5 Appendix A: Results for Main Theorem

Notation. Let ()7 denote the real transpose. Let [n] = {1,...,n}. Let B(x,r) denote the
Euclidean ball centered at 2 with radius r. Let || - || denote the ¢5 norm for vectors and spectral norm
for matrices. For any non-zero « € R", let & = x/||z||. Let H}:dWZ- =WqWy_1...W7. Let I, be
the n x n identity matrix. Let S¥~1 denote the unit sphere in R¥. We write ¢ = Q(§) when ¢ > C§
for some positive constant C. Similarly, we write ¢ = O(d) when ¢ < C4 for some positive constant
C. When we say that a constant depends polynomially on ¢!, this means that it is at least Ce %
for some positive C' and positive integer k. For notational convenience, we write a = b + O (¢) if
|la — b]| < e where || - || denotes | - | for scalars, ¢5 norm for vectors, and spectral norm for matrices.
Define sgn : R — R to be sgn(z) = z/|z| for non-zero = € R and sgn(x) = 0 otherwise. For a
vector v € R™, diag(sgn(v)) is sgn(v;) in the i-th diagonal entry and diag(v > 0) is 1 in the i-th
diagonal entry if v; > 0 and 0 otherwise. For non-zero x, xy € R¥, let 6y = Z(x,z0). To understand
how the map x +— relu(WWz) distorts angles in expectation, define g : R — R by

9(0) = cos™! (COS% - 9) +sine) |

™

Then fori > 1, set §; = g(0;_1) where 0y = 6. Let g°? denote the composition of g with itself d
times. In this section, L is the positive universal constant 3 + 88/ .4

5.1 Full proof of Theorem 3
Proof. Set

S Vf(x) f is differentiable at z € R
T im0+ V(2 + 6w)  otherwise,

where f is differentiable at « + dw for sufficiently small 6 > 0. Any such direction w can be chosen
arbitrarily. Recall that

V(@) = (Wit w)  Aby Ac) W—aWi o)t — (Wit 2) T AL ) Aca) (T gWi 420 )0-
Let

_ L 1 T 1 1 T 1

Uzwo = (MimgWit o) (WimgWig o) — (Wit o) Pae),cwe) MimaWit 20)T0,  (5)

— d—1 —
[@ol| (7 — 204 T—0;\ .
hx,a:g = od . | I . Zo 6)

i=0
.= — L d-1 . & d—1 —
1 2sinfy T — 204 sin 6; T —0; N
#ga |l = ol [ 2224 (TR FRE (T T2 ) ) s )
1=0 Jj=i+1
and
1
Suon = {2 € RV (0): g < ggemaal. ol |
First, observe that by the WDC, we have that forall x £ 0and ¢ =1, ... ,d,
T 1 5 1
Wi aWita = 5| Se = [Wiral” < 5 +e (8)

Observe that
194(2) = Taung| < || (T_aWit) (A0 Ao = L) (M aWi .0

+ H(Hzl:dWi,-Q-,a:)T(Ag(ac)AG(Io) - (I)G(:L’),G(Io))(Hil:dWi,-hﬂCo)xOH :

“This is the precise constant in the upper bound for the RRCP. Please see the proof of Proposition 5 for its
derivation.
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Hence by the RRCP (Proposition 6) and (8), we have that

d d
IV (@) = Vo || < Le (H Wit ol + T Wi,+,x|||Wz‘,+,zo||> max({[z[], [[zoll) ()
i=1 i=1
1 d
< 2Le (2 + e) max(||z||, [|zo])- (10)

Then Lemma 2 guarantees that for all non-zero z, xy € R¥,

_ a3
10200 = P eo | < T855 Vemax([l, [zol]). (11)
Then we have that for all non-zero x, g € R¥,
V2,20 = Pazoll = Hm [V f(2 + 0w) — huysw x|
§—0t
< lim (”Vf(x + 6w) - Ew-‘réw,zon + ||ix+6w,z0 - hx+6w,x0”)
§—0+

(1+ 2¢)4 d?

< ve (2p 2 7855 ) wmax(a. ool)

dS
< Vel g max(||z]], [lwoll)

for some universal constant K where the first equality follows by the definition of v, ., and the
continuity of A, ,, for non-zero x,zo. The second inequality combines (10) and (11) and since
2ed < 1 = (1 + 2¢6)? < €%? < 1+ 4ed. This establishes concentration of Vg, 10 Iy 2, for all
non-zero x, xoy € R¥:

d3
10220 = hao || < VeK 55 max(|l], [|zo]]) (12)

Now, due to the continuity and piecewise linearity of the function G(x) and | - |, we have that for
any z,y # 0 that there exists a sequence {z,} — « such that f is differentiable at each x,, and
Dy f(x) = limp 00 Vf(2n) - y. Thus, as Vf(zn) = va,, a0

D—vw,wof(x) = - nh—>Holo Vg p,xo * Vzya0-

Then observe that

Vap,z0 * Va,mo = Ram,zo * Pawo + (Van,z0 — Pan,zo) * Pawo + R ,zo * (Va,20 — Raao)
+ (Uﬂ?mﬂ?o - hfﬂnﬁfo) ' (Uﬂ%mo - hfﬂ,ro)
2 hyp, iz howo — V2, 20 = Py o | 1P o | — ||hmn,ro||HUx,zo - hwaoH

- ”Urml’o - hImIo””vfb,Io - hl’@o”

dS
Mo Mg = [ | VeR 55 max([|z]], [lo]))

\%

a3 317
= o Ve g max([ll, ol) — € [KQd] max ||z, ||, [lzo||) max([|z|, [|zol)

where in the last inequality, we used (12). By the continuity of h,, ,, for non-zero = € R*, we have

that for x € SX\/EKdB 20"
) d? a1’ )
nmwwwww>hwm—wwmwﬂwmwwmmm—{K]mﬂﬂwmm

n—oo 2d

] &
= Meanll () - aver & mas(a]. o)
1 . d*]? .
45 (Mol = 26 | K55 | el ol
> 0.
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Hence we conclude that for all x € SjﬁKdg Dy, . flz) <0.

»Z0o

We now show that D, f(0) < 0 for all  # 0. Observe that we can write the objective function as

m

£ = 5 3 (Haes (MW )| = Vas, (T Wi, 0)])
(=1

2

where ay is a row of A. Then for any ¢ > 0, we have that by the positive homogeneity of G,

m

1
Fltw) = 5 > (2 {ar, (M_gWi s )2 + [ar, (T_gWi 1 a)20)
(=1

= 2tl{ag, (i gWi+0)2) (ae, (g Wi +.20)70) )-

Then since
m

f(0) =

we have that

== [ae, (M_yWi 4 2)x) (ar, (g Wi 1 .20)20)|
=1

= —((W_qWi 4 2) %, Ad () A (we) Ti—aWi,+ ) T0)-

We now focus on bounding this quantity from above by using the angle concentration property derived
in Lemma 4. We use the shorthand notation A, := II}_,W; 1 . and A, := II}_,W; | ... Observe

that we can write

(A:ELL‘, Ag(m)AG(l’o)AwoxO> = COS(Z(AG(CC)AIQ;7 AG(ID)AIOxO))||AG(IO)AISC|| ||AG(1O)AI()$0||

However, by Lemma 4, we have that
cos 9(04) — 4Le < cos(L(Ag(z)ANa®, AG(zg)AaoT0)) < cosp(By) +4Le
where ¢ is defined in (24) and 04 := Z(A,x, Ay, To). Thus combining (14) and (13) gives
(A, Ag(z)Ag(mO)Amox@ > (cos p(0q) — 4Le) || Aga) Ae ||| A (20) Azo To |-
However, note that

