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A Proof of Lemma 6.2

We prove here the Lemma 6.2 which is an easy adaptation of [ | 7, Lemma 3.1]. We first recall it.

Lemma A.1. Let H € R4, (u;)L | and (ii;)%_, the corresponding right and left eigenvectors of
B~'A and w € R? chosen uniformly on the sphere, then with probability 1 — § (over the randomness
in the initial iterate)

. Clog(1/8) Te(HHT Y2, 4t )
2
sing (u;, Hw) < 5 ﬂ;."HHJT@i iy

for some universal constant C > 0.

Proof. We follow the proof of [17]. Given a B-normalized right eigenvector u; of B~'A and
w = 5 for g ~ N(0,1), we consider:

( TBHw)Q) THTBl/Z [I Bl/2u uTBl/Q] Bl/2Hg
wTHTBHw g'HTBHg

Moreover following Lemma G.3 and denoting by 1; the correspondmg orthonormal family of

sin (u;, Hw) = 1 —

eigenvectors of the symmetric matrix B~'/2AB~1/2 we have that u; = B~/24,. This yields:
{I B2y, uTBl/Q} = |1 —u;u ZUJAT
J#i

Using now that the left eigenvectors of B~! A are given by @; = Bu;, we get

gTHT B2 [Z i }Bl/QHg gTHT {Z#i a]ﬁﬂ Hyg
sin% (u;, Hw) = =
’ g"HT"BHg g"HT"BHg

We may bound the denominator by
é
g"H'BHg > g"H B ?wa] B2 Hg = g"H ] Hg = (0] Hg)* > —-a] HH i,
1

where the last inequality follows as @, H g is a Gaussian random vector with variance || H ";||3. We
can also bound the numerator as

g HT Zﬁ]ﬂ;r Hg < Cylog(1/6) Tr[H T Zu] u; H
J#i J#i
since w' H' [2#1 Ul } Huw is a x? random variable with Tr[H T 3" i Ui T H) degrees of
freedom. Therefore it exists a universal constant C' > 0 such that
log(1/8) TrlH 3, 4 H]
5 4] HH @
with probability 1 — 4. O

sin® (u;, Hw) < C

B Deviation bounds for fast-mixing Markov Chain

In this section, we prove an upper bound on ||E[e; | F;]||2, where ¢, = (w; — B~*Aw;_1)v,"; and
Fi = o(wp, -+ ,w;) denotes the o-algebra generated by wy, - - - , w;. For the purpose of this section,
we denote the pointwise upperbound on ||w; || by W;. To begin with, we consider bounding the error
term considering a fixed step-size a; = «a in order to keep the analysis cleaner. In Lemma B .4, we
bound the deviation of chains with step-size iy = O(c/ log(d? +t)) and fixed step size over a short
horizon of length O(log?(1/8;))

In order to prove the requisite bound, consider the following Markov chain given by,
Ok1 = Ok — ' (Ow)) + €x+1], (15)

where f : R¢ — R is some strongly convex function. We make use of the following proposition
highlighting the fast-mixing property of constant step-size stochastic gradient descent from [/ ].
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Proposition B.1. For any step size o € (0,2/Lg), the markov chain given by (0i) x>0 defined by
recursion (15), admits a unique stationary distribution © € P(R?). In addition, for all § € R% k € N,
we have,

W3 (R*(0,),m) < (1 = 2p19m(1 — Lo /2))* / 16— 0/[3dm(9"), (16)
R
where Lg and g are the smoothness and the strong convexity parameters of f respectively.

Now, consider the Markov chain given by
wit = wl — a(Bywk — Apvy), (17

where E[By] = B,E[A;] = A,w) = w; where w; is as given by Algorithm 1. Equation (17)
represents the update step for the k" step of a Markov chain starting at w; and performing stochastic
gradient updates on f;(w) = 1/2w’ Bw — w ' Av;.

For this function f;, the smoothness constant L = A\p. Further, proposition B.1 guarantees the
existence of a unique stationary distribution 7 and we have that under the stationary distribution,

E.[wk] = B~ Av,. (18)

