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To allow the reader to distinguish between the equations (or other numbered statements) of the main
paper from the ones of the supplementary material, the equations (and other numbered statements)
of the supplementary material are numbered as A.1, A.2, B.1, etc..., where the letter indicates the
section.

A Proofs of the stated results

A.1 Proof of Lemma 1

For the first statement, it suffices to note that E[∆j |Fj−1] = 0 because xj is drawn according to
qj−1. For the second statement, the conditional independence implies that

E
[
∆j∆

T
j |Fj−1

]
= V (qj−1, ϕ).

A.2 Proof of Theorem 1

We need to show that for each γ ∈ Rp, 〈
√
n(In −

∫
ϕ), γ〉 d→ N (0, γTV∗γ). This reduces the proof

to the case where ϕ is a real-valued function, which is assumed below.

Since
√
n (In −

∫
ϕ) = n−1/2Mn, this theorem will be a consequence of Corollary 3.1 p. 58 in [2]

if we can prove that the martingale increments

Xn,j =
1√
n

∆j

satisfy the following two conditions:
n∑
j=1

E[X2
n,j |Fj−1]→ V∗, in probability, (A.1)

∀ε > 0,

n∑
j=1

E[X2
n,j1|Xn,j |>ε|Fj−1]→ 0, in probability. (A.2)

Reformulating Proposition 1, we get
n∑
j=1

E[X2
n,j |Fj−1] = n−1〈M〉n = V∗ + n−1

n∑
j=1

(V (qj−1, ϕ)− V∗).

By the Cesaro Lemma, using (4), the right term in the previous display goes to 0 a.s., i.e., n−1〈M〉n →
V∗.
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Concerning (A.2), we have
n∑
j=1

E[X2
n,j1|Xn,j |>ε|Fj−1] =

1

n

n∑
j=1

E[∆2
j1|∆j |>ε

√
n|Fj−1]. (A.3)

Let us recall that

∆j = wj(xj)−
∫
ϕ,

wj(x) =
ϕ(x)

qj−1(x)
,

and introduce I =
∫
ϕ. Thus

E[∆2
j1|∆j |>ε

√
n|Fj−1]

=

∫
(wj(x)− I)21{|wj(x)−I|>ε

√
n}qj−1(x)dx

6
∫

2(wj(x)2 + I2)1{|wj(x)|>ε
√
n−|I|}qj−1(x)dx

= 2

∫
ϕ(x)2

qj−1(x)
1{|wj(x)|>ε

√
n−|I|}dx+ 2I2

∫
1{|wj(x)|>ε

√
n−|I|}qj−1(x)dx.

Let η > 0. Assuming that
√
n > |I|/ε and applying 2 times Markov inequality we obtain that

E[∆2
j1|∆j |>ε

√
n|Fj−1]

6
2

(ε
√
n− |I|)η

∫
|ϕ(x)|2+η

qj−1(x)1+η
dx+

2

(ε
√
n− |I|)

I2

∫ ∣∣∣∣ ϕ(x)

qj−1(x)

∣∣∣∣ qj−1(x)dx

6
2

(ε
√
n− |I|)η

sup
j∈N

∫
|ϕ(x)|2+η

qj(x)1+η
dx+

2|I|2

ε
√
n− |I|

∫
|ϕ(x)|dx

which together with (A.3) implies (A.2).

A.3 Proof of Corollary 1

Set

An = In(ϕπ)−
∫
ϕπ,

Bn = In(π)− 1.

We kwon by Theorem 1 that

√
n

(
An
Bn

)
d→ N (0, V∗). (A.4)

On the other hand, one has

I(norm)
n −

∫
ϕπ =

An +
∫
ϕπ

Bn + 1
−
∫
ϕπ =

An −Bn
∫
ϕπ

Bn + 1
=

1

Bn + 1
U

(
An
Bn

)
,

where U is the matrix in defined Corollary 1. The result then follows immediately from (A.4) and
Slutsky’s Lemma [3, chapter 2].