(m—20)cosf 4+ 2sinf _ 2

cos p(0) = >=V0e|0,n]
7r

™
Hence if € < 1/(4L), we have that by (15), (16), and (13), the following holds:

1
<Aw377 Ag(w)AG(CEo)Azo$0> > p HAG(I)waH HAG(mo)AwoxOH~

Finally, Lemma 4 establishes that for all non-zero x, zy € R¥,
[Ac(@) Aell; | Ac(zo) AaoTol| # 0.
Hence we conclude that
Dy f(0) = —(Au, Ay Ac(wo) Aao o)
< 4G Aall | Agray Avool
<0
where we used (17) in the first inequality and (18) in the last inequality.
We conclude by applying Proposition 1 and 247 d® \/m < 1 to attain

Sy verds zo C B(wo,89d7\/4VeK d?||zo ) U B(pazo, T74227%d"?\/ 4/eK d3 | zo]|).-
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(14)

5)

(16)
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We record some results that were used in the above proof. In [20], it was shown that Gaussian W;
satisfies the WDC with high probability:

Lemma 1 (Lemma 9 in [20]). Fix 0 < ¢ < 1. Let W € R™** have i.i.d. N(0,1/n) entries. If
n > cklog k then with probability at least 1 — 8n exp(—~k), W satisfies the WDC with constant e.
Here c,y~! are constants that depend only polynomially on e 1.

The following is a technical result showing concentration of U ,, around h, 4 :

Lemma 2. Fix0 < e < d~*(1/16m)? and let d > 2. Let W; satisfy the WDC with constant € for
i=1,...d. Forany non-zero x,y € R*, we have

_ 78d3
[Ta,y — hayll < — g Vemax([|z], [lyl]).
Proof. Observe that
_ 1
e~ hell < H<H3_dwi,+,w>T<H3_dwi,+@>w - L
=Q1
29,1 ™ — 2§d~
+ . ( sz+x) (1L %:dWi,#y)y_ ha.y
=Q:
25in 0g ||(IT_gWi+ )yl 1 T 2sinfq ||yl 1
-+ (H Wi,+,x) (le Wi’Jﬁz)%— — L -
H i H(H1 Wz+z)xll - ! T ) 2

=Qs

We focus on bounding each individual quantity ; for i = 1, 2, 3. For 1, we have that by (20) in
Lemma 3,

1
Q1= H(HzldWi,Jr,w)T(HzldWian)x - 2dxH \[

(19)

Then for ()2, observe that by the triangle inequality, we have

™ — 2903 ™ — 29(1 =
Q2 < - (Wit o) "L Wi 1)y — Thw
™ — 29,1 = ™ — 2§d >
+ hw,y - x,y
) [x — 20, \[ )
< 24 Ve ] (0 — )| I

(%) (3 8d
&y 4 BV (L >|| ||

Iyl + ——

where in (x) we used (20) and (+) used (23) and the fact that || A, || < 27%(1 + 4)||y||. Hence

@< g (200 + 2 (144 ) vy,
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To bound Q3, let yq := (II}_,W; + )y and x4 := (II'_,W; 4 ,)x. We use the triangle inequality to
gather the following three quantities to bound:

2sinfy, 251119d Yd
Q3 < ‘ - lval |(T_ Wi+ 2) 2|
™ [zl
=Qs,1
QSingd ||yd|| 1 T /1 2Slned ||y|| 1
o w; ) (I Wi 4 e — Wi, i—aWi +.:
H T ||xd||( 1=d 7+,£) ( i=d 7+,-E)x T ||£U||( =d +-K) ( 1=d ,+7-K)x
=Q3,2
2sin 6, ||yH 1 2sin by Iyl 1
(H Wz+:ﬂ) (Hi: Wi7+,a:)x_ Nl od
H T lzl ¢ ™ |z 2¢
:QS,S
Using (8) and (23) gives
Qus < 200l (3 + ) i
8d
<H(3+ ) Vallyl
T
8d(1+26)
= ———————Vellyl.
Likewise, equations (8) and (22) gives
. = d
d yll112sinfy]| /1
Q32 < lyall Nyl <2+6) Izl
lzall  ll2ll|| =
d
2
<sieply2 (5+<) el
16d\f
(2+) 1
16d(1+2e)
7f|| |
Lastly, we use (20) to attain
2sinf 1
Q3,3 < a| lwl Wit ) (1 %:dWi,+,x)x*7$
[E] 2
2 Hyll \f
< - el ” [z
< BV,

Combining the bounds for ngi fori =1,2,3 gives

Q3 < Q31+ Q32+Q33
. 8d(1 +2e) Jelull + 16d(1 +2e) el + 4843 \[H ||

Velyll

1 24d(1 +2¢)? N
~od T

Thus we attain

Ky
Q1+ Q2+ Q3 < F\/EmaX(HﬂL lyl)
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where
8d(1+d 24(1 4+ 26)*  48d3
(+d/m) | 2A(1+20" 48 _
Vs s ™

as long as ¢ < min(1/2d,1/96). O

Ky = 24d® + 2443 +

The following result summarizes some useful bounds from [20]:

Lemma 3 (Results from Lemma 5 in [20]). Fix 0 < ¢ < d~%(1/167)? and let d > 2. Let W; satisfy
the WDC with constant € for i = 1, .. .d. Then for any non-zero x,y € R¥, the following hold:

~ d3\/e
H(Hzl:dWi,-&-I)T(Hzl:dWi,-ﬁ-,y)y —heyl| <24 2{”9”7 (20)
11
(Wi 2)e, (Mg Wit 0)y) 2 - 5llllly]l @)
lall _ 91| _ g Il o)
[zall ||l ]
04 — 04| < 4dv/e (23)

where xg == (III_ ,W; 12)x, ya = (IL_ ;Wi 1)y, 04 := Z(x4,Ya), 04 := g°*(£(z,y)), and the
vector h , is defined as

71 L 1 -t 71'7?1' ! sin@i g s 79]' Hy”
@y = 5d H - Y+ Z - H - m$

=0 i=0 j=i+1

5.2 Angle Concentration Property of A¢(.)

We need to understand how the operator z ++ A z distorts angles. Observe that for z,w € S~ for
which the RRCP holds, we have that

— 20, 2sinf,
<z7AZAww>z<z,<bz,ww>:<z7(” wpy 250 "”Mm) w>

s ™

=20

2sin 6,

= ——22(z,w) + —=2| 2|?

T
(m—20,.4)cos0, , +2sinb, ,
- 0
== cos p(0;,w)
where ¢ : R — R is defined by
— 26 0+ 2sind
©(6) == cos™! <(7r )CO; +2sm > . (24)

The following lemma establishes that the angle /(A (,)G(x), Ag(,)G(y)) concentrates around
P(£(G(x), G(y)))-

Lemmad. Fix 0 < € < 1/4L. Suppose A € R™*"4 satisfies the RRCP with constant €. Suppose
G is such that each W; € R™*"i-1 satisfy the WDC with constant € for all i € [d]. Then for all
z,y € R¥\ {0}, the angle 6, := £(Ag ()G (), Ac)G(y)) is well-defined and

| cos 6y — cosp(fy)| < 4Le

where 6y = Z(G(x), G(y)), ¢ is defined in (24), and L is a positive universal constant.

