 = 3 · 10−4

and N1 = 7 · 10−3 respectively.

top 100 most popular authors. Each datum consists of the review text, vectorized using
Tf-Idf. The review scores occurred with counts 578, 2606, 4544, 5516 for scores 1,3,4, and
5 respectively. Books by women authors and men authors had average scores of 4.088 and
4.092 respectively.
• MIMIC-III dataset (Johnson et al., 2016). The dataset includes 25,879 adult patients admitted

to the intensive care unit of the Beth Israel Deaconess Medical Center in downtown Boston.
Clinical notes from the first 48 hours are used to predict hospital mortality after 48 hours.
Of all adult patients, 13.8% patients died in the hospital. We are interested in the difference
in performance between the five self-reported ethnic groups and following data sizes and
hospital mortality rates.

Race # patients % total Hospital Mortality
Asian 583 2.3 14.2
Black 2,327 9.0 10.9

Hispanic 832 3.2 10.3
Other 3,761 14.5 18.4
White 18,377 71.0 13.4

Table 1: Summary statistics of clinical notes dataset

2.2 Synthetic experiments

To illustrate the effect of training set size and model choice, and the validity of the power-law
learning curve assumption, we conduct a small synthetic experiment in which p(A = 1) = 0.3 and
X ∼ N (µA, σ

2
A) with µ0 = 0, µ1 = 1, σ0 = 1, σ1 = 2. The outcome is a quadratic function with

heteroskedastic noise, Y = 2X2 − 2X + .1 + εX2, with ε ∼ N (0, 1). We fit decision tree, random
forest and ridge regressors of the outcome Y to X using default parameters in the implementation
in scikit-learn (Pedregosa et al., 2011), but limiting the decision tree to depth T ≤ 4. The size of
the training set is varied exponentially between 25 and 217 samples, and at each size, trees are fit
200 times. In Figure 1, we show the resulting learning curves γ0(Ŷ , n) and γ1(Ŷ , n) as well as fits
of Pow3 curves to them. Shown in dotted lines are extrapolations of learning curves from different
sample sizes, illustrating the difficulty of estimating the intercepts δa and the Bayes error with high
accuracy.

2.3 Book review ratings

Sentiment and rating prediction from text reveal quantitative insights from unstructured data; however
deficiencies in algorithmic prediction may incorrectly represent populations. Using a dataset of
13,244 reviews collected from Goodreads (Gnanesh, 2017) with inferred author sex scraped from
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Figure 2: Goodreads dataset for book rating prediction. Adding training data decreases overall mean
squared error (MSE) for both groups while adding training data to only one group has a much bigger
impact on reducing Γ. Increasing the number of features reduces MSE but does not reduce Γ.

Wikipedia, we seek to predict the review rating based on the review text. We use as features the
Tf-Idf statistics of the 5000 most frequent words. Our protected attribute is gender of the author of
the book, and the target attribute is the rating (1-5) of the review. The data is heavily imbalanced,
with 18% reviews about female authors versus 82% reviews about male authors.

We observe statistically significant levels of discrimination with respect to mean squared error (MSE)
with linear regression, decision trees and random forests. Using a random forest and training on
80% of the dataset and testing on 20%, we find that our ΓMSE(Ŷ ) has 95%-confidence interval
0.180±0.044 with MSEM = 0.314 for reviews for male authors and MSEF = 0.494 for reviews for
female authors using a difference in means statistical test. Results were found after hyperparameter
turning for each training set size and taking an average over 50 trials. We observe similar patterns
with linear regression and decision trees.

To estimate the impact of additional training data, we evaluate the effect of varying training set
size n on predictive performance and discrimination. Through repeated sample spitting, we train a
random forest on increasing training set sizes, reserving at least 20% of the dataset for testing. In
Figure 2a, additional training data lowers MSEF and MSEM , fitting an inverse power-law. Based
on the intercept terms of the extrapolated power-laws (δM = 0.0011 for reviews with male authors
and δF = 0.0013 for reviews with female authors), we may expect that Γ can be explained more by
differences in bias and variance than by noise since our estimated difference in noise |δF − δM | ≈ 0.