A.4 Proof of Theorem 2

Following [3, Theorem 5.7], we just need to show that

sup
θ∈Θ
|n−1Rn(θ)− r(θ)| → 0 a.s. (A.5)

∀ε > 0, inf
θ∈Θ, ‖θ−θ∗‖>ε

∫
mθ >

∫
mθ∗ . (A.6)
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Since Θ is compact, the second equation is satisfied because the integrability of M implies, by the
Lebesgue theorem, that the function θ 7→

∫
mθ is contituous.

Concerning (A.5), we shall apply Theorem B.1 (given in Section B.1 of the present supplementary
material) with

H(θ) = H(θ, ω) =
mθ(X)

q0(X)
, where X ∼ q0

Hj(θ) = Hj(θ, ω) =
mθ(xj)

qj−1(xj)
.

The two assumptions to verify, (H1) and (H2), are stated in Section B.1. In fact, we only have to show
that (B.1), (B.2) and (B.3), expressed in (H1), hold true as the continuity of θ 7→ H(θ, ω) almost
surely, for each θ ∈ Θ, required in (H2), is a consequence of the continuity of θ 7→ mθ(x). Notice
that we have indeed E[H(θ)] =

∫
mθ, as (11) implies that for each θ, the support of M is included

in the support of q0.

For (B.1), we apply Theorem B.2 (given in Section B.2 of the present supplementary material) firstly
with Uj = Hj(θ0)+. Since E[Uj |Fj−1] =

∫
mθ0(x)+dx, we get

E[Sn] =

∫
mθ0(x)+dx,

and

Var(Sn) =

n∑
j=1

Var(Uj) 6
n∑
j=1

E[U2
j ],

where the previous equality follows from Cov(Ui, Uj) = 0, for all i < j. But, for each j,

E[U2
j ] = E

[
mθ0(xj)

2

qj−1(xj)2

]
= E

∫
mθ0(x)2

qj−1(x)
dx 6 sup

θ∈Θ

∫
mθ0(x)2

qθ(x)
dx.

This proves that (B.1) holds with Hj(θ0)+ instead of Hj(θ0). But similarly it holds with Hj(θ0)−
and we conclude for Hj(θ0) by linearity. Now (B.2) reduces to∫

sup
θ∈Θ
|mθ(x)|dx <∞

which is true by assumption. Concerning (B.3), we work similarly with

Uj = sup
θ∈B
|Hj(θ)−Hj(θ0)|.

Now

E[Sn] = n

∫
sup
θ∈B
|mθ(x)−mθ0(x)|dx = E

[
sup
θ∈B

∣∣H(θ)−H(θ0)
∣∣],

and

Var(Sn) =

n∑
j=1

Var(Uj) 6
n∑
j=1

E[U2
j ],

with

E[U2
j ] =E

∫
supθ∈B |mθ(x)−mθ0(x)|2

qj−1(x)
dx 6 2 sup

θ∈Θ

∫
supθ∈Bmθ(x)2

qθ(x)
dx.

This leads similarly to (B.3).

A.5 Proof of Theorem 3

Note that V (q, ϕ) =
∫
ϕϕT /q−

∫
ϕ
∫
ϕT . Because of the uniform integrability of ‖ϕ‖2/qθ the map

θ 7→ V (qθ, ϕ) is continuous. Hence, in virtue of the continuous mapping theorem and the conclusion
of Theorem 2, Condition (4) is satisfied. Condition (5) is trivially satisfied.
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A.6 Proof of Corollary 2

The proof is the same as the proof of Theorem 3 replacing ϕ by (ϕTπ, π)T .