Proof. Fix z,y € R*\ {0}. We use the shorthand notation A, := II}_ W, , and A, :=
II!_,W; 1 . Note that the WDC implies that for sufficiently small e, we have that Az, A,y # 0.
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Hence we may assume, without loss of generality, that [[A x| = [[Ayy|| = 1. Now define the
following quantities:

01 = (Auw, (Admy Ac(y) — Paa),aw)Myy),
8y 1= (M, (Al () Ac(a) — DAs2)
33 := (Ayy, (Ad Acy) — DAyy).
Observe that by the RRCP, we have that max;—1 2 3 |0;| < Le. Hence if 0 < e < 1/L,
0<1— Le < ||Ag)Asz|?
$0 || Ag () Azl | Ac(y) Ayyll # 0. Furthermore, note that
(Mg, Ag‘(w)AG(y)Ayw
[ Ac () Aez|| | Ac ) Ayyll
(A, Ag(x)AG(y)Ayy>
V{Ac@ At Acay D) (A ) Ayy, Acy)Ayy)
(Aa, Po(a) am)Ayy) + 1
V({(Agz, Ay + 62) ((Ayy, Ayy) + d3)
(Ao, P2y, c) Ayy) + 01
(14 02) (14 03)

cosf; =

Thus if € < 1/4L, we attain

(Ao, Pa(a),c)Ayy) + 01

cos b — (Apx, Pas Ay <
| 1 < G(z),G(y) 4y >| (1+52) (1+53)

— (Ao, Paa),cy) Ayy)

1
(14 62) (1 + d3)

< (A, Pia),c Ayy)| |1 -

104
(1+d2) (1+3)
<2 ‘1 S (P
1— Le 1— Le
3Le
< - e <4Le
where we used || (), Gyl < 2 in the third inequality. O

5.3 Determining where /. ;. vanishes

Before proving Proposition 1, we outline how the concentrated gradient h, ,, was derived. Recall
that at points of differentiability, our descent direction is of the following form:

Vrzo = (—qWi g 2) T Ad(n Ac(e) M gWi g )T — (_qWi 4 2) T AL () Ac(ae) T gWi 4 ) To-
The concentration of the first term follows by the RRCP and Lemma 3:
1
(IL_aWit2) " Adn Act) T_gWi s 2)r = T gWi g o) T (_qWi g0 )a ~ 2a %

For the second term, note that the RRCP gives

(IG_gWi 1.2) T A ) A (o) WimaWi 4 20)T0 & (TL_gWi 4 2) " ®a(a).G(a0) (g Wi 420 ) 0.
Letting x4 = (II}_,W; 4+ »)z and 2 g = (H}:dWi#’mo)xo, note that

™ — 204 . 2sin 6y

q)Id,Io,d = T Ind - Mﬁcd<—>iﬂoyd
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where 0, = Z(x4,20,4). By Lemma 5 in [20], this angle is well-defined and ||z4]|, || zo,4| # O as
long as each W; satisfies the WDC. Finally, note that the definition of M3, gives

o _ llmoal
dei()‘dxo,d ||$O d” H.’L‘d” Zd

Midﬁ’iogd

Thus we see that

(Hzl:dWLﬂ-,ﬂJ)Tq)wd,wo,d (Hg:dWi,—hmo)xO

™ — 20d
= (I —gWi o) (L gWi 4 )0 +

2sin g ||zo,ql|
[[all

(M_gWi o) (N Wi 4 )

71'—29615 2sinfy ||zo|| 1
o T ol 27

Q

where 64 = ¢°%(/(x, o)) and the definition of A, is given in Lemma 3. We recall its definition
here for convenience:

- 1| (S 7—0 Casin; [ 4 -0, |zl
L i i J
Pazo 1= 2d H T ot Z T H 7r [l]] *
1=0 1=0 J=i+1
the concentrations of the two terms in v, o glves
b :ixi7r729d~ 7251119[1 [zoll 1
©ro - od T o T |l=] 2¢
= Lise - l|lzo|| 2sin 64 2
2d 24 g
— d—1 = d—1 . & =
1 ™ — 20d ™ — 91 N sm@i ™ — 9]‘ “
T ( - ) (H - > lwolizo + > == | TI = | lwoll2
=0 =0 Jj=i+1
- ||£L’0H ™ — 29(1 ™ — 91 "
T 2d T H T o
i=0
1 2sin 6, T —20 sin 6; g
d — alq — U5 .
+ 5 [l = ol { 2220 4 (253 )Z "))

=0 j=i+1

Now, we establish that the set of all = such that ||k, 5, || ~ 0, denoted by Se . is contained in two
neighborhoods centered at xy and a negative multiple —pgx(.

Proposition 1. Suppose 247dS+\/e < 1. Let

1
e = {2 € RV (0} il < ggeman(lc, ool }

where d > 2 and let

— d—1 —
ol (7 =204 )= 0: \ .
o = T2d T ™ o

i=0
. L d-1 . = d—1 —
1 2sinfy T — 204 sin 0; m™—0; .
+g |l =l | 2% 4 (F22) (] :
1=0 j=i+1
where 0y = /(z,70) and 0; = g(0,_1). Define
éz g = éj

II

T s
i=0 j=i+1

2sin fy 7 — 204 sind;
pd = + -
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where 6o = m and §; = g(éi,l). Ifx € Sc 5, then either
[00] < 2v/e and ||| — [[zol| < 29dv/el|zol|
or
[Bo — 7| < 2472d* /e and ||l — pallaoll] < 3517d* Vel
In particular, we have
Se.zo C B(zo,89dVe||zol|) U B(—pazo, 7742212 d 2 /€| x0 ).
Additionally, pg — 1 as d — oo.

Proof. Without loss of generality, let z9 = e; and ||zo|| = 1 where ey is the first standard basis
vector in RF. We also set z = ||z|| (cos fper + sinfpes) where 6y = Z(z, ). Then

— d—1 —
1 [(7m—204 T—6;\ .
hw,xo = _27(1 ( = ) (H . > Zo

i=0
N 1 o] — 2sinfy m™— 204 ! sin 6; Lﬁ m—0; .
gd |17 s s ;
1=0 Jj=i+1
Set
d—1 d-1 . = d—1 -
(7T =204 T—0 _ 2sinfy T — 204 sin 6; T —0;
5—(W)<Hﬂ>amda— (W > (]
1=0 1=0 j=i1+1
with r = ||z|| and M = max(r, 1). Note that we can write
1 . N
oy = 57 (=Bd0 + (r = 2)3)
Then if z € S, ;,, we have that
| — B+ cosbp(r —a)| < eM (25)
|sinfy(r — a)| < eM. (26)
‘We now tabulate some useful bounds from Lemma 8 in [20]:
0; €[0,7/2) fori > 1 (7)
0; <0;_qfori>1 (28)
d—1 -
.y
1= <1 (29)
- Vs
1=0
d—1 - -
mw — 91 ™ — 90
>
_H — > — (30)
1=0
d-1 . —= d—1 -
0; —0; d -
s IT =2 || < Esinby 31)
. 7r L 7r 0
=0 Jj=i+1
Oy = 7+ 01(8) = 0; = b; + 0, (46) (32)
d—1 -
_ — 0, )
o=m+0100) = [ —|< 2 (33)
i—0 ™ ™
=i 1vist (34)
T
_ (1
04 < cos — | Vd>=2 (35)
T
v 3
< . > 0.
z\i+3V2/0 (36)
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To prove the Proposition, we first show that it is sufficient to only consider the small and large angle
case. Then, we show that in the small and large angle case, x ~ zo and © ~ —p4x, respectively. We
begin by proving that max(||z||, ||zo||) < 6d for any = € S 4.

Bound on maximal norm in S ;: It suffices to show that r < 6d. Suppose r > 1 since if r < 1,
the result is immediate. Then either | sin 6| > 1/v/2 or | cos fy| > 1/+/2. If | sinfy| > 1/+/2 then
(26) gives

Ir —a] < V2er = (1 —V26e)r < |a].