In order to further measure the effect of collecting more samples, we analyze a one-sized increase in
training data. Because of the initial skew of author genders in the dataset, we vary the number of
reviews for female authors, creating a shift in populations in the training data. We fix the training set
size of reviews for male authors at nM = 1939, which represents the size of the full data for female
authors NF , reserving 20% of the dataset as test data. We then vary the training data size for female
authors nF such that the ratio nF /nM varies evenly between 0.1 to 1.0. Using a linear regression
in Figure 2b, we see that as the ratio nF /nM increases, MSEF decreases far below MSEM and far
below our best reported MSE of the random forest on the full dataset. This suggests that shifting the
data ratio and collecting more data for the under-represented group can adapt our model to reduce
discrimination.

2.4 Clinical notes

Here we include additional details about topic modeling. Topics were sampled using Markov Chain
Monte Carlo after 2,500 iterations. We present the topics with highest and lowest variance in error
rates among groups in Table 2. Error rates were computed using a logistic regression with L1
regularization over 10,000 TF-IDF features using 80/20 training and testing data split over 50 trials.
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Based on the most representative words for each topic, we can infer topic descriptions, for example
cancer patients for topic 48 and cardiac patients for topic 45.

Topic Top words Asian Black Hispanic Other White

31

no(t pain present normal
edema tube history pulse

absent left respiratory
monitor

5.9 8.4 17.6 30.8 11.1

17
hospital lymphoma continue

s/p unit bmt
thrombocytopenia line rash

34.3 13.6 34.9 30.2 26.0

43
bowel abdominal abd

abdomen surgery s/p small
pain obstruction fluid ngt

16.6 11.8 5.7 26.8 13.2

45
artery carotid aneurysm left
identifier numeric vertebral

internal clip
5.4 5.3 3.8 20.4 10.0

48
mass cancer metastatic lung

tumor patient cell left
malignant breast hospital

21.6 25.4 12.3 30.2 18.5

1 neo gtt pain resp neuro wean
clear plan insulin good 3.3 1.8 1.6 3.6 2.7

2
assessment insulin mg/dl

plan pain meq/l mmhg chest
cabg action

0.3 0.6 0.9 3.6 2.2

0
chest reason tube clip left
artery s/p pneumothorax

cabg pulmonary
3.2 5.5 2.5 5.6 4.0

25
c/o pain clear denies

oriented sats plan alert stable
monitor

7.3 3.9 5.9 8.2 6.5

47
pacer pacemaker icd s/p

paced rhythm ccu
amiodarone cardiac

8.2 9.1 8.3 13.8 10.1

Table 2: Top and bottom 5 topics (of 50) based on variance in error rates of groups. Error rates by
group and topic p(Ŷ 6= Y |K,A) are reported in percentages.

We identified patients with notes corresponding to topic 48, corresponding to cancer, as a subpopula-
tion with large differences in errors between groups. By varying the training size while saving 20%
of the data for testing, we estimate that more data would not be beneficial for decreasing error (see
Figure 3c). The mean over 50 trials is reported with hyperparameters chosen for each training size.
Instead, we recommend collecting more features (e.g. structured data from lab results, more detailed
patient history) as a way of improving error for this subpopulation.

Furthermore, we compute the 95% confidence intervals for false positive and false negative rates for
a logistic regression with L1 regularization in Figure 3a and Figure 3b.