B Auxiliary results

B.1 A uniform law of large numbers

We consider a compact metric space (Θ, d), and a sequence of stochastic processes Hi(ω) =
Hi(θ, ω) : Ω→ Rd, i > 1, θ ∈ Θ, such that:

(H1) There exists a stochastic processes H(θ) = H(θ, ω), such that for all θ0 ∈ Θ

1

n

n∑
i=1

Hi(θ0) −→ E
[
H(θ0)

]
a.s. (B.1)

In addition

E
[

sup
θ∈Θ

∣∣H(θ)
∣∣] < ∞ (B.2)

and for any ball B with center θ0

1

n

n∑
i=1

sup
θ∈B

∣∣Hi(θ)−Hi(θ0)
∣∣ −→ E

[
sup
θ∈B

∣∣H(θ)−H(θ0)
∣∣] a.s. (B.3)

The measurability of the supremum is part of the assumptions.
(H2) For each θ0 ∈ Θ, almost surely (this subset of Ω of probability 1 may depend on θ0), the

function θ 7→ H(θ, ω) is continuous at θ0.
Theorem B.1. (UNIFORM LAW OF LARGE NUMBERS) Under (H1) and (H2), the function

h(θ) = E
[
H(θ)

]
is continuous and with probability 1

lim
n

sup
θ∈Θ

∣∣∣h(θ)− 1

n

n∑
i=1

Hi(θ)
∣∣∣ = 0. (B.4)

Proof. Let us consider, for any θ0 ∈ Θ, the function

fθ0(η) = E
[

sup
d(θ,θ0)<η

∣∣H(θ)−H(θ0)
∣∣].

Then fθ0(η) tends to 0 as η tends to 0, because of (H2) and Lebesgue’s dominated convergence
Theorem. This implies in particular the continuity of h(θ) since clearly

sup
d(θ,θ0)<η

∣∣h(θ)− h(θ0)
∣∣ = sup

d(θ,θ0)<η

∣∣E[H(θ)−H(θ0)]
∣∣ 6 fθ0(η).

Fix ε > 0. For any θ0, there exists η(θ0) > 0 such that fθ0(η(θ0)) < ε. The open balls centered at
θ ∈ Θ with radius η(θ) form a covering of cover Θ; by compacity, a finite sub-covering exists:

Θ = ∪Jj=1Bj , Bj =
{
θ : d(θ, θj) < η(θj)

}
.

For any θ ∈ Θ, consider j = j(θ) the smallest j such that θ ∈ Bj , and write:

1

n

n∑
i=1

Hi(θ)− h(θ) =
1

n

n∑
i=1

{Hi(θ)−Hi(θj)}+
1

n

n∑
i=1

{Hi(θj)− h(θj)}+ (h(θj)− h(θ)).

These three terms are functions of θ, and we need to bound the uniform norm of them, not forgetting
that j depends on θ. The supremum of the third one is smaller that ε; the supremum of the second
one Zn(J) tends to 0 as n tends to infinity: J depends on ε but is finite, hence there exists a set Aε
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such that P(Aε) = 1 and ∀ω ∈ Aε, Zn(J) → 0. Then set A = ∩k>1A1/k, it holds that ∀ω ∈ A,
Zn(J)→ 0. The first term is the only difficult one; its uniform norm is smaller than:

ϕn = sup
j

1

n

n∑
i=1

sup
θ∈Bj

∣∣Hi(θ)−Hi(θj)
∣∣.

But with probability 1, by virtue of (B.3)
lim
n
ϕn = sup

j
fθj (η) 6 ε.

We have shown that the l.h.s. of (B.4) is asymptotically smaller than 2ε; since ε is arbitrary, it actually
vanishes.

B.2 A law of large numbers

We present here a simple way to obtain the law of large numbers. This will be used for checking
(B.1) and (B.3).
Theorem B.2. Let Un, n > 1 be a sequence of random variables and Sn = U1 + U2 + ...Un such
that:

Un > 0 w.p.1

n−1E[Sn] −→ l

Var(Sn) 6 cn

for some real numbers c > 0 and l > 0, then
Sn
n
−→ l w.p.1.

Proof. The trick in this proof is to first derive the result for Sn2/n2. Then a sandwich formula will
permit to conclude for Sn/n. We have

E

[∑
n

(
Sn2 − E[Sn2 ]

n2

)2
]
6
∑
n

c

n2
<∞.