But
s\ d-1 . 7 [ d-1 =
2 . = T — 204 sin 6; T —0;
< 2
|a|\7r|sm9d\+ ( - )Z - H -
=0 Jj=i+1
d
<14+ -
T

where the second inequality used equations (31) and (34). Thus

1+4 d
r< —=—<2(1+—-)<2+d<2d
1— /2 T

provided € < 1/4 and d > 2. If | cos 0| > 1/+/2, then (25) gives
Ir —a| < V2(er + |8]) = (1 — V2e)r < V2|8] + .

8l = |<7r_w29d> (‘ij: ﬁ;@)

Hence if e < 1/4,

But by (29),

< lsince §; € [0,7/2] Vi > 1.

V2 +2d
rd ———
1—/2€

Thus in any case, r < 6d = M < 6d.

< 2V2 4 4d < V2d + 4d < 6d.

We now show that it is sufficient to only consider the small angle case 0y ~ 0 and the large angle
case Oy ~ .

Sufficiency: We have two possible situations:

e |r — | = \/eM: Then (26) implies
|Sin§0| < \E - ?0 = 01(2\£) or m + 01(2\&)

o |r — a| < v/eéM : Then (25) implies

18] < 2//eM.
But note that by (30),
— d—1 — — —
T — 204 T —0; (m —204)(7m — )
= > .
() (175 s

In addition, (35) implies

|’/T — 2§d| 2

1 1
7 —2cos ! <>‘ > —.
T 2

|(m — 264) (7 — 09)| < | — 6|
d3m? ~ od3n2

Thus

1Bl >

which implies
|T — 0| < A4d®7?\/eM < 24d*m?\/e.
ThllS 50 =7+ 01(24d47T2\/g).
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Lastly, we show that in the small angle case, x ~ x(, while in the large angle case, x =~ —pgx¢.
Small Angle Case: Assume 0y = O;(2,/€). Note that since §; < 6y < 2,/ for each 4, we have that

d—1 - d
=2t (12) -0, ()
™ ™ Vs

=0

provided 2d+/e < 1/2. Hence
5= (71' —7T20d> <dl:[1 s ;91>
i=0
> (o (59) (e (559))

where we used (32) in the second inequality. In addition, | sin 64| < |04] < 2/€ and (31) imply that

d—1 . & d—1 =
0. — 0. d _
> S 11 T7% ) < & sinfy| < dv/e.
- ™ L ™ ™
1=0 J=i+1

Hence

i — L d-1 . = d— —

_ 2sinfy T — 204 sin 0; T—0;

=0, <4\£> + <1 + Oy (M» O1(dv/e)
3T s

=0, (Zl?)\ﬁ) + 01 (dve) + Oy <4d€)

us s

o, ((4 + 3dr + 12d)ﬁ)

3

Thus since | — 8 + cos 0o (r — a)| < eM and M < 6d, we attain

_ <1 Lo (A“f» <1 + 0 (“if)) + (14 01(26)) (r+01 ((“3‘”3: 12‘0*/%))

= 01 (6d6)
Rearranging, this gives
4d 4 16d 4+ 3d 12d
s m m 3m
_o, <(12d + 12 4 48d) /e + (2e + 1)(4 4 3wd + 12d)\/€ N 18d\/E>
3m
= 01(29dV/e)

where we used € < 1/2 in the final equality.

Large Angle Case: Assume 0y = m + O; () where § := 24d*7?/c. We first prove that « is close
to pg. Recall that 64 = 4 + Oy (dd). Then by the mean value theorem:

|sin 0 — sinéd\ < |0q — éd‘ < dé

sosinfy = sinf, + O, (dd). Let

J— . ~ d71 12
sin 6; T —0;
Tai=3_ 11
0 T
i=0 j=i+1



Then note that

2sin — 20
pPd = gy d) Iy.

™ 7r
n [20], it was shown that if d2§ /7w < 1, then |T'4| < d and

d— a d—1 a

ZSIHG H 71'_9] :Fd+01(3d35)
i=0

T
i j=i+1

—

By the condition, d%s /7™ < 1, we require
1

<—.
ves 247 dS

Thus for sufficiently small e, we have

d—1

_ 2sin 0, 7w — 20, sin 6;
oo 2ol (B Sl (]

i=0 j=i+1

9 i A 2 _2v 2
_ 2sindy L0, <d5> n (779d 10, <d5>> (Dq + 01(3d%5))
T m m T
9 _2v 4 $2

d5> + a0 <d5) + (” 9d> O (3d°) + Oy (Gd : )
s ™ ™ T

2d5 2d25 6d452
>+01( >+Ol (3d35)+01( >
™ T T
4

2
=pq+ O1 (5+35 60 )d4)
T m
)

= pd + O1(7d45

We now prove 7 is close to pq. Since € Se 4,

71'—5]'

™

= pa+ O1

(
o
(

| — B+ cosy(r —a)| < eM.
Also note that |3| < 6/ by 33. Since cosfy = 1+ O (0 3/2), we have that
O1(6/7) + (1 + 01(62/2))(r — pg + O1(7d*8)) = Oy (eM).

Using r < 6d, pg < 2d, and 6 = 24d*7%\/e < 1, we get
2

F—pa+ Oy (‘;) (r = pa) + O1(7d"6) + Oy (7d453> = Os(eM) + 01 (i)

2

= r—pg=0, (4d62+7d45+7d + 6de + 6)
™

)
))¥)

1
=0 (6de+6(4d+7d4 +7r)

1

iy

21d*
=0 ((6d+24d47r2 (4d—|— d +

= 0,(3517d%\/e).
Finally, to complete the proof we use the inequality

lz = @oll < Mzl = llzolll + (llzoll + [zl — llzoll]) fo-

This inequality states that if a two dimensional point is known to be within Ar of magnitude r and an
angle Af away from 0, then it is at most a Euclidean distance of Ar + (r + Ar)Af away from the

point (r,0) in polar coordinates. Thus for 6y = O;(2+/€), we have r = 1 + O1(29d,/€) so
|z — ol < 29dv/e+ (14 29dv/€)2v/e < 89d/e.
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Then if g = 7 + O;(24d*72\/€), note that /(z, —pgro) = O1(24d*n%\/€) and r = pg +
01(3517d%\/€) so that

< 3517d% /e + (pa + 3517d%\/€)24d* n? /e

< 3517d%/e + (2d + 3517d°/€)24d w2 /e

< 7742272 d 2 /e

|2 + pazol|

Hence we attain
Se,mo C B(IQ, 89dﬁ) U B(*Pdfo, 7742271_2d12\/g)'
The result that pg — 1 as d — oo follows from the following facts: by (36), we have that

3T
d+3

§d< Vd>0=>§d—>0asd—>oo.
Thus

QSinéd . o«
—0asd— ocosince ;g — 0asd — oo

™
and in [20], it was shown that

ing, [ S -0,
! H 2] 5 1lasd— 0.
T T
=0 =i+1
Hence
s\ d—1 . ¥ d—1 v
T — 20,4 sin 6; T —0;
H —lasd — oo
T T _ T
1=0 J=i+1
$0 pg — lasd — oc. O

6 Appendix B: Gaussian Matrices Satisfy the RRCP

We set out to prove the following:

Proposition 2. Fix 0 < ¢ < 1. Let A € R™*" hgve i.id. N(0,1/m) entries. Then if m >
C.dklog(nins . ..ng), then with probability at least 1 — ym**+1 exp(—é.m), A satisfies the RRCP

with constant €. Here 7 is a positive universal constant, ¢. depends on €, and C. depends polynomially
—1
one ",

To show that Gaussian A satisfies the RRCP, we first establish that for any fixed non-zero z, w € R",
the inner product (A A, z,y) concentrates around its expectation (®, ., 2, y) for all z and y in a fixed
k-dimensional subspace of R". As we will see by the end of this section, this fixed k-dimensional
subspace will represent the range of our generative model. We first require a simple technical result
that is proven in the subsequent section:

Proposition 3. Fix z,w € R"\ {0} and 0 < € < 1. Let T be a subspace of R™. If
’(AZTwa, z) = (P oz, 7)| <ellz|?VaeT 37)
then

(A Awz,y) — (2w, y)| < BellzllllyllV z,y € T.

