A Negative association properties of ESR measures

Proposition [1.](#page--1-0) There exist ESR measures that are not SR.

Proof. Recall [[11,](#page--1-1) Thm. 4.1] that a real bivariate affine polynomial $p(x, y)$ is stable if and only if

$$
\partial_x p \partial_y p - p \partial_{xy} p \ge 0.
$$

For an E-DPP with a kernel $L \in \mathbb{R}^{2 \times 2}$, this is exactly $l_{11}^p l_{22}^p \ge \det(L)^p$, which is clearly true for all $p \geq 0$ as *L* must be positive semi-definite.

However, stability does not hold in general. To obtain a counterexample, consider the generating polynomial $p(x, y, z)$ for an E-DPP of dimension 3 (writing $d = \det(L)$ as a shorthand):

 $p(x, y, z) := d^{p} + l_{11}^{p}yz + l_{22}^{p}xz + l_{33}^{p}xy + \det(L[1, 2])^{p}z + \det(L[1, 3])^{p}y + \det(L[2, 3])^{p}x + xyz.$

If $p(x, y, z)$ is SR, p must be stable through conditioning [\[11](#page--1-1), Theorem 4.1]; hence, $p(x, y, 1)$ must also be stable. Writing $d_{ij} = \det(L[i, j])$, this requires that

$$
p(x, y, 1) = dp + dp12 + (dp22 + dp23)x + (dp11 + dp13)y + (dp33 + 1)xy
$$

be stable. Since $p(x, y, 1)$ is a real bivariate affine polynomial, we must then have

$$
(d_{22}^p + d_{23}^p)(d_{11}^p + d_{13}^p) \geq (d^p + d_{12}^p)(d_{33}^p + 1).
$$

Finally, one can verify that this last inequality is easily violated for several choices of (non-diagonal) positive semi-definite matrices. \Box

Theorem [1.](#page--1-2) There exists $\epsilon > 0$ such that for any $p \in [1 - \epsilon, 1 + \epsilon]$ and $n \in \mathbb{N}$, the set $\{L \in \mathbb{R}^{n \times n}$: E-DPP(*L, p*) is SR*}* is strictly greater than the set of block-diagonal matrices with 2×2 blocks.

Proof. We write $d_S^i = \det(L[S \cup \{i\}))^p$ and when possible $d_{ijk} = \det(L[\{i, j, k\}])^p$.

Let $L \succeq 0 \in \mathbb{R}^{n \times n}$. The associated E-DPP is SR if and only if $P_{ij}(z) \ge 0$ where $P_{ij}(z)$ is defined for any $1 \leq i \neq j \leq n$ as

$$
P_r(z) = \frac{\partial f}{\partial z_i}(z) \frac{\partial f}{\partial z_j}(z) - f(z) \frac{\partial^2 f}{\partial z_i \partial z_j}(z)
$$

=
$$
\Big(\sum_{S \in \mathcal{Y}'} d_S^i z^S \Big) \Big(\sum_{S \in \mathcal{Y}'} d_S^j z^S \Big) - \Big(\sum_{S \in \mathcal{Y}'} d_S^{ij} z^S \Big) \Big(\sum_{S \in \mathcal{Y}'} d_S z^S \Big).
$$

where we write $\mathcal{Y}' = \{ S \in [n], i \notin S, j \notin S \}$ and $z = (z_1, \dots, z_n)$ where components z_i and z_j are removed. Now, choose $k \in [n] \setminus \{i, j\}$, and write \tilde{z} the vector *z* without component z_k . Write also $\mathcal{Y}'_k = \{ S \in \mathcal{Y}' , k \notin S \}$. Then,

$$
P_{ij}(z) = \left(\sum_{k \notin S} d_{S}^{i} \tilde{z}^{S} + z_{k} \sum_{k \in S} d_{S}^{i} \tilde{z}^{S}\right) \left(\sum_{k \notin S} d_{S}^{j} \tilde{z}^{S} + z_{k} \sum_{k \in S} d_{S}^{j} \tilde{z}^{S}\right)
$$

\n
$$
- \left(\sum_{k \notin S} d_{S}^{ij} \tilde{z}^{S} + z_{k} \sum_{k \in S} d_{S}^{ij} \tilde{z}^{S}\right) \left(\sum_{k \notin S} d_{S} \tilde{z}^{S} + z_{k} \sum_{k \in S} d_{S} \tilde{z}^{S}\right)
$$

\n
$$
= \left(\sum_{S \in \mathcal{Y}'_{k}} d_{S}^{ik} \tilde{z}^{S} \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{jk} \tilde{z}^{S} - \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{ijk} \tilde{z}^{S} \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{k} \tilde{z}^{S}\right) z_{k}^{2}
$$