Lemma B.2. For the Markov chain given by (17) with any step size o € (0,2/Ap), for any
log(%L)
ua(l—a)‘TB

k> ) we have

|E[wy — B~ Av]|Fo3 < e

Proof. We know from (18), B~ Av, = E.[wF]. Now, we consider the term || E[wf — B~ Av;]| 7|3,
[Efwf — B~ Av]|Fill3 = |E[wy] — Ex[w]| 7|3
= | Er (g w,,)mwi —wlll3
]
< Er(a(w,.).m [lwf —wl]3]
= W3 (RN (). m)
¢
< (1-2ua(1 - aXs/2)*N,

where R*(wy,-) denotes the k-step transition kernel of the Markov chain beginning from wy,
I'(R¥(wy, -), ™) denotes any coupling of the distributions R¥(wy, -) and 7 and Er(. ., denotes the
expectation under the joint distribution, conditioned on ;. Now, (; follows from Jenson’s inequality,
(s follows by setting I'( R (wy, -), 7) to the coupling attaining the infimum in the wasserstein bound
A
and (3 follows by using proposition (B.1). The lemma now follows by setting & > ?5(73135). [see,
po(l——"7

e.g., 50, for more properties of W3] O

Deviation bound for ||v; — v;y|2: We now bound the deviation of v, from v, if we execute k
steps of the algorithm sarting from vy,

k—1

lvr — vegrll2 < Z lvegi — Vegitall2 (19)
i=0

Now, for a single step of the algorithm, using the contractivity of the projection

v
[vi = vigall2 < flvi — ”JHH l2 < flvi = vipqlla < Wig1Biga.
1+1

Using the above bound in (19), we obtain,

k—1

llvg — vegrlle < Wigp Zﬁtﬂ'ﬂ < WiyrkBy, (20)
i=0

by using the fact that 3; is a decreasing sequence.
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Deviation bound for Coupled Chains: Consider the sequence (w;;)¥_, as generated by Algorithm

I, assuming a constant step-size o, and the sequence (w})¥_, generated by the recurrence (17) in the
case when both have the same randomness with respect to the sampling of the matrices A;;, Byy;.
We now obtain a bound on ||E[wF — w;y1]|F¢|2-

|E[wf — wi k]l Fella = |E [E[(] — @Beyr) (wy ™" = wigr—1) — @A (ve = vrgr—1)] [Frpnoa]|Fell2
=|[E[(I — aB)(wf™" — wipn—1) — €A(vy — ve4r—1)] | Fell2

E—1
=allE Z(I — ozB)iA(Ut — Ut+k—1—i)|Ft]
i=0 2
k-1
<o Z H(I —aB) A(vy — Ut+k—1—i)||2 |]:t]
i=0
k-1 ,
< adaWiyik Z (1—ap) Berr—1-i
i=0
_ AaWiikkfy
I
(2D
where we expand the terms using the recursion and bound the geometric series by using that app < 1.
log( 2
Lemma B.3. For any choice of k > Lﬁ‘i, we have that
2ua (170¢713>

AaWiirk
[Bfersal il < (24704

A(1+2Wy k) + Wt2+kk) Br = O(WP, 1kBy)

Proof. Consider the term ||E[e;q | F] |2,
[EletrilFelll2 = IE[(werr — B~ Avesp—1)v/ gy [ Fe]ll2
< ||E[(wirk — B~ Avie—1)v) |Fi]ll2 | E[(wisr — B~ Avpsr—1) (egr—1 — ve) " | Fe] |2 -
() (11)

We first analyze term (I) in the expansion above.
E[(wisr — B Aveyr 1) [Fillla = [EB[(wigr — wy) + (w) — B~ Avy)
+ (B Avy — B~ Avgyg))of | Fi 12
< |El(wesn — wi)[FeJof |2 + [E[(wg — B~ Avpsn—1)) | Fi]of ||z
< |E[(wesn —wi)[Fll2 + [|E[(w) — B~ Ave))|F] |12
+[E[(B Avy — B™1 Avyg 1)) | F 2

Wik
< %Bt + M By + MWk 5y

AaWiirk

'
-

= ( + M (1 + Wiik)) e, (22)

log(5.)

where (; follows from using lemma B.2 with k > ————=t—~
2pno (1— TB)

, bound in (20) and bound in (21).

We now look at term (II) in the expansion.

IE[(wesr — B Avppi—1) (esn—1 — v0) | Felll2 € Wigr + A1) [[0rr—1 — ve|
< Wik (Wi + A1) EBe. (23)

Combininig the bounds in (22) and (23), we get the desired result. O
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The bound we proved above hold for any fixed fixed step-size «. However, in order to obtain the
sharpest convergence result for our algorithm, we would require the step size oy = m for

some constant 3. We provide the following lemma which accomodates for this change.
In order to get a bound on the noise term with a logarithmically decaying step size, in addition to

the previous analysis, we consider processes (wtﬂ) kL and (D444)F Wthh evolve with the same
random matrices A;y; and By, ;, but with a step size of a1, = oy = m

Pointwise bound on ||@;|2: We can obtain a pointwise bound on ||@;||2 using the simple
recursive evaluation:
[kl < (1T = e Berll2lldesr-1ll2 + arra
< Wi + karAa, (24

where the final inequality follows from recursing on ||t —1|| and using the assumption that B; > 0.