We now require a variation of the Restricted Isometry Property typically proven for Gaussian matrices.
In our situation, the matrix AZTAU, concentrates around ® ., # I,, for z # w, so we must prove a
generalization which we call the Restricted Concentration Property (RCP). First, recall that for any
z,w € R", E[A] A,] = ®, . In addition, we have that for any = € R”,

DY

=1

1
T . —_
|<Az Awl’,l’> <¢z,wx7‘r>| - m
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where
Y, =X, —E[X;]and X; = sgn((ai7z><a¢,w>)<ai,x>2.

Here each a; denotes an unnormalized row of A in which a; ~ N(0,1,,). Hence Y; are indepen-
dent, centered, subexponential random variables. Thus they satisfy the following large deviation
inequality:

Lemma S (Corollary 5.17 in [32]). Let Y1, ...,Y,, be independent, centered, subexponential random
variables. Let K = maX;c(m] || Yilly,. Then for all ¢ > 0,

p(LISylse) <o (€ e
m | & Z €| < 2exp |—cmin K m

m

DY

i=1

where ¢ > 0 is an absolute constant. Here || - ||y, is the subexponential norm: ||X|4, =
- 1

supyz 7 (BIXPP)7.

Fix z € 8"~ 1. Recall that the subexponential norm satisfies
1Yillg, = [1Xi = B[X]lly, < 20 Xilly, -
Let Z; := (a;,x) ~ N (0, 1). Recall that || Z; ||, < K for some absolute constant K; where || - ||,
is the sub-gaussian norm. Observe that E | X;|? < E |Z?|P. Thus by Lemma 5.14 in [32], we have
Yills < 20Xillg, < 2012200, < 41Zil7, < 4K7.

Thus K = max; e, ||Yilly, < 4K7 for an absolute constant K;. Defining Ky := 4K7, Lemma 5
guarantees that for any fixed z,w € R™ \ {0} and € > 0,

P (|<A:wa,m> — (P, i, )| = e) < 2exp(—co(e)m) (38)

where co(€) = cmin(e?/K2,¢/K>). We are now equipped to proceed with the proof of the RCP.

Proposition 4 (Variant of Lemma 5.1 in [3]: RCP). Fix0 < e < land k < m. Let A € R™*™ have
i.i.d. N(0,1/m) entries and fix z,w € R™ \ {0}. Let T C R™ be a k-dimensional subspace. Then if
m > ¢k, we have that with probability exceeding 1 — 2 exp(—c1m),

(Al Az, 2) — (@, w2, 2)| <el|lz]?VaeT (39)
and
(AT Apz,y) — (D2 wm, y)| < 3ellz||lyl| V 2,y € T. (40)

Furthermore, let U = Uf\il UiandV = U;VZI V; where U; and V; are subspaces of R™ of dimension
at most k for all i € [M] and j € [N]. Then if m > ¢k

(AT A, ) — (@, 0)| < Bellul o] Vu € U, v eV, (41)

with probability exceeding 1 — 2M N exp(—cym). Here ¢y only depends on € and ¢ =
Qe tloge™).

Proof. Fix 0 < € < 1 and k < m. Since A is Gaussian, we may take 7" to be in the span of the
first & standard basis vectors. In addition, assume ||z|| = 1 for any « € T'. For notational simplicity,
set X, 4 1= A;r Ay — D4, Choose a finite set of points Q7 C T each with unit norm such that
|Qr| < (42/€)* and for any z € T,
in [l - g < 7

min ||z — ¢l < —.

q€QT 1 14
See [11] for a proof of such a construction. Then we may apply a union bound to (38) for this set of
points to attain

(42)

42

P (|<Zz’wq,q>| > % Vqe QT) <2 <E>kexp (—co (g) m) ) (43)

SRecall that if a ~ N(0, I,,), {a,z) ~ N(0, ||z||?). Since any Gaussian random variable is sub-gaussian
and any squared sub-gaussian random variable is subexponential, (a, x)? is subexponential. The terms involving
sgn(-) do not effect the tail of (a, z).
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Now, define
o ==inf{a >0: (L, 4z, 2)| < alz]|*Vz eT}. (44)

We want to show that o* < e. Fix € T with unity norm. Then there exists a ¢ € Q7 with ||¢|| =1
such that ||z — ¢|| < €/14. In addition, observe that z — ¢ € T since ¢ € Qr C T so by (44),

62

2zw - s T < - - 2< . 45
(E2w(z—q),z—q)] < a’|lz—q] ST, (45)

Now, note that by the definition of a*,
[(E,wr,x)| <a"VaeT.
Thus Proposition 3 gives
[(E, wz,y)| <3a"Va,yeT.
Applying this result to x — g and g gives
(5 wle — ). 0)] < 302 — g < " .
Using (X.,u@,2) = (E20(2 — ), 2 — q) + 2(E2 02, q) — (E2,0¢, ¢) and (2,42, q) = (Zzw(z -
q),q) + (X209, q), we see that
[(Zz w2, 2)| < (B (@ = q), 2 — q)| + 2/(Ez 0, )| + (82,00, 9)
< |<EZ,1U(93 - Q)vx - Q>| + 2|<227u,(x - Q)a Q>| + 3|<EZ,wQa ‘I>|

(46)

where we used (45), (46), and (43) in the second inequality. Note that this bound can be derived for
any « € T because we can always find a ¢ € Q7 with ||g|| = 1 such that ||z — ¢|| < €/14. Thus

€2 3e

(22 0z, 2)| < o (196 + 7) + % VeeTl. 47)
However, recall that o* was defined to be the smallest number such that
(E,wz,2)| <a"VzeT.
Hence o* must be smaller than the right hand side of (47), i.e.
a* <a” (624—36>+36:>a*<36<21> <e
196 7 8 8 \1— 196 — %
since 0 < € < 1. Hence we conclude that with probability exceeding 1 — 2(42/€)* exp(—co(€/8)m),
(2, 0r,2)| <ellz|*YVzeT
ie.
(Al Az, x) — (@, pa,2)| <e|lz]?VaeT.
The probability bound in the proposition can be shown by noting that

1 —2(42/€)* exp(—co(e/8)m) = 1 — 2exp <—co(e/8)m + klog (42>> .

-
2 42
—1 — |k <k <
co(€/8) g() asm

where ¢ = (e~ loge~1), we have that the result holds with probability exceeding

1—2exp <—co(e/8)m + klog <42>) >1—2exp(—cim)
€

where ¢; = ¢o(€e/8)/2. Applying Proposition 3 to our result gives (41) with the same probability. The
extension to the union of subspaces follows by applying (41) to all subspaces of the form span(U;, V;)
and using a union bound.

Thus if

O
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Now, this result establishes the concentration of (A A,z,y) around (®, ,x,y) for z and y in a
fixed k-dimensional subspace for fixed z,w € R™ \ {0}. However, in reality, we are interested in
showing that this concentration holds for all z and w in the range of our generative model. Hence
we require an extension of the RCP, which holds uniformly for all z and w in (possibly) different
k-dimensional subspaces. We will refer to this result as the Uniform RCP. The proof of this result
uses an interesting fact from 1-bit compressed sensing which establishes that if a sufficient number of
random hyperplanes cut the unit sphere, the diameter of each tesselation is small with high probability
[30]. We state the theorem here for convenience:

Theorem 4 (Theorem 2.1 in [30]). Let n,m, s > 0 and set § = Cy (= log(2n/s))"/. Let a; € R
have i.i.d. N(0,1) entries for i € [m]. Then with probability at least 1 — Cy exp(—cdm), the
following holds uniformly for all x,z € R"™ that satisfy ||z|2 = ||Z]|l2 = 1, ||z]1 < /s, and
171l < V5 for s < n:

(ai, Z){a;,x) 20, i € [m] = ||Z — z||2 < 4. (48)
Here C, Cs, ¢ are positive universal constants.