\n
$$
+ \left(\sum_{S \in \mathcal{Y}'_{k}} d_{S}^{ik} \tilde{z}^{S} \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{j} \tilde{z}^{S} + \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{i} \tilde{z}^{S} \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{jk} \tilde{z}^{S}
$$

\n
$$
- \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{ijk} \tilde{z}^{S} \sum_{S \in \mathcal{Y}'_{k}} d_{S} \tilde{z}^{S} - \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{ij} \tilde{z}^{S} \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{k} \tilde{z}^{S}\right) z_{k}
$$

\n
$$
+ \left(\sum_{S \in \mathcal{Y}'_{k}} d_{S}^{i} \tilde{z}^{S} \sum_{S \in \mathcal{Y}'_{k}} d_{S}^{j} \tilde{z}^{S} - \sum_{S \in \mathcal{Y}'_{k
$$

Hence, *L* yields a SR E-DPP measure if and only if the following inequalities hold for all *i, j, k*:

$$
(B/2)^2 \le AC; \quad A \ge 0; \quad C \ge 0. \tag{A.1}
$$

When *n* = 3, Eq. [\(A.1](#page-1-0)) reduces to the following arithmetic-geometric inequality, as $\mathcal{Y}'_k = \{\emptyset\}$:

$$
\left(\frac{d_i d_{jk} + d_j d_{ik} - d_{ij} d_k - d_{ijk}}{2}\right)^2 \le (d_i d_j - d_{ij})(d_{jk} d_{ik} - d_k d_{ijk})
$$
\n(A.2)

One can easily obtain 3 positive semi-definite matrices L which verify Eq. ([A.2](#page-1-1)) strictly for $p = 1$; in particular, by continuity, there exists $\epsilon > 0$ such that the E-DPP generated by the kernel *L* and power $p \in [1 - \epsilon, 1 + \epsilon]$ will still verify Eq. [\(A.2\)](#page-1-1).

Then, as a block-diagonal matrix such that each diagonal block yields SR E-DPPs also yields a SR E-DPP, we can thus generate block-diagonal matrices of any size *n* such that the blocks are either *L* or 2 × 2 matrices, which all yield SR E-DPPs for $p \in [1 - \epsilon, 1 + \epsilon]$. \Box

B *r*-closeness

Proposition [2](#page--1-3). Let μ be an SR measure over $2^{[n]}$, and define ν to be the ESR measure such that $\mu(S) = \alpha \mu(S)^p$ for a given $\alpha \in \mathbb{R}$. Then

$$
r(\mu,\nu) \le \max_{S \in \text{supp}(\nu)} \left[\mu(S)^{-|p-1|} \right] < \infty.
$$

Proof. Let μ, ν be as in the proposition statement, and consider $S \in \text{supp}(\nu)$: $\nu(S) > 0$. Recall that $\sum_{T} \nu(T) = 1.$
p(*S*) $\mu(S)$

$$
\frac{\nu(S)}{\mu(S)} = \frac{\mu(S)^p}{\mu(S) \sum_T \mu(T)^p}
$$

If $p \leq 1$, we have $\sum_{T} \mu(T)^p \geq 1$ and $\mu(S)^p \geq \mu(S)$, and so

$$
(\min_{S} \mu(S))^{p-1} \le \frac{\sum_{T} \mu(T)}{\sum_{T} \mu(T)^p} = \frac{1}{\sum_{T} \mu(T)^p} \le \frac{\mu(S)^p}{\mu(S) \sum_{T} \mu(T)^p} \le \mu(S)^{p-1} \le \frac{1}{\min_{S} \mu(S)^{1-p}}
$$

where the left inequality is obtained by noticing that $\frac{a+b}{c+d} \ge \min\left(\frac{a}{c}, \frac{b}{d}\right)$.

Similarly, for $p \ge 1$, we have $\sum_{T} \mu(T)^{p} \le 1$ and $\mu(T)^{p} \le \mu(T)$, and so

$$
\min_{S} \mu(S)^{p-1} \le \frac{\mu(S)^p}{\mu(S)} \le \frac{\mu(S)^p}{\mu(S) \sum_{T} \mu(T)^p} \le \frac{\sum_{T} \mu(T)}{\sum_{T} \mu(T)^p} \le \max \mu(S)^{1-p} = \frac{1}{\min \mu(S)^{p-1}}.
$$

C Bounds on mixing times

Theorem [2](#page--1-4). Let μ , ν be measures over $2^{[n]}$ such that μ is SR and ν is ESR. Sampling from ν via Alg. [1](#page--1-5) with μ as a proposal distribution has a mixing time $\tau(\epsilon)$ such that

$$
\tau_S(\epsilon) \le 2r(\mu, \nu^p) \log \frac{1}{\epsilon}.
$$

Proof. Alg. [1](#page--1-5) has a state-independent proposal distribution μ , and hence its mixing time is governed by a ratio of probabilities: Cai [\[14](#page--1-6)] showed that, after *t* iterations,

$$
\max_{S,T} d_{\text{TV}}(\nu_{(t)}(\cdot \mid S), \nu_{(t)}(\cdot \mid T)) = \left(1 - \frac{1}{\max_{U} \nu(U)/\mu(U)}\right)^t
$$

where $\nu_{(t)}(U \mid S)$ is the probability of being in state *U* after *t* iterations when starting from set *S*, and d_{TV} is the total variation distance.