3 Exploring model choice

If a difference in bias is the dominating source of discrimination between groups, changing the class
of models under consideration could have a large impact on discrimination.Consider for example
Figure 1c in which the true outcome has higher complexity in regions where one protected group is
more densely distributed than the other. Increasing model capacity in such cases, or exploring other
model classes of similar capacity, may reduce as long as the bias-variance trade-off is beneficial. Bias
is not identifiable in general, as this requires estimation or bounding of noise components Na, or an
assumption that they are equal, N0 = N1, or negligible, Na ≈ 0. However, as noise is in-dependent
of model choice, a difference in bias of different models is identifiable even if the noise is not known,
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Figure 3: Additional clinical notes experiments highlight the differences in false positive and false
negative rates. We also examine the effect of training size on cancer patients in the dataset.

provided that the variance is estimated. With ∆B = B0 −B1, and ∆V = V 0 − V 1, and Ŷ , Ŷ ′, two
predictors for comparison, we may test the hypothesisH0 : ∆B(Ŷ )+∆V (Ŷ ) = ∆B(Ŷ ′)+∆V (Ŷ ′).

4 Regression with homoskedastic noise

By definition of N , we can state the following result.

Proposition 1. Homoskedastic noise, i.e. ∀x ∈ X , a ∈ A : N(x, a) = N , does not contribute to
discrimination level Γ under the squared loss L(y, y′) = (y − y′)2.

Proof. Under the squared loss, ∀a : Na = EX [N(X, a)] = N , as cn(x, a) = 1.

In contrast, for the zero-one loss and class-specific variants, the expected noise terms Na do not
cancel, as they depend on the factor cn(x, a).

5 Bias-variance decomposition. Proof of Theorem 1.

Lemma A1 (Squared loss and zero-one loss). The following claim holds for both:
a) L(y, y′) = [y 6= y′] the zero-one loss with c1(x, a) = 2E[1[ŶD(x, a) = ŷ∗(x, a)]] − 1 and
c2(x, a) = {1, if ŷ∗(x, a) = ŷm(x, a);−1 otherwise},
b) a) L(y, y′) = (y − y′)2 the squared loss with c1(x, a) = c2(x, a) = 1.

E[L(Y, ŶD) | X = x,A = a] = c1(x, a)E[L(y, Ŷ ∗) | x, a]

+ L(ŷm(x, a), ŷ∗(x, a)) + c2E[L(ŷm(x, a), ŶD) | x, a] .

Proof. See Domingos (2000).

Lemma A2 (Class-specific zero-one loss). With L(y, y′) = [y 6= y′] the zero-one loss, it
holds with c1(x, a) = 2E[1[ŶD(x, a) = ŷ∗(x, a)]] − 1 and c2(x, a) = {1, if ŷ∗(x, a) =
ŷm(x, a);−1 otherwise}

∀y ∈ {0, 1} : E[L(y, ŶD) | X = x,A = a] =

c1(x, a)L(y, Ŷ ∗) + L(ŷm(x, a), ŷ∗(x, a)) + c2E[L(ŷm(x, a), ŶD) | x, a] .
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Proof. We begin by showing that L(y, ŶD(x, a)) = L(ŷ∗(x, a), ŶD(x, a)) + c0(x, a)L(y, ŷ∗(x, a))

with c0(x, a) = {+1, if ŷ∗(x, a) = ŶD(x, a);−1, otherwise}.

L(y, ŶD)− L(ŷ∗(x, a), ŶD(x, a)) + c0(x, a)L(y, ŷ∗(x, a))

=


0, if ŶD(x, a) = ŷ∗(x, a) = 0

−1− c0(x, a), if ŶD(x, a) = 0, ŷ∗(x, a) = 1

0, if ŶD(x, a) = 1, ŷ∗(x, a) = 0

1− c0(x, a), if ŶD(x, a) = ŷ∗(x, a) = 1

As the above should be zero for all options, this implies that c0 = 2 ∗ 1[ŶD(x, a) = ŷ∗(x, a)]− 1.

We now show that,

E[L(ŷ∗(x, a), Yd) | x, a] = L(ŷ∗(x, a), ŷm(x, a)) + c2(x, a)E[L(ŷm(x, a), Ŷ ) | x, a] .