Deviation bound for |[v;1 1 — ¥;4|2: We can obtain a bound on this quantity as follows:

lvirr = Vevrlle < lveek — vigrlle + 100k — Vesrlla + lvppe — 04yl
< 26016 Wik + 2Bevkl|Wirkll2 + | Ber k(Wi — Werr)ll2 + Verk—1 — Dpgr—1l2

k k
<2 (Z BrviWigi + |U9t+v:||2)> + 3 Brilwesi — derillz

i=1 i=1

< 3Btk (Wit + kagha), (25)

where the final bound is obtained using ||wii k|2 < Wiy and || W4k lle < Witk + kagda from
Equation (24)

1Og( Bt )

m and oy € (0,2/\p) of the form o, =

Lemma B.4. For any choice of k > e (@A)

we have that

MaWiikk
[Blevsal 7l < (240

+ A (1 + 2Wyp k) + Wt%rkk> B

i ABWigrkoy By n Aakayfy n 3ANALk(2Wiik, + kg a)

cury cry [
+ (2Wt+k + kat)\A)Wt—'rkkﬂt'

In other words, we get that ||E[e; 1| F¢]|l2 = O(Bik*> s Wi p).

Proof. In continuation from Lemma B.3, we consider bounding the deviation of the process w;
from the process w; . The extra components in the error term €, remain the same and we ignore
them for clarity of this lemma.

IEB[(wesr—erk) vy 1 [ Felll2 < IE[(wesr — Wesr)vy [Fellz + [E[(wer — Wogr) (Verk—1 — ve) | Fe][l2
O )

(26)
We proceed by first analyzing term (I) in Equation (26).

HE[(thc - uA11t+lc)vt—r|-7'—t]||2 = ||E[E[((I - at+kBt+k)wt+k71 + Oét+k:At+kvt+k71)
— (I = a4 Byy)With—1 + ot Apy g Oph—1)| Fran—1]vy | Felll2
= [E[(({ — at4x B)wiyk—1 + Qi Avipr—1)
— ((I = s B)ty k-1 + a1 Ade 1) Felv] |2
= [[E[(at — attir) Bwirh—1 + (I — e B)(with—1 — Wesk—1)

+ (o — o) Aveg—1 + 0 AV -1 — Degr—1)) | Fe]vf |l

<

k
E [Z(at — i) (I — OétB)k_iBthrilft} o
i=1

2
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K
+ ||E Z(at+i —ay)(I — OétB)k_iAUtﬂ—lft} v
i=1 2
k .
o B [Z(I — aB)" Aoy — 17t+z‘—1)]"t] o
i=1 2

(0 — i) ABWepie n (ar — o) Aa n Aal|vidk—1 — Or4r—1]2

Qb 7 K
AWitikoy . Aakay n 3AABLk (Wi + kaida)
T oceu(df+t)  cp(dBf+t) i
< ApWiyrkoy By n Aakaoy By n 3AABk(2Wipy 4 kagda)
- cpb cpb I
where the second last inequality follows using Jensen’s ineuality along with a trinagle inequality and
using the fact that B = pI and the last equality follows from using the form of 5, = % for some
constant b.

27)

We now consider term (II) in Equation (26).

||E[('wt+k - wt+k)(vt+k71 - 'Ut)T|]:t]H2 < (2Wign + ko da) Wiy kB, (28)
by using Jensen’s inequality along with bound (20). Combining (27) and (28) with (26), and using
Lemma B.3, we obtain the desired result. O

Note that in order to prove the final convergence for Algorithm 1, we use the form of the step sizes
oy and 3 as mentioned in this section.

In the following sections we denote by 7, = ﬁ logQ(i) and A; to be such that:
T2

2,uat(
AereBe > ||E [eri ] F] || (29)

When a; = 7, will be O(log®(1/;)) and when a is contant, r, will be O(log?(1/3;)).

C Controlling Markov Chain w;,

For the purpose of this section, we stick with bounds R 4, Rp the maximum of which equals R in
the main paper. In this section we provide a bound on the norm of the markov chain w,. We start by
showing the p moments of the norms of w; are bounded as long as oy = « a small enough constant
Vt. Ultimately we will use a time dependent o as defined in the previous section, but for warm up we
start by showing some lemmas that bring out the behavior of w; when o, = « for all ¢. The proofs
for a moving o, will follow a similar though technically involved arguments.

