
A Negative association properties of ESR measures

Proposition 1. There exist ESR measures that are not SR.

Proof. Recall [11, Thm. 4.1] that a real bivariate affine polynomial p(x, y) is stable if and only if

∂xp∂yp− p ∂xyp ≥ 0.

For an E-DPP with a kernel L ∈ R2×2, this is exactly lp11l
p
22 ≥ det(L)p, which is clearly true for all

p ≥ 0 as L must be positive semi-definite.

However, stability does not hold in general. To obtain a counterexample, consider the generating
polynomial p(x, y, z) for an E-DPP of dimension 3 (writing d = det(L) as a shorthand):

p(x, y, z) := dp+ lp11yz+ lp22xz+ lp33xy+det(L[1, 2])pz+det(L[1, 3])py+det(L[2, 3])px+xyz.

If p(x, y, z) is SR, p must be stable through conditioning [11, Theorem 4.1]; hence, p(x, y, 1) must
also be stable. Writing dij = det(L[i, j]), this requires that

p(x, y, 1) = dp + dp12 + (dp22 + dp23)x+ (dp11 + dp13)y + (dp33 + 1)xy

be stable. Since p(x, y, 1) is a real bivariate affine polynomial, we must then have

(dp22 + dp23)(d
p
11 + dp13) ≥ (dp + dp12)(d

p
33 + 1).

Finally, one can verify that this last inequality is easily violated for several choices of (non-diagonal)
positive semi-definite matrices.

Theorem 1. There exists ϵ > 0 such that for any p ∈ [1− ϵ, 1 + ϵ] and n ∈ N, the set {L ∈ Rn×n :
E-DPP(L, p) is SR} is strictly greater than the set of block-diagonal matrices with 2× 2 blocks.

Proof. We write diS = det(L[S ∪ {i}))p and when possible dijk = det(L[{i, j, k}])p.

Let L ⪰ 0 ∈ Rn×n. The associated E-DPP is SR if and only if Pij(z) ≥ 0 where Pij(z) is defined
for any 1 ≤ i ̸= j ≤ n as

Pr(z) =
∂f

∂zi
(z)

∂f

∂zj
(z)− f(z)

∂2f

∂zi∂zj
(z)

=
( ∑

S∈Y′

diSz
S
)( ∑

S∈Y′

djSz
S
)
−
( ∑

S∈Y′

dijS z
S
)( ∑

S∈Y′

dSz
S
)
.

where we write Y ′ = {S ∈ [n], i ̸∈ S, j ̸∈ S} and z = (z1, . . . , zn) where components zi and zj
are removed. Now, choose k ∈ [n]\{i, j}, and write z̃ the vector z without component zk. Write
also Y ′

k = {S ∈ Y ′, k ̸∈ S}. Then,

Pij(z) =(
∑
k ̸∈S

diS z̃
S + zk

∑
k∈S

diS z̃
S)(
∑
k ̸∈S

djS z̃
S + zk

∑
k∈S

djS z̃
S)

− (
∑
k ̸∈S

dijS z̃
S + zk

∑
k∈S

dijS z̃
S)(
∑
k ̸∈S

dS z̃
S + zk

∑
k∈S

dS z̃
S)

=

∑
S∈Y′

k

dikS z̃S
∑
S∈Y′

k

djkS z̃S −
∑
S∈Y′

k

dijkS z̃S
∑
S∈Y′

k

dkS z̃
S

 z2k

+

( ∑
S∈Y′

k

dikS z̃S
∑
S∈Y′

k

djS z̃
S +

∑
S∈Y′

k

diS z̃
S
∑
S∈Y′

k

djkS z̃S

−
∑
S∈Y′

k

dijkS z̃S
∑
S∈Y′

k

dS z̃
S −

∑
S∈Y′

k

dijS z̃
S
∑
S∈Y′

k

dkS z̃
S

)
zk

+

∑
S∈Y′

k

diS z̃
S
∑
S∈Y′

k

djS z̃
S −

∑
S∈Y′

k

dijS z̃
S
∑
S∈Y′

k

dS z̃
S


=Az2k +Bzk + C
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Hence, L yields a SR E-DPP measure if and only if the following inequalities hold for all i, j, k:

(B/2)2 ≤ AC; A ≥ 0; C ≥ 0. (A.1)

When n = 3, Eq. (A.1) reduces to the following arithmetic-geometric inequality, as Y ′
k = {∅}:(

didjk + djdik − dijdk − dijk
2

)2

≤ (didj − dij)(djkdik − dkdijk) (A.2)

One can easily obtain 3 positive semi-definite matrices L which verify Eq. (A.2) strictly for p = 1;
in particular, by continuity, there exists ϵ > 0 such that the E-DPP generated by the kernel L and
power p ∈ [1− ϵ, 1 + ϵ] will still verify Eq. (A.2).