Thus ∑
n

(
Sn2 − E[Sn2 ]

n2

)2

is finite w.p.1,

implying that (Sn2 − E[Sn2 ])/n2 converges to zero, almost surely. Hence Sn2/n2 converges to l.
Notice that if n2 6 k 6 (n+ 1)2:

Sn2

n2

n2

(n+ 1)2
6
Sk
k

6
S(n+1)2

(n+ 1)2

(n+ 1)2

n2

and since both side terms tend to l, the result is proved.

B.3 Algebra related to the optimal policy for normalized AIS

Suppose that p = 1. We have

V (q, (ϕπ, π)T ) =

(
ρ2

1 − ρ̄2
1 ρ1ρ2 − ρ̄1

ρ1ρ2 − ρ̄1 ρ2
2 − 1

)
, ρ1 =

ϕπ

q
, ρ2 =

π

q
,

where the bar means the expectation under q(x)dx. From Corollary 1 with U = (1,−ρ1), the
asymptotic variance is

UV (q, (ϕπ, π)T )UT = (ρ2
1 − ρ̄2

1) + ρ̄2
1(ρ2

2 − 1)− 2ρ̄1(ρ1ρ2 − ρ̄1)

= ρ2
1 + ρ̄2

1ρ
2
2 − 2ρ̄1ρ1ρ2

= Eq[(ρ1 − ρ2ρ̄1)2]

= Eq[ρ2ρ2(ρ1/ρ2 − ρ̄1)2]

=

∫
[q−1π2(ϕ− I)2].

Using Theorem 6.5 in [1], we derive the optimal sampling policy as claimed in the introduction.
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Figure C.1: From left-to-right and top-to-bottom d = 2, 4, 8, 16. AIS and wAIS are computed with
T = 5, 20, 50, each with a constant allocation policy, resp. nt = 2e4, 5e3, 2e3. Different options
are considered for estimating the variance : sig_1, sig_1/2, sig_0 (see in the text). Plotted is the
logarithm of the MSE (computed for each method over 100 replicates) with respect to the number of
requests to the integrand.

C Additional numerical illustrations

In the numerical experiments furnished in the paper, the family of sampling policy has a fixed variance.
Now we update the sampling policy according to the mean and the variance.

As detailed in the paper, we wish to compute µ∗ =
∫
xφµ∗,σ∗(x)dx where φµ,σ : Rd → R is the

probability density of N (µ, σ2Id), µ∗ = (5, . . . 5)T ∈ Rd, σ∗ = 1. In contrast with the situation
described in the paper, the sampling policy is now chosen in the collection of multivariate Student
distributions of degree ν = 3 denoted by {qµ,Σ : µ ∈ Rd, Σ ∈ Rd×d}. The initial sampling policy
is set as µ0 = 0 and Σ0 = σ0Id(ν − 2)/ν with σ0 = 5. The mean µt and the variance Σt are
updated at each stage t = 1, . . . T following the GMM approach as described in section 3 of the
paper, leading to the simple update formulas, (7) for µt and (8) for Σt, with f = φµ∗,σ∗ (quoted
equations are given in the paper). The variance estimation will be tuned : (i) complete variance
estimation as described by (8), refereed to as sig_1; (ii) estimation restricted to the diagonal with
0 elsewhere, refereed to as sig_1/2; (iii) and without estimating the variance at all, refereed to as
sig_0. To avoid degeneracy of the variance estimation in (i) and (ii), we add σ0/max(1, N

(eff)
t )1/2
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in the diagonal of Σt, with N (eff)
t =

∑t
t=1

∑nt

i=1 φµ∗,σ∗(xs,i)/qs−1(xs,i). The method described in
(iii), sig_0, is the one considered in the paper.

For each method that returns µ, the mean square error (MSE) is computed as the average of ‖µ−µ∗‖2
computed over 100 replicates of µ.

In Figure C.1, we compare the evolution of all the mentioned algorithms with respect to stages
t = 1, . . . T = 50 with constant allocation policy nt = 2e3 (for AIS and wAIS). The clear winner
is wAIS without estimating the variance sig_0. Estimating the variance from the beginning of the
procedure is slowing down the convergence especially in high dimensions.
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