Lemma C.1. For a < 1/R% we have
R?% .2
Efflwe|l3] < [(1 = pa/2)" w2 + 27“] :
If, in addition we assume that o < 2 for p > 3 we have:
RB (p—Q)
R%qp
E[lwely] < (1~ p/a) fwollo + 42"
Proof. We first expand w1 = (I — aBy41)w: + @A 10 and use the Minkowski inequality on
Lo-norm (denoted by ||||.,) to obtain:

lwesille, < (I —aBwl|z, + |eAir1ve|L,

We directly have that ||aA;11v¢]|, < aR% almost surely and we can directly compute for o <
1/R%:

I(I = aBi)wellz, = Elw/ (I —aBy)*w] =E[w (I —2aB1 + o’ BEw]

16



(1)
< Elw/ (I = aBy)wy] < Elw, (I — aB[Byp|Fu))wi] < (1 — ap)E[|Jw]|3],

where (1) follows as B;+1 < R%1. We obtain expanding the recursion (and using /1 — x < 1—z/2
for x > 0):

t—1
lwellz, < (1 —an/2)" Jwollz, +aR% Y (1 —an/2)".
=0

‘We conclude )

R
Jwellz, < (1= pa/2) o, 4272

We consider now p > 3. We expand again w1 = (I — aBiy1)ws + aArqv; and use now
the Minkowski inequality on L,-norm on (R, [|) (denoted by ||, and defined by |1z, =
(E[||=]/5])*/?) to obtain:

lwesille, < (I —aBy)wilr, + [laAiivelz,

We then compute for o < 1/R%

(I = aBip)will, = E[(w (I = aB1)*w)?/?) = E[(w] (I - 2aBy1 + ” B,y Jwi)?/?)
w, Bpiiw p/2
< El(w] (1 - aBuy)wd”? < Elfulf (1- a2 20)
2
@ w] Byyiwy p(p —2) () Brprwy)?
< E[|Jwelb <1 — pa—t +a? ¢ )]
2 2[|we|3 8 [[we]|3
() ’LUTBt+1’LUt p(p — 2) ’LUTBt+1’LUt
< E[|Jwelb <1 —pa——" " 4 o2R2 ¢ ]
: Mwld TS wd
T
po oD — 2, w, Bt+1wt>
< ElJw p(l— 1—aR

3) pa p—2
< Ellug (1- 50— amy 2]

where (1) follows as (1 —z)? < (1—pz+p(p—1)/222) for x € [0,1], (2) follows as w,' Byyw; <
R%||w;||3 and (3) follows as E[B;,1|F;] = B % ul. Then using (1 — 2)'/? <1 — a/p for x > 0)
yields

o -2
7= aBesyuds, < s, (1- 50 - a2 20).

Moreover
||OéAt+1’Ut||Lp < O[Ri a.s.

And therefore
p—2

2

Let us denote by § = 5 (1 — aR% ”%2) 1, then we directly obtain expanding the recursion:

(0%
fursile, < Jurls, (1= 50— ams2220) + ot (30)

t—1
[will, < (1= 68){wol|z, +aR% Y (1 —6)".
i=0
We conclude for o« <

__2
R%(p—2)

R2
lwellz, < (1= pa/a)"flwollz, + 42

As a corollary, we conclude that:
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Corollary C.1.1. Ifp > 3, wq is sampled from the unit sphere, and « satisfies o < min(m, %)
B
then:
R4\
B ol < (1+472) a1
I

We can leverage corollary C.1.1 to obtain the following control on the norms of w;. As a warm up
first we show that polynomial control on the norms of w is possible.
Lemma C.2. Letn > 0and b > 0. If:

R% 1/p
1+a (1 + 47) =1
p= ) C2 ——— 70— “ta (32)
b 771/13 J; jlta
Then whenever o < min(m), we have that with probability 1 — 0, ||w|| < ct® for all t < n.
B

Proof. By Corollary C.1.1 and Markov’s inequality:

E [[|we||?] 1+4R%/p\" 1 1 1
b A
Pr(llwd” 2 7)< cptbp = top =1 > oo e ) 1P

& j=1 ji+a

The first inequality follows by Markov, the second by Corollary C.1.1 and the third by the definition
of ¢, and p.Applying the union bound to all w; from ¢ = 1 to co yields the desired result. O

The lemma above implies that for any probability level n , whenever the step size oy is a small enough
constant, independent of time ¢, by picking « small enough, we can show pointwise control on the
norms of ||w;|| with constant probability so that at time ¢, ||w;|| < ct®.

Notice that for a fixed a, Zjoozl ]1% converges, and thatin case @ > 1, Z;’;l ﬂ% < 10 (an absolute
constant).