We have that if ŷm(x, a) 6= ŷ∗(x, a),

E[L(ŷ∗(x, a), ŶD) | x, a] = p(ŷ∗(x, a) 6= ŶD | x, a) = 1− p(ŷ∗(x, a) = ŶD | x, a)

= 1− p(ŷm(x, a) = ŶD | x, a) = 1− E[L(ŷm(x, a), ŶD) | x, a]

= L(ŷ∗(x, a), ŷm(x, a))− E[L(ŷm(x, a), ŶD) | x, a]

= L(ŷ∗(x, a), ŷm(x, a)) + c2(x, a)E[L(ŷm(x, a), ŶD) | x, a] .

A similar calculation for the case where ŷm(x, a) = ŷ∗(x, a) yields the claim.

Finally, We have that

E[L(y, ŶD)] = E[L(ŷ∗(x, a), ŶD) + c0(x, a)L(y, ŷ∗(x, a)) | x, a]

= E[L(ŷ∗(x, a), ŶD) | x, a] + E[c0(x, a) | x, a]L(y, ŷ∗(x, a))

= L(ŷ∗(x, a), ŷm(x, a)) + c2(x, a)E[L(ŷm(x, a), ŶD) | x, a]

+ E[c0(x, a) | x, a]L(y, ŷ∗(x, a))

which gives us our result.

Since datasets are drawn independently of the protected attribute A,

γa(Ŷ ) = ED[EX,Y [L(Y, ŶD) | D,A = a] | A = a]

= EX [ED,Y [L(Y, ŶD) | X,A = a] | A = a]

= EX [B(Ŷ , X, a) + c2(X, a)V (Ŷ , X, a) + c1(X, a)N(X, a) | A = a] ,

and an analogous results hold for class-specific losses, Theorem 1 follows from lemmas A1–A2.

6 Difference between power law curves

Let f(x) = ax−b + c and g(x) = dx−e + h. Then d(x) = f(x)− g(x) has at most 2 local minima.
We see this by re-writing d(x)

d(x) = ax−b + c̃− dx−e

and so
d′(x) = (−b)ax−b−1 + dex−e−1

Setting the derivative to zero,
(−b)ax−b−1 + dex−e−1 = 0

xb−e =
ba

de
which has a unique positive root

x = (
ba

de
)

1
b−e .
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Since f(x) has a single critical point (for x > 0), f(x) can switch signs at most twice. The curves
f(x) = 100

x2 + 1 and g(x) = 50
x intersect twice on x ∈ [0,∞]. If b = e, d(x) has a single zero,

d(x) = (a− d)x−b + c̃ = 0

yields

x = (
c̃

d− a )
1

−b .

References
Brown, Lawrence D, Cai, T Tony, and DasGupta, Anirban. Interval estimation for a binomial

proportion. Statistical science, pp. 101–117, 2001.

Domingos, Pedro. A unified bias-variance decomposition. In Proceedings of 17th International
Conference on Machine Learning, pp. 231–238, 2000.

Gnanesh. Goodreads book reviews, 2017. URL https://www.kaggle.com/gnanesh/
goodreads-book-reviews.

Johnson, Alistair EW, Pollard, Tom J, Shen, Lu, Lehman, Li-wei H, Feng, Mengling, Ghassemi,
Mohammad, Moody, Benjamin, Szolovits, Peter, Celi, Leo Anthony, and Mark, Roger G. Mimic-iii,
a freely accessible critical care database. Scientific data, 3, 2016.

Lichman, M. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M.,
Perrot, M., and Duchesnay, E. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

Woodworth, Blake, Gunasekar, Suriya, Ohannessian, Mesrob I, and Srebro, Nathan. Learning
non-discriminatory predictors. Conference On Learning Theory, 2017.

7

https://www.kaggle.com/gnanesh/goodreads-book-reviews
https://www.kaggle.com/gnanesh/goodreads-book-reviews
http://archive.ics.uci.edu/ml

	Testing for significant discrimination
	Additional experimental details
	Datasets
	Synthetic experiments
	Book review ratings
	Clinical notes

	Exploring model choice
	Regression with homoskedastic noise
	Bias-variance decomposition. Proof of Theorem 1.
	Difference between power law curves