We will use this result to prove the following: given a sufficient number of random hyperplanes and
a k-dimensional subspace Z, there exists a finite set of points Z; such that any point in Z can be
closely approximated by a point in Z with high probability.

Lemma 6. Fix 0 < € < 1. Let A € R"™*™ have i.i.d. N'(0,1/m) entries with rows {a,;}}",. Let
Z C R"™ be a k-dimensional subspace. Then if m > ck, there exists a set of points

Zo={z€Z:|z|=1landa/z #0Y L€ [m],ic} (49)

where I is a finite index set such that the following event holds with probability exceeding 1 —
Cy exp(—cem):

Ega={|I| <10m** andV z € Z s.t. ||z|| = 1, 3z € Zo s.t. ||z — 2| < €} . (50)
Here Cy and c are positive absolute constants and c. depends polynomially on e~'.

Proof of Lemma 6. By the rotational invariance of the Gaussian distribution, we may take Z to be
in the span of the first k standard basis vectors. We may further without loss of generality assume
A € R™*k, Define Zy and Ez 4 as in (49) and (50). We will evoke the following lemma which

establishes that the unit sphere of Z is partitioned into at most 10m?* regions by the rows {a,}7, of
A with probability 1:

Lemma 7. Let V be a subspace of R". Let A € R™*" have i.i.d. N(0,1/m) entries. With
probability 1,

|{diag(sgn(Av))A : v € V}| < 10m?4mV,

Now, choose {z; }icr as a set of representative points in the interior of each region partitioned by
the rows {a,}}>, of A. By Lemma 7, the number of such points is bounded with probability 1:
|I| < 10m?2¥. Then, to use Theorem 4, observe that we can set n = s = k since A € R™** and Z is

in the span of the first k standard basis vectors. Then if m > (C7 log(2)/€°) k := cck, we have that
the quantity ¢ in the theorem is bounded by e:

3 1/5
§:=0C4 ( log(2)> <e
m

soP(Ez 4) > 1—Cyexp(—cem) for some positive universal constants ¢, C, and C3 and ¢, depends
polynomially on e~ 1. O

We now proceed with the proof of the Uniform RCP.

Proposition 5 (Uniform RCP). Fix0 < ¢ < 1l and k < m. Let A € R™*" have i.i.d. N(0,1/m)
entries. Let Z, W, and T be fixed k-dimensional subspaces of R™. Then if m > 2C.k, then with
probability at least 1 — 3ym**+1 exp(—é.m), we have

’(A;'—wa,y) — (@z,wm,yﬂ < Le|z|lly|| Va,yeT, z€ Z, we W 51
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where v is a positive universal constant, ¢. depends on € and C. depends polynomially on €.

Furthermore, let U = Ui\il UiandV = U;V:1 V; where U; and V; are subspaces of R™ of dimension
at most k for all i € [M] and j € [N]. Then if m > 2C.k,
|<A;—Awu,v) —(®.wu,v)| < Lellull|[v|VueU veV, ze€ Z, weW (52)

4k+1

with probability exceeding 1 — 3M Nym exp(—¢em). Here L is a positive universal constant.

Proof. Define Zy and Ez 4 as in (49) and (50). One can define the analogous set
Wo i={w; € W: ||w;|| = Land a w; #0V L € [m], j € J} (53)

for some finite index set .J, choosing the points in W), in precisely the same way as in Zy. We also
define the analogous event

Ew,a = {|J| <10m* andVw € Ws.t. |Jw|| =1, Jw; € Wosit. [|w —w;|| < e}.  (54)
By Lemma 6, we have that if m > cck, P(Ez 4) > 1 — Cs exp(—cem). The event Eyy, 4 holds with
the same probability so we have that if m > c.k,
P(Ez 4N Ew.a) > 1—2C; exp(—cem)

For the remainder of this proof, we work on the event Ez 4 N Ew 4. Fix z € Z and w € W. Define
the following set:

Qw={le[m]:a/z=00ra/w=0}.

Note that since Z and W are k-dimensional and any subset of k& rows of A are linearly independent
with probability 1, at most k entries of either Az or Aw are zero.® Hence |2, ,,| < 2k. Furthermore,
observe that

AlA, = Z sen({ag, 2)(ag, w))aga,
=1

= 3 sen((an 2)arw)asa] + 3 sen(lag, 2){ar, w))ara;
0eQ. ., teqe
= Z sgn((ag, 2){ag, w))apa,
Leqg
by the definition of 2., ,,. However, on the event £z 4 N Eyw, 4, there exists a z; € Zg and w; € Wy
for some i € I and j € J such that for all £ € QF
sgn((ae, z)(ae, w)) = sgn({ar, z:)(ar, w;))
i.e. z and z; (likewise w and w;) lie on the same side and interior of each hyperplane for which z (or
w) is not orthogonal to. Hence we have

AlA, = Z sgn({ag, 2)(ag, w))aga, = Z sen({ag, 2;)(ae, w;))aga, = jl;fle.
eQsg ,, LeqQs

We now use the following lemma which says that if |2, ,,| < 2k total rows of A, and Ay, are
deleted, we can still establish the RCP:

Lemma 8. Fix 0 < € < 1 and k < m. Suppose that A € R™*™ has i.i.d. N'(0,1/m) entries.
Let T C R"™ be a k-dimensional subspace and define Zy and Wy as in (49) and (53). Then if
m > 257 1¢k, the following holds simultaneously for all 0 C [m)] satisfying || < 2k < §.m with
probability at least 1 — ym**+1 exp (—%):

(AL Au,e.p) = @,zp)| <Bellalllyl Yoy e T Viel jel  59)

where
A;ij = Z sen((ag, zi)(ae, w;))aeay .
LeQe

Here v is a positive absolute constant, c; depends on ¢, ¢ = Qe tloge™!), and 571 depends

polynomially on e~ 1.

8This is shown in the proof of Lemma 7.
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Proof of Lemma 8. Fix Q C [m)] satisfying |©2| < 2k. For . < 1/2, observe that the assumption
m > 2¢k implies that |Q¢| > m/2 > ék. Thus the RCP guarantees that with probability exceeding

1—2exp(—c1]Q°]) > 1—2exp (—%)
we have that the following holds for fixed z; € Zy and w; € Wo:
(A5 Au,2.y) = (®ey )| < Byl Yo,y € T,
Furthermore, a union bound over all {z; };e; and {w; };ec gives
(AL Au,2.y) = (@p,2,0)| <Belalllyll Vay €T, i€ 1, jeJ (56)
with probability at least
1—2|I||J]exp (7%) >1—ym** exp (f%)

where - is a positive absolute constant and ¢; depends on €. The number of subsets of [m] of size

[0cm ] is
m em §em e % "
(LéemJ><<5em) B l(a) ]

We now determine a sufficiently small §, such that

(;)6 <exp (%) 57)

where ¢1 = ¢o(€/8)/2 = (¢/2) min ((¢/8)? /K3, (¢/8)/K>) for absolute constants ¢ and K. Since
0 < € < 1, we have that

¢ _ ¢ . 1 1 9 9
ass )&= R
T ((8[(2)2 8K2> ‘ ‘

Then if §, satisfies

Jc
0 < exp (R62 — 56) — (5% e <§> < exp (RGQ) < exp (%1) .

However, note that the function

W(#) = explt — (£/2)?) — W >0Vt 0.