Then, as a block-diagonal matrix such that each diagonal block yields SR E-DPPs also yields a SR
E-DPP, we can thus generate block-diagonal matrices of any size n such that the blocks are either
L or 2× 2 matrices, which all yield SR E-DPPs for p ∈ [1− ϵ, 1 + ϵ].

B r-closeness

Proposition 2. Let µ be an SR measure over 2[n], and define ν to be the ESR measure such that
µ(S) = αµ(S)p for a given α ∈ R. Then

r(µ, ν) ≤ max
S∈supp(ν)

[
µ(S)−|p−1|

]
<∞.

Proof. Let µ, ν be as in the proposition statement, and consider S ∈ supp(ν): ν(S) > 0. Recall
that

∑
T ν(T ) = 1.

ν(S)

µ(S)
=

µ(S)p

µ(S)
∑

T µ(T )p

If p ≤ 1, we have
∑

T µ(T )p ≥ 1 and µ(S)p ≥ µ(S), and so

(min
S

µ(S))p−1 ≤
∑

T µ(T )∑
T µ(T )p

=
1∑

T µ(T )p
≤ µ(S)p

µ(S)
∑

T µ(T )p
≤ µ(S)p−1 ≤ 1

minS µ(S)1−p

where the left inequality is obtained by noticing that a+b
c+d ≥ min

(
a
c ,

b
d

)
.

Similarly, for p ≥ 1, we have
∑

T µ(T )p ≤ 1 and µ(T )p ≤ µ(T ), and so

min
S

µ(S)p−1 ≤ µ(S)p

µ(S)
≤ µ(S)p

µ(S)
∑

T µ(T )p
≤
∑

T µ(T )∑
T µ(T )p

≤ maxµ(S)1−p =
1

minµ(S)p−1
.

C Bounds on mixing times

Theorem 2. Let µ, ν be measures over 2[n] such that µ is SR and ν is ESR. Sampling from ν via
Alg. 1 with µ as a proposal distribution has a mixing time τ(ϵ) such that

τS(ϵ) ≤ 2r(µ, νp) log
1

ϵ
.

Proof. Alg. 1 has a state-independent proposal distribution µ, and hence its mixing time is governed
by a ratio of probabilities: Cai [14] showed that, after t iterations,

max
S,T

dTV(ν(t)(· | S), ν(t)(· | T )) =
(
1− 1

maxU ν(U)/µ(U)

)t
where ν(t)(U | S) is the probability of being in state U after t iterations when starting from set S,
and dTV is the total variation distance.

Hence, following [14, Cor.1], we obtain τS(ϵ) ≤ 2maxU
ν(U)
µ(U) log

1
ϵ ≤ 2r(µ, νp) log 1

ϵ .
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Theorem 3. Let ν be a k-homogeneous ESR measure over 2[n]. The mixing time for Alg. 2 with
initialization S is bounded in expectation by

τS(ϵ) ≤ inf
µ∈SR

2nk r(µ, ν)2 log 1
ϵν(S)

Proof. This bound is based on a comparison method [17], and relates the mixing time to the spectral
gap. Let 1 = µ1 ≥ µ2 ≥ . . . ≥ −1 be the eigenvalues of the state transition matrix of the chain.
The spectral gap is γ = 1 − max{|µ|;µ is an eigenvalue and µ ̸= 1}. γ directly translates into a
bound on the mixing time [18]:

τS(γ) ≤
1

γ
log
(

1
ϵν(S)

)
.

The comparison method yields a bound on γ if we know a bound on γ̃ for a related chain with
stationary distribution µ. Specifying [17, Thm 2.1] to this case yields γ ≥ γ̃α1/α2, where

α1 = min
S

µ(S)

ν(S)
≥ 1

r(p)

α2 = max
T,U

µ(T )

ν(T )

min{1, µ(U)/µ(T )}
min{1, ν(U)/ν(T )}

≤ max
T

µ(T )

ν(T )
≤ r(µ, ν)

Anari et al. [5] show that γ̃ ≥ 1
2nk . Hence, we obtain τS(γ) ≤ 2nk · r(µ, ν)2 · log 1

ϵν(S) .