We now proceed to show that in fact for any § > 0, there is a constant C(d, u, Rp, Ra,log(d))
such that with probability 1 — §, w; < B(d, u, R, Ra,log(d)) for all ¢ whenever the step size is
at:mwnhﬁzo

We start with the following observation:

Lemma C.3. Let tg € Nand t1 = 2ty. Assume |wy,|| < B. Then for all to + k € [to +

%‘g(dzﬁw, -+« 1), the following holds:

pe
L8R
1%

to > 2. And c, cy are positive constants such that ¢ < R%Cl.
B

E [||wto+k||c1 log(t1) < (1 yer log(t1)

— [&
Where auo+i = og@@p i 1hy

Proof. Mimicking the proof of Lemma C.1, the same result of said Lemma holds up to Equation 30

even if the step size oz, 4m = m, therefore for any m:

lo% p—2
g, < Tuonle, (1= 257 (1= 03272 ) ) + il

Let 0y m = 0 (1 — at0+mRQBp4;2) 1, we obtain the recursion:

[wigrmrillL, < lwegamllL, (1= 8to4m) + QtgrmBA

Which for any & can be expanded to:

k—1 k—1 k—1
|weg+kllL, < H (1= Gyim) lweo ||z, + RS Z Qtg4m? H (1= b9+5)
m=0 m/=0 j=m’'+1

‘We now show that we can substitute all instances of d;,, in the upper bound with a fixed quantity,
which will allow us to bound the whole expression afterwards.

18



Notice that o+ is decreasing and that 0,41 > % (1 — 2at1RQB%2) 1. The later follows because
by assumption oy, = log(d%‘;t”k) < 210g(d§6+t1) = 2qy, (recall that t; = 2t(, implying this is
true as long as tp > 2) and therefore oy, < ayyyx < 204,.

Define 6], := %4t (1 — 2ay, R4 272) p1. As a consequence:

k—1 k—1
lwigtrlle, <TI0 =6 lwellr, + 2R3, Y (1—6;,)"
1=0 m/=0

1
< H 1- tl)Hwto”L +2RAat1 6/
=0
! \k 2 1
= (1= 8w, + 2R, 5
t1

If oy, < then §; > <14 Then:

1
R3(p—2)°
R2
lwiors e, < (1= par, /4)¥|lwyl|z, +8=2 .

And therefore:
k R%\"
E [[lweo+£[*] < ((1 — pev, [4)" Jwgy ||z, + 8#)

Notice that (1 — pay, /4)F < exp(— “a’l ) and therefore (1 — oy, /4)*|lwyy||z, < 1 whenever
—pay, k /4 +1og(B) < 0. Since 2 log(d25 +to) > log(d?B + t1) (because ¢y > 2), the relationship

(1 — povy, /4)*||wy, ||z, < 1 holds (at least) whenever k > %W.

Recall that p = ¢; log(#1). Since the above conditions require o, < y to hold, it is enough

1
R% (p—2
to ensure that:

c 1 1 1 1

< = < =
log(d?B + t1) T REp  Rjelog(t)  RE(p—2)  Ry(elog(t) —2)
It is enough to take ¢ < 75— - to satisfy the bound. Putting all these relationships together:

R P
E [Jwio 7] < (1 T8 MA)

For p = ¢; log(t;) and for all k such that k € [%W ot O

Oétl =

As a consequence of Lemma C.3, we have the following corollary:
Corollary C.3.1. Let tg € N and t; = 2ty. Assume ||wy, || < B. Then for all to + k € [to +

8log(B)log(d S+to) 1Z‘i(d2ﬁ+t°) -++  t1], the following holds:

2
8R%
I
Where o111 = m, to > 2. And c, c1 are positive constants such that ¢ <

E ||wt0+k|‘0110g(t0+k) <(1+ )cllog(to-i-k)

RZB C1 :
The proof of this result follows the exact same template as the proof of Lemma C.3, the only difference
is the subtitution of p with the desired ¢ log(to + k) wherever necessary.

Now we proceed to show that having control up to the ¢1 log(t) moments for ||w; || implies bounded-
ness of w; with high probability:

Lemma Cd4. Assume E [||w]|c'e®] < (1 + 8%3‘)61 g(t) and § > 0, then for B >

2 (1 + SRA) %, we have:

(Hth > B) <o 5c1 log(t)
Where log is base 2.
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Proof. The proof follows from a simple application of Markov’s inequality:
Pr (| = B) < Pr (|ju |1 150 > ger1os®)
< i(gcl log(t)
S o

This concludes the proof. O

We now show that if there is ¢y for which |jw;|| < B, for some large enough constant 53, then by
leveraging Lemmas C.3 and C.4 then we can say that with any constant probability a large chunk of
the w; are bounded provided « is time dependent oy with oy = W for some constant c.

oo 1

Lemma C.5. Let § > 0, define n := %Tz, and let the step size oy = with ¢ > 0

satisfying ¢ < ﬁ. Assume there exists to > 2 such that ||we, || < B with B > 2 (1 + %) 7.
Define t1 = 2ty and t; 11 = 2t; for all © > 1. With probability 1 — § it holds that for all t > ty such
thatt € [t; + %WQRQB, <o+ tip1] it follows that:

[we] < B

Proof. The proof is a simple application of Lemmas C.3 and C.4. Indeed, by Lemma C.3 and the
assumptions on wy, and the step size, conditioning on the event that w;, < B, the 2log(¢;) moments
(and in fact the 21og(t) moments as well) of ||w;]|| for t € [to + %WWZRQB, ]
are bounded by (1 + %)21(’%“1) (respectively (1 + %)mog(” for the 2log(t) moments).
This in turn implies by Lemma C.4, that conditional on |jwy,| < B, for any ¢t € [to +
MQRQB, .-+ ,t1] the probability that ||w;|| is larger than B is upper bounded by

t%m < %22]%1%2 (this inequality follows because > 1 and 2log(t) > 1 as well). Conse-
quently, the probability that any ||w;| > B fort € [ty + %&WHOW}ZQB, -+ ,t1] can be
bounded by the union bound as:

) 1
Sk 2 ?

Jj=1j 2log(B) log(d2
te[to+21oeBloedB ) 92 . gy

Conditioning on ||wy, || < B and repeating the argument, for all 4, we obtain that the probability that
2 ) .
there is any ¢ such that |Jw,|| > Band ¢ € [t; + MZRQB, -+, ti41] is at most:

o 1
ZTZ > 2 =0

1
=1 2 ,;— 2
J=13% 4 Ote[tﬁwﬂ%wvtm]

This concludes the proof. O

Now we show that in fact, for any ¢ € (0, 1), then, with probability 1 — ¢, for all ¢, all w; are bounded
(by a quantity that depends inversely on §). More formally:

Lemma C.6. Define R4 and Rp such that Ry = Rp > % Let
1
5 — max ( 1 SRY 25o1 5 log?(1 + d%)R%)Q) .

1+ —,(1 2, (5+72-
+RB,(+,U') 5 7a(+ /1'2

If oy = 1ogrgegr with ¢ = ﬁ and ||wo|| = 1, then with probability 1 — ¢ for all t:
B

2 log(B)RB

Jwe]| < B+ = C(6, 11, Rp, Ra,log(d))
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41og(1+d?B) log(B)R%
1

2
Proof. Letty = max((% * ) ,2). Define t; = 2t( and in general for all ¢ > 1,

t; =2t;_1.

log(B) log(d?

e We start by showing that ¢ty > 4 Brto) R, , which will allow us to show that the

log log(B) log(d?B+to)R% o
I ’

interval [to + 4

, 1] is nonempty.

First notice that for all ¢ > 1, (and in particular for all ¢ > 2), we have that:

23y
log,(t) — 4
Therefore:
2 2 2 2
to > §t(1)/2 > max((410g(l +d*pB) log(B)RB) 1> 4log(1 + d*B)log(B)R%
log(to) — 4 I I

And therefore, since log(to) log(1 + d?3) > log(d?j + to):

< 4log(to) log(1 + d?B) log(B) R% S 4log(d?B + to) log(B)R%
B Iz B M
Which implies the desired inequality.

to

e Now we see that ||w;|| < B forall ¢ < .

We use a very rough bound on w;. Recall that w; = (I — ay—1 By)ws—1 + a1 Apvg. The following
sequence of inequalities holds:

well < 11— o1 B lwe—1 || + 2;129”14:&
< el + e
2Rp
This holds as long as ||I — a;—1B|| < 1, which is true since by assumption B; > 0 for all ¢
and therefore ||y By|| < ﬁRB = ﬁ < 1. The last inequality follows because Rp > 1.
Consequently, ||w| <1+ ﬁ for ¢t < tg. We want to ensure 5 > 1 + 22‘,]3 . Notice that:

4log(1+d?B) log(B)R2, \ 2
to max((% og( B) log(B) B) 71)

"
1+ — =1
+2RB + 2Rp

If ty = 1, this provides the condition B > 1 + ﬁ. When the max defining ¢ is achieved at

(é 4log(14+d?B) log(B)R%
3 N

2
) , we obtain the condition:

4 2 2 2 3
1+< 44 log?(1+ d2B)log (B)RB> <B (33)

2 % 32 2

Since we already have B > 2, it follows that log(B) > 1. And therefore, Equation 33 is satisfied as

long as:
4% log*(1+ d?*B)R3
2 B <
log*(B) (1—1—(2*32 2 ))_B

Notice that for all z > 1:
T

log?(z)

Therefore, picking B > (5 + 72 - WL%)Q > (5+ 52‘:; : M)Q guarantees that
Equation 33 is satisfied, (since B is also greater than 1).