A plot of this function is given in Figure 5. Thus 1/(Re?) > 0 so if we take . := (Re?/2)?, we have
that (57) holds.

Defining d. in this way we have that

(Lézﬂ) <ew (7). o

Thus, provided m > 26 !¢k and applying a union bound, the result holds for all subsets 2 C [m)]
satisfying || < 2k < |d.m ] with probability

[6em ]

1= 3 (7 )t (<95) 1= ) () Yot e (<557

=1

> 1 — y[dem|m* exp (—% + %)
where we used (58) in the second inequality. O
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257

t
Figure 5: Plot of the function 1 (¢) = exp(t — (t/2)?) — W

We return to the proof of Proposition 5. Let C, := §_ ! max{c.,é}. Then if m > 2C.k > 2¢k,
Lemma 8 and the event £z 4 N Eyy, 4 holds with probability exceeding

P(Lemma 8N (Eza N Ew.a)) =1 — 20y exp (—cem) — ym* ! exp (—%)
> 1 —3ym*exp (—éom)

where -y is a positive absolute constant and ¢, depends on €. On this event, we have that for all z € Z

and w € W with ||z|| = ||w|| = 1, there exists a z; € Zy and w; € W, forsome i € I and j € J
with ||z;|| = ||w;|| = 1 such that for any =,y € T,
(AT Ay, ) = (@, )| = (AL A, 2,) — (20,3)

‘ A Aw7$ y <(I)Zq‘,7wjx7y>‘ + |<(I)Zq‘,,wjxay> - <(I)Z,wx7y>|

88
< Beflzflliyll + —elllllly]
= Le||z|l[|yl]

where we used (55) and the continuity of ®, ,, from Lemma 9 in the second inequality. The extension
to the union of subspaces follows by applying (51) to all subspaces of the form span(U;, V;) and
using a union bound. O

With the Uniform RCP, we may now prove the RRCP:

Proposition 6 (Range Restricted Concentration Property (RRCP)). Fix 0 < € < 1. Let W; €
R™X"i-1 have i.i.d. N'(0,1/n;) entries fori = 1,...,d. Let A € R"™*"d have i.i.d. N(0,1/m)
entries independent from {W;}. Then if m > C.dklog(nins . ..ng), then with probability at least
1 —Am**exp (—%m) we have that for all x,y € R¥,

d
g Wito) T (AL, Ays = @) AL g Wi ) < Le [T IWis [ IWit

=1

where
zq = (I_qWi 4 o)7 and yq := (I_ Wi 4 )y

Here 7 and L are positive universal constants, ¢. depends on €, and C. depends polynomially on ¢~ 1.
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Proof. Tt suffices to show that for all z,y, w,v € S¥~1,

d
{(Ad, Ays = Paaya) _gWi o )w, (L gWi s )0)| < Le [T IWie ol Wi,
i=1

(59)

We will use (52) from Proposition 5. We first consider the d = 2 layer case for simplicity. Fix
Wy € R %k and Wy € R™2%"2_ It has been shown in Lemma 15 of [20] that there exists an event
E over (W1, W3) with P(E) = 1 such that
[{W1 102 #0}| <10nf and | {Wa . 2 # 0} | < 10%nSnf.
Thus on the event E, we have that the following holds with probability 1:
[{Wa Wi g0 @ # 0} < 10°(nfng)™.

Note that dim (range(Ws 4 Wi 1)) < k for all = # 0. Hence it follows that

M
{(Wap Wi wiz,weS}CU= U U,

i=1
where M < 103(n3n2)*. By the same logic, we see that
N
{Wor y Wi yviy,v € Sk_l} cV= U Vj
j=1

where N < 10%(n2n2)*. Thus by applymg (52) to Z = range(Wo 4 Wi 4a), W =
range(Ws 4 , W1 + ), U and V, we see that if m > 2C.k, the d = 2 layer variant of (59) holds for
fixed W; and W5 with probability exceeding

1 — 3MNym* Tt exp(—éom) > 1 — 3(10%)%(ning) > ym** 1 exp(—é.m).

Let 4 = 3(10%)2y. Observe that if m > 20C.¢ ¢ tklog(ning) == C’Eklog(nlng) for some positive
absolute constant ', then

1 — 3(10%)2(nins)* ym* ! exp(—éem) = 1 — ym* ' exp (—écm + 2k log(nins))

>1-— im‘lk“ exp (—026m> .

Here 7 and C are positive absolute constants, ¢. depends on €, and C. = 20066;1 depends
polynomially on e~!. Then, for random (W7, W>), we have that by the independence of A and
(W7, Ws), the d = 2 layer variant of the RRCP holds with the same probability.

The d layer case is shown with precisely the same argument. It has been shown in Lemma 15 of [20]
that

2
\{H}:dW¢,+7x cx #0}H < 104 (nilng_l .. .nﬁ_lnd)k.

Hence it follows that {(ITI._,W; ; ,)w : z,w € S*¥='} C U where U is the union of at most
10° (nlng L .n? 1nd) subspaces of dimensionality at most k. We can similarly conclude

{@T}_ W 4, y)v y,v € S¥"1} C V where V is the union of at most 107 (n4nd=1...n2_ ng)*
subspaces of dimensionality at most k. Hence applying (52) from Proposmon 5t Z =
range(IT}_,W; 1 .), W = range(II}_,W; 1 ,), U, and V gives (2) with probability at least

1- 7m4k+1(10d2) (n{nd=1 .. n2_ng)?* exp(—ém) > 1 —ym* L exp (C;m)
provided m > 2CC.é- dklog(nins . .. ng) == Cedklog(ning ... ng). O

31



6.1 RRCP Supplementary Results

Proof of Proposition 3. Fix 0 < € < 1. Suppose (37) holds and fix =,y € T. Without loss of
generality, assume z and y are unit normed. We will use the shorthand notation & = & ,,. Since T'
is a subspace, x — y € T so by (37),

(Al Au(z —y),z —y) — ((z — y),z — v)| < ellz —y|?

or equivalently

(@(x—y),z—y) —ellz —ylI> < (Al Aw(z —y), 2 —y) < (B(z—y), 2 —y) +¢llz — yH(Qéo)

Note that

H'T - yH2 =2- 2<‘ray>7

(B(x —y),x —y) = (Pz,2) + (Py, y) — 2(Pz,y),
and
(Al Ay (@ —y),x —y) = (AT Ay, ) + (A Awy,y) — 2(A] Ay, y)
where we used the fact that ® and A A,, are symmetric. Rearranging (60) yields
2 ((Px,y) — (A] Awr,y)) < ((P2,2) — (A] Ay, ) + ((Py,y) — (A] Awy, 1)) + (2= 2(z,9))e.
By assumption, the first two terms are bounded from above by e. Thus
2 (02, y) — (A Awz,y)) < 26+ (2 - 2(z,))e

= 2(2— (a,))e
< be

S0
(B, y) — (AT Apz,y) < 3e.
The lower bound is identical. Hence
[(®z,y) — (Al Az, y)| < 3e.
O

Proof of Lemma 7. Tt suffices to prove the same upperbound for |{sgn(Av) : v € V}|. Let £ =
dim V. By rotational invariance of Gaussians, we may take V' = span(e, ..., ey) without loss of
generality. Without loss of generality, we may let A have dimensions m x £ and take V = R*7

We will appeal to a classical result from sphere covering [36]. If m hyperplanes in R contain the
origin and are such that the normal vectors to any subset of £ of those hyperplanes are independent,
then the complement of the union of these hyperplanes is partitioned into at most

5 (")

disjoint regions. Each region uniquely corresponds to a constant value of sgn(Awv) that has all
non-zero entries. With probability 1, any subset of £ rows of A are linearly independent, and thus,

-1
) ¢ ‘ A< m—1 < em 5< ¢
[{sgn(Av) : v € R", (AU)Z#OVZ}|\2;_O< ; ) \2€<7 ) < 10m

"This without loss of generality statement can be deduced by noting the following: if v € V' C R™ where V
is an £-dimensional subspace, then v = Bg where B € R™*™ is orthogonal and ¢ € span(e1,...,e.0,...,0).