D Bounds for E-DPPs with Lp-kernel proposal

We require the following power-mean inequality:
Theorem 8 (Specht [45]). Let xi > 0 and wi ≥ 0 for 1 ≤ i ≤ N such that

∑
i wi = 1. Let

p < q ∈ R such that pq ̸= 0. Then, letting κ = max xi

min xi
,

1 ≤ Mq(w;x)

Mp(w;x)
≤
(
q − p

q

κq − 1

κq − κp

) 1
p
(

p

q − p

κq − κp

κp − 1

) 1
q

.

where the power mean Mp(w;x) is defined as

Mp(w;x) :=
(∑N

i=1
wix

p
i

) 1
p

.

Theorem 9. Let L ∈ Pn be a positive definite matrix and S ⊆ [n]. Then,

det(L[S])p ≥ det(Lp[S]), 0 ≤ p ≤ 1,

det(L[S])p ≤ det(Lp[S]), p ≥ 1.

Proof. From Lemma 1, there exists a vector w in the probability simplex, of size
(

n
|S|
)
, such that

det(L[S]) =
∑

J⊆[n],|J|=|S|
wJ

∏
i∈J

λi.

Since t→ tp is convex for p ≥ 1, Jensen’s inequality shows that

det(L[S])p ≤
∑

J⊆[n],|J|=|S|
wJ

∏
i∈J

λp
i = det(Lp[S]),

where the latter equality follows due to L and Lp sharing the same eigenbasis. The same reasoning
for p < 1 gives the other side of the inequality.

Theorem 7. Let µ be the distribution induced by a DPP with kernel Lp, and ν be the corresponding
E-DPP such that ν(S) ≜ det(L[S])p/Zp. Then r(µ, ν) ≤ r(κ⌊n/2⌋, p) where r(κ, p) is defined by

r(κ, p) =


(

p(κ−1)
κp−1

)p(
(1−p)(κ−1)

κ−κp

)1−p

for 0 < p < 1(
κp−1
p(κ−1)

)p(
(p−1)(κ−1)

κp−κ

)p−1

for p > 1

14



Proof. We show the result for general DPPs; the result for k-DPPs follows the same exact reasoning.

For 0 < p < 1, it follows from Thm. 9 that det(L[S])p ≥ det(Lp[S]). Hence,

Zp =
∑
S⊆[n]

det(L[S])p ≥
∑
S⊆[n]

det(Lp[S]) = det(I + Lp),

which entails det(I+Lp)
Zp

≤ 1 whereby it remains to bound det(L[S])p

det(Lp[S]) .

Let S ⊆ [n] of size k, and let λ be the vector of L’s eigenvalues. We write λS =
∏

i∈S λi, and

denote by λ∧k the
(
n
k

)
-vector (λS)S⊆[n],|S|=k. Using Lemma 1, there exists w ∈ R(

n
k) that sums to

1 such that

det(L[S])p

det(Lp[S])
=

(
∑

|S|=k wSλ
S)p∑

|S|=k wS(λp)S
=
(M1(w;λ∧k)

Mp(w;λ∧k)

)p
≤ r(p)p.

Where the last inequality follows from Thm. 8. To lower bound rp(S), the same reasoning gives us
det(L[S]p)
det(Lp[S]) ≥ 1 and hence

rp(S) ≥
det(I + Lp)

Zp
≥ min

S

detLp[S]

(detL[S])p

≥
(Mp(w

′;λ∧k)

M1(w′;λ∧k)

)p
≥ r(p)−p,

where the second inequality follows a+b
c+d ≥ min(ac ,

b
d ). The same reasoning yields the result for

p > 1.

Finally, some algebra shows that for fixed p, r is an increasing function of κ, and so r(κk, p) is upper
bounded by r(κ⌊n/2⌋).
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Figure 4: Evolution of the upper bound for r(p, κ) from Thm. 7, which measures the r-closeness
between the E-DPP with kernel L and the DPP with kernel Lp.

E Mixing time as a function of ground set size for E-DPPs
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(a) Proposal, r = 2.0
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(b) Swapchain, r = 2.0
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Figure 5: Influence of ground set size n on mixing time
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F Additional Nystrom sampling results

unif lev reglev DPP E-DPP (p = 0.5) E-DPP (p = 2)
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(a) Ailerons dataset
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(b) Bank32NH dataset
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(c) CPU dataset

Figure 6: L2 reconstruction error
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(a) Ailerons dataset
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(b) Bank32NH dataset
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(c) CPU dataset

Figure 7: Frobenius norm reconstruction error
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