1
> g%1/2
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e We can therefore invoke Lemma C.5 to the sequence {¢;} and conclude that with probability

1 — ¢ for all ¢ such that t € [t; + 41og(B) log£d2ﬁ+ti)R% yo

,ti+1] for some 7, we have

lw:]| < B simultaneously for all such ¢. This uses the fact that B > ( + SRA) ﬁ
e The final step is to show a bound on w; for the remaining blocks.
For the remaining blocks notice that if |jwy, || < B, then by a crude bound since o = ER e
with ¢ = ﬁ, at each step starting from ¢;, w; grows by at most an additive m factor:
1
we|| < | — a1 Be|||we—1]| + A
Joll < 1 = s Bl + 5o 4
< ol + g
Wy
= T 9 R g log(d2B + t)

Forallt € [t; +1,--- t; + 2Bl s Bt g pa

2log(B)

Since ||we, || < B, we have that |Ju|] < B + ! Bo for all t € [t; + 1,---,t; +

21og(B) log(d?B+t;
g(B) 5( B )2RQB]'

As desired. U

Notation for following sections: Throughout the following sections we use the following notation:

We use the assumption that ||E [e;|F;—,] || < A7 S; as proved in Section B where 7, is the mixing
time window at time ¢.

Also, as proved in Section C, we have that ||w;|| < W; and consequently:
lleell < llwe = B™" Avea|| < W, + || B~ Al| = B, (34)

Additionally we also have that:
1G] < M+ Be, := Gy

Notice that B, and G, are of the same order.

D Analysis burn in times

In order to provide a convergence analysis for Algorithm |, we use Lemma A.l and bound each of
the terms appearing in it. To obtain those bounds, we use a mixing time argument that allows us to
bound the expected error accumulated by terms of the form 3, (e, Hy—1 H, ;| + H;_1H,  1¢;).

To control terms of this kind we deal with the set {¢} such that ¢ > r; and the set of {¢} such
that t < r; differently. Let {; = max ¢ such that t < r;. This value #g is finite because r; grows
polylogarithmically.

Recall that 7, = O(log® ( -)) where 3 = d2[3+1 We define r; := log® ( -)Cr. Where C, is a

constant capturing all the mlssmg dependencies between r, and A, B. Let’s start with an auxiliary
lemma:

Lemma D.1. Let ¢ > 0 be some constant. If x > 6\c then, T3 > log(cz).

Proof. Observe that z3 > log(cx) iff exp(z3) > cx. Let’s write the left hand side using its taylor

series: ‘
oo z
1 €T3
exp(z?) E
i=0

-

. i 2 . . . . . 2
Notice that Zio mz—,s > %I, which in turn implies that if ag—! > cx and therefore x > 6lc, then

exp(z3) > cx, as desired. O
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We provide an upper bound for ¢:

Lemma D.2. The breakpoint tq satisfies:
to = max(By(b,C,), C, (log(d*B) + log(b) — 1)3)

Where B (b,C,.) := 1440%’2‘ is a constant dependent only on b and C,..

Proof. We would like to show ¢ satisﬁes the property that for all ¢ > ¢, it follows that ¢ >
C, log ( ) This is true iff t3 — C; § log( ) > 0. The following sequence of equalities holds:
1 1 1 2 1

)=1t3 —C? log(d* + t) + log(b)C?

ts —C3 log(ﬁt
d?B+t

— 15— ¢} log( ) = CF log(t) + log(b)CF

2 1 1
:ﬁ-{ﬁbg—é+1)cﬁmgﬂ+bgmw

We now massage this expression by considering two cases and making use of the following inequality:
Forlog(l 4+ z) <log(z)+1lifz >1

Casel :t> d?B

This implies that log(diﬁ + 1) <log(1+ 1) = 1. The following inequalities hold:

2 1 1 1 1 1 1

t5 — C°" log(Tﬂ +1) = C3 log(t) + log(b)C? >3 — CF — CF log(t) + log(b)C?
— 15 —CF (1— log(b) + log(t))
=13 — CT% <log (i) + log(t))

1 1 2
—th_c} <1og ( ;))

Let t = C,.h. Substituting into the previous equation, we would like to find a condition for & such that
1 1 1 .

t3 —C3 (IOg (%)) =C? ( log(QC h)) > 0. This follows as long as h > 6!% = 1440% by

Lemma D.1. Let B, (b,C,.) = 14407’”

We conclude that as long as we have t > By (b, C,) for some constant B (b, C,.) depending on ~ and
C,, we can guarantee that t5 — o (log (3)) > 0.

Case?2 :t < d?p.