Hence, following [14, Cor.1], we obtain
$$
\tau_S(\epsilon) \leq 2 \max_U \frac{\nu(U)}{\mu(U)} \log \frac{1}{\epsilon} \leq 2r(\mu, \nu^p) \log \frac{1}{\epsilon}
$$
.

Theorem [3](#page--1-7). Let ν be a *k*-homogeneous ESR measure over $2^{[n]}$ $2^{[n]}$. The mixing time for Alg. 2 with initialization *S* is bounded in expectation by

$$
\tau_S(\epsilon) \le \inf_{\mu \in \text{SR}} 2nk \, r(\mu, \nu)^2 \log \frac{1}{\epsilon \nu(S)}
$$

Proof. This bound is based on a comparison method [\[17](#page--1-9)], and relates the mixing time to the spectral gap. Let $1 = \mu_1 \geq \mu_2 \geq \ldots \geq -1$ be the eigenvalues of the state transition matrix of the chain. The *spectral gap* is $\gamma = 1 - \max\{|\mu|; \mu \text{ is an eigenvalue and } \mu \neq 1\}$. γ directly translates into a bound on the mixing time [[18\]](#page--1-10):

$$
\tau_S(\gamma) \leq \frac{1}{\gamma} \log \left(\frac{1}{\epsilon \nu(S)} \right).
$$

The comparison method yields a bound on γ if we know a bound on $\tilde{\gamma}$ for a related chain with stationary distribution μ . Specifying [[17,](#page--1-9) Thm 2.1] to this case yields $\gamma \geq \tilde{\gamma} \alpha_1/\alpha_2$, where

$$
\alpha_1 = \min_{S} \frac{\mu(S)}{\nu(S)} \ge \frac{1}{r(p)} \n\alpha_2 = \max_{T,U} \frac{\mu(T)}{\nu(T)} \frac{\min\{1, \mu(U)/\mu(T)\}}{\min\{1, \nu(U)/\nu(T)\}} \le \max_{T} \frac{\mu(T)}{\nu(T)} \le r(\mu, \nu)
$$

Anari et al. [[5\]](#page--1-11) show that $\tilde{\gamma} \ge \frac{1}{2nk}$. Hence, we obtain $\tau_S(\gamma) \le 2nk \cdot r(\mu, \nu)^2 \cdot \log \frac{1}{\epsilon \nu(S)}$.

$$
\qquad \qquad \Box
$$

D Bounds for E-DPPs with L^p -kernel proposal

We require the following power-mean inequality:

Theorem 8 (Specht [[45\]](#page--1-12)). Let $x_i > 0$ and $w_i \geq 0$ for $1 \leq i \leq N$ such that $\sum_i w_i = 1$. Let $p < q \in \mathbb{R}$ *such that* $pq \neq 0$ *. Then, letting* $\kappa = \frac{\max x_i}{\min x_i}$,

$$
1 \leq \frac{M_q(\boldsymbol{w}; \boldsymbol{x})}{M_p(\boldsymbol{w}; \boldsymbol{x})} \leq \left(\frac{q-p}{q}\frac{\kappa^q-1}{\kappa^q-\kappa^p}\right)^{\frac{1}{p}} \left(\frac{p}{q-p}\frac{\kappa^q-\kappa^p}{\kappa^p-1}\right)^{\frac{1}{q}}.
$$

where the power mean $M_p(\boldsymbol{w}; \boldsymbol{x})$ *is defined as*

$$
M_p(\boldsymbol{w};\boldsymbol{x}):=\Big(\sum\nolimits_{i=1}^N w_i x_i^p\Big)^{\frac{1}{p}}.
$$

Theorem 9. Let $L \in \mathbb{P}^n$ be a positive definite matrix and $S \subseteq [n]$. Then,

$$
\det(L[S])^p \ge \det(L^p[S]), \qquad 0 \le p \le 1,
$$

$$
\det(L[S])^p \le \det(L^p[S]), \qquad p \ge 1.
$$

Proof. From Lemma [1,](#page--1-13) there exists a vector *w* in the probability simplex, of size $\binom{n}{|S|}$, such that

$$
\det(L[S]) = \sum\nolimits_{J \subseteq [n], |J| = |S|} w_J \prod\nolimits_{i \in J} \lambda_i.
$$