Hence Av = Ag where A = AB also has i.i.d. Gaussian entries by the rotational invariance of A. Hence it
suffices to consider V' = R and A € R™**,
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where the first inequality uses the fact that (")) < (em/¢)* and the second inequality uses that
20(e/0)* <10 forall £ > 1

For arbitrary v, at most ¢ entries of Av can be zero by linear independence of the rows of A. At
each v, there exists a direction ¢ such that (A(v + d9)); # 0 for all ¢ and for all § sufficiently small.
Hence, sgn(Av) differs from one of {sgn(Av) : v € R, (Av); # 0V i} by at most £ entries. Thus,

[{sgn(Av) : v € R‘}| < (?) [{sgn(Av) : v € RY, (Av); # 0V i}| < m10m* = 10m?*

‘We now prove the continuity of ®, ,, for non-zero z, w € R"™. Recall that

— 20 2sin 6
(I)z,w = u — I, + i ) M; i
Vs Vs

where 0, ,, := Z(z,w) and M,,,, is the matrix that sends 2 — e1, W > cos 8, €1 + sin b, €2,
and h ~ 0 for all h € span({z,w}*).

Lemma 9 (Continuity of ®,,,). Fix 0 < € < 1 and z,w € S""'. Then if |z — z|| < € and
| — w|| < e for some z,w € S, we have

88
(25 — Powl| < —e
i

Proof of Lemma 9. In this proof, we will utilize the following three inequalities:

|9w1,y _sz,y| g ‘0w1,w2‘7 le;anyesn_l (6])
2sin(0,,,/2) < |z —yl, Va,y € Snt (62)
0/4 <sin(0/2), V0 € [0, 7). (63)
Observe that
210 5 — 0.0 2sin 0z 4 2sin 6, 4,
1055 — 0l < 2000 =Burlyy oy 2500 gy, Oy,

First, observe that by (61), we have that

02 w ez,'u?| + |92,u7 - 92,w|
Z, z| + |91D,w|-

102,05 — 020w <|
<0
Then, by (62) and (63), we have that

|0z, < 4sin(fz./2) < 2|17 — 2| < 2¢
The same upper bound holds for |63 .,|. Thus we attain

|92,1I) - z w| |9z z| + |9w w‘ (64)

Let R be a rotation matrix that maps z — e; and w — cosf, ,e; + sinf, ,,es. Let R de-
note the matrix that applies the same rotatation to the system z and w. Recall that M., =

RTDRand M:.,; := RT DR where

D:=| sinf,,, —cosl,. 0 sinf; s —cosfsz g 0

cosl,, sind,, 0 ~ cosbzy  sinf:z g 0
and D
0 0 Op_2 0 0 Or—2

An elementary calculation shows that D has 2 pairs of non-zero eigenvalues and eigenvectors (A1, d)
and (g, d2) where

M =—land dy = (cosf,,, —1)e; +sinb, ez
while

Ao =1land dy = (cos, ., + 1)er +sind, ,eq.
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Let D = —d; le + dgd;— be the eigenvalue decomposition for D. Then by the definition of M, .,
M.w =R'DR
=R" (—did{ +dod; ) R
= —R"dyd/ R+ R"dydy R
= —vlv;r + ’UQU;

sov; = R'dy and v = R ds are the eigenvectors of M, ., with corresponding eigenvalues
—1 and 1, respectively. Then, recall that Rz = e; while Rw = cosf, e + sinf; ,,e2. Thus the
eigenvectors d; and dy can be written as

di = Rw— Rzand d; = Rw + Rz.
Thus the eigenvectors of M. ,,, are precisely
vy =w—zand v = w + z.
By the same argument, the eigenvectors of M. ; are
nh=w—ZzZand vy =w+ 2

with corresponding eigenvalues —1 and 1, respectively. Hence, we have that

2sinf 2sin 6
z,wMz w = 2w T T
— Mo I — ( v10; —I—v2v2)
2sin b, .,
= T (L 2)(w—2) + (wt2)(w+2)T)
T
and likewise
2sin0; 4 2sin s 4 e~ s~
%Mgﬁw = ?Zw (—(w—z)(w — Hl+(+2)(w+2)").

For simplicity of notation, leth =w — z, h =w — 2, g = w + z,and § = w + z. Then

2sin 6, 2sin 0z
S T ==

Mzew

- - §in 0.0 (—hhT +gg") + sin 0: (ﬁiﬁ - ggT) H

2 o
<= (H sin@. ,hh' —sinfs ghh' || + [|sin6. ,gg" — sin ag,@gﬂ) :
™

Note that since z,w, Z,% € 8", |||, ||2[], [lgl, |g]] < 2. In addition,
Ih =Rl <z = 2| + o - @] < 2
and (64) implies
[sind, , —sinbz | < 020 — 02,0 < 4e.
Hence
|| sin 6. hh" —sin@z ghh"|| < || sinf. ,hh' —sin6. ,hh"| + ||sing. ,hh" —sin6, ,hh' |
+ || sin @, ,hh" — sin Bz zhhT||
< [sinzul[BlIh = Bl + [sin 6. | [|]| A = hl| + [|RAT || sin 6. ., — sin6z ;|
< 20e.

The same bound holds for || sin 6, ,,gg" — sin 6z 737" ||. Hence we attain

2sinf, 4, 2sin 0; 4 80
HWMM) PN e < e (65)
T T T
Combining (64) and (65), we see that
295@ 70211, 2811102_71, QSinﬁzw 88
05,5 — @l < 200 =Burlyp o | 20000 gy, 2Oy < BB
T T T T
O
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We prove the inequalities used in the above proof:

Proof of equations (61), (62), and (63). For (61), we proceed similarly to the proof on page 12 of
[12]. Observe that we can write

x1 = €08y, 4y + sin Gmlyyyf‘
and

_ : 1
To = €080y, 4y + Sin Oy, 415

where yi- and y5- are unit vectors that are orthogonal to 3. Then observe that

. 1 . 1
<£C1, $2> = <COS eml’yy +sin erl,yyl , COS 0I2»yy +sin ezg,yyZ >
. . 1 1
=080y, 4y COSOy, , + 800y, ,sinby, (Y1, y3 ).

Since 0y, .4,0:,4 € [0,7], we have that sinf,, ,sinf,,, > 0. In addition, (yi,y3) <
llyi|llys- || = 1 so we attain

(@1, 2) < €08y, 4 cOSOy, , + 800y, ,sinby, , = cos(0g, y — Oz, y)

by the trigonometric identity cos(ar F 3) = cos acos 3 % sin asin 3. Since the function cos ™1 (-) is
decreasing on [—1, 1], we see that
—1
01’179 - 91219 < cos (<:L‘17{E2>) = 99131751?2‘
Similarly, 6., , — 02,y < 0, 2, SO We attain |0, , — 0, 4| < [0z 5]

For (62), observe that

llz = ylI? = ll=l* + llyl* — 2{z, )
= [lzl* + [lylI* — 2[lz[l[ly]| cos 0
=2(1 —cosbyy).

Thus, using the half angle formula

) 0 1—cosf
sin o = sgn (27r—9—|—47r LWJ) ”T

we see that
1-—- 0 0
o =yl = 21 —cost ) 2/ T e 5 55 o
For (63), one can note that the function ¢(6) := 4sin g — @ is positive for all 0 € [0, ]. -
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