Since $t \to t^p$ is convex for $p \geq 1$, Jensen's inequality shows that

$$
\det(L[S])^p \le \sum\nolimits_{J \subseteq [n], |J|=|S|} w_J \prod\nolimits_{i \in J} \lambda_i^p = \det(L^p[S]),
$$

where the latter equality follows due to L and L^p sharing the same eigenbasis. The same reasoning for $p < 1$ gives the other side of the inequality. \Box

Theorem [7.](#page--1-14) Let μ be the distribution induced by a DPP with kernel L^p , and ν be the corresponding E-DPP such that $\nu(S) \triangleq \det(L[S])^p/Z_p$. Then $r(\mu, \nu) \leq r(\kappa_{\lfloor n/2 \rfloor}, p)$ where $r(\kappa, p)$ is defined by

$$
r(\kappa, p) = \begin{cases} \left(\frac{p(\kappa - 1)}{\kappa^{p} - 1}\right)^{p} \left(\frac{(1 - p)(\kappa - 1)}{\kappa - \kappa^{p}}\right)^{1 - p} & \text{for } 0 < p < 1\\ \left(\frac{\kappa^{p} - 1}{p(\kappa - 1)}\right)^{p} \left(\frac{(p - 1)(\kappa - 1)}{\kappa^{p} - \kappa}\right)^{p - 1} & \text{for } p > 1 \end{cases}
$$

Proof. We show the result for general DPPs; the result for *k*-DPPs follows the same exact reasoning. For $0 < p < 1$, it follows from Thm. [9](#page-2-0) that $\det(L[S])^p \geq \det(L^p[S])$. Hence,

$$
Z_p = \sum_{S \subseteq [n]} \det(L[S])^p \ge \sum_{S \subseteq [n]} \det(L^p[S]) = \det(I + L^p),
$$

which entails $\frac{\det(I+L^p)}{Z}$ $\frac{I+L^p}{Z_p} \leq 1$ whereby it remains to bound $\frac{\det(L[S])^p}{\det(L^p[S])}$.

Let $S \subseteq [n]$ of size k, and let λ be the vector of L's eigenvalues. We write $\lambda^S = \prod_{i \in S} \lambda_i$, and denote by $\lambda^{\wedge k}$ the $\binom{n}{k}$ -vector $(\lambda^S)_{S \subseteq [n], |S| = k}$. Using Lemma [1,](#page--1-13) there exists $w \in \mathbb{R}^{\binom{n}{k}}$ that sums to 1 such that

$$
\frac{\det(L[S])^p}{\det(L^p[S])} = \frac{\left(\sum_{|S|=k} w_S \lambda^S\right)^p}{\sum_{|S|=k} w_S(\lambda^p)^S} = \left(\frac{M_1(\mathbf{w}; \mathbf{\lambda}^{\wedge k})}{M_p(\mathbf{w}; \mathbf{\lambda}^{\wedge k})}\right)^p
$$

$$
\leq r(p)^p.
$$

Where the last inequality follows from Thm. [8](#page-2-1). To lower bound $r_p(S)$, the same reasoning gives us $\frac{\det(L[S]^p)}{\det(L^p[S])} \geq 1$ and hence

$$
r_p(S) \ge \frac{\det(I + L^p)}{Z_p} \ge \min_{S} \frac{\det L^p[S]}{(\det L[S])^p}
$$

$$
\ge \left(\frac{M_p(\mathbf{w}'; \mathbf{\lambda}^{\wedge k})}{M_1(\mathbf{w}'; \mathbf{\lambda}^{\wedge k})}\right)^p \ge r(p)^{-p},
$$

where the second inequality follows $\frac{a+b}{c+d} \ge \min(\frac{a}{c}, \frac{b}{d})$. The same reasoning yields the result for $p > 1$.

Finally, some algebra shows that for fixed *p*, *r* is an increasing function of *κ*, and so $r(\kappa_k, p)$ is upper bounded by $r(\kappa_{k/2})$. bounded by $r(\kappa_{\lfloor n/2 \rfloor}).$

Figure 4: Evolution of the upper bound for $r(p, \kappa)$ from Thm. [7,](#page--1-14) which measures the *r*-closeness between the E-DPP with kernel L and the DPP with kernel L^p .

E Mixing time as a function of ground set size for E-DPPs

Figure 5: Influence of ground set size *n* on mixing time

F Additional Nystrom sampling results

Figure 7: Frobenius norm reconstruction error