This implies that log(%£2 4 1) < log(%2) + 1. The following inequalities hold:

2 1 1 1 2 1 1 1
t5 —C? log(—ﬁ +1) — C3 log(t) + log(b)CF >3 — C3 log( ﬂ) C? — C7 log(t) + log(b)C?
— 15 —CF log(d?B) — CF +log(b)C

And therefore the last expression is greater than zero if ¢ > C, (log(dB) + log(b) — 1)>. As a
consequence we get that as long as ¢ > to = max(B1 (b, C,.), Cy (log(dB) + log(h) — 1)*) we have
that t > C, log® ( -) as desired. O

Throughout the next sections, we use (g to denote this breakpoint.
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E Analysis for Gen-Oja

In this section, we provide bounds on expectations of various terms appearing in Lemma A.l which
are required to obtain a convergence bound for Gen-Oja.

E.1 Upper Bound on Operator Norm of E [H, H,' |

We start by showing an upper bound for ||[E [H,H,' | ||.
Lemma E.1. Forallt > 0:

t to
B [HH] | <exp (2> Bidi + BZdri(A; + B, G + B2)CW + Y 3;2dB,,

i=1 j=1

Where C) is a constant. Assuming that for all t > 0, Bir: Gy < %.

Proof. We start by substituting the identity: H; = (I + 3;G¢)H;_1 = (I + B¢B~*A + Bre)) Hy 1
into the expectation:

E I:HthT] =K [(I + ﬁtB_lA + ﬁtet)Htlelﬂl + ﬂtB_lA + 5t€t)—r:|
=+ BB 'AE [Hy1H || (I+ BB 'A)" + BE [eeHy 1 H, | + Hi1H/ €] |
+ BPE [eHy—1H, 1€/ ]

If we assume to have a series of upper bounds 6; < --- < 6;_; such that:
E [B.B,] = 6.1 (35)
The following inequality holds:
(I+ BB 'AE [H1H | (I+ BB A" 20,_1(I+ BB "A)I+ BB AT (36
Furthermore, we show how that (I + 8;B~YA)(I + ;B~YA)T =< (1 + Bt \1)%I:

Indeed, let v be an eigenvector of B~2AB~ 2 with eigenvalue \ and denote v = B2v. We show that
© is an eigenvector of (I + B;B~YA)(I + B; B~ A)T with eigenvalue (1 + 3:\):

T (I+ BB AT+ BB A) 5=0v"(B? + 3B *A)(B? + 5B 2A)Tv
=v' (B + B 2 A)B 2BiB*B~%(B% + f,B 7 A) v
v (I+ 3B *AB~%)B(I+ BB 2AB"2)Ty
(1+ B:\)*0 B
=1+ BN)* o

As a consequence, we conclude the set of eigenvalues of (I + 3;B~'A)(I + 3;B~'A)T equals
{(1 + B\i)2}2_,, since the set of eigenvalues of B~2 AB~2 equals {); }%_,, the set of eigenvalues

i=1>
of B! A. Therefore we conclude that

(I+BB ' AT+ BB AT 2 (14 5M)°T (37)
We proceed to bound the remaining terms.
E[e:He 1 H 16 | <E[llecll | Her H, lllle] ]
< BZE (| Hi-aH/ ]

< B2E [Tr(H;-1H, )] (38)
< dB |E [Hi—1 H, ] |
< dBZ ;-
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The first step is a consequence of Cauchy Schwartz, the second step because of the uniform bounded-
ness of ¢; and the last step is true because H; 1 H,' ; is a positive semidefinite matrix.

Terms with a single ¢;: Let H;_; = H;;LHH(I + 5,Gi))Hi—p,.

Define H{{**' :=T[\Z, , (I + 3,G;) and Li=5 ! o= HIZTH — 1.

In order to control this term we start by bounding || L:~***||. For this we use a crude bound.

Tt

k
Lzt =3 > 1156 (39)
j=1

k=1 \i1>-->ip€[t—ri—1,- ,t—1]

Forany k € [1,--- ,m]:

k k
> [18.6:]| < 3 118,61
1] |7=1 j=1

11> >l Eft—ry =1, t— 1> >t E[t—ry—1,- ,t—1]

< > Grot,,

G1> e >ipE[t—re—1,- t—1]
k
< [reGBe—r,]

The first follows from the triangle inequality, the second because of the uniform boundedness
assumptions at the beginning of the section and the third because () < ry.

For all ¢t > 0, since the step size condition holds:
k k 1
[Ttgtﬂt—m] < [QTtgtﬂt] <2rGif < 5
Putting these rough bounds together we conclude that:

1—[2r,G, 8"
1- [QTtgtﬁt]

Tt

|LiZp ) < Z [QTtgtﬁt}k = [2r:G: B¢]

k=1

< 2[2r4G By = 411Gt By, (40)

where we have used that 1/(1—x) < 2z for z € [0,1/2]. We can write H, = (I +L!I"*"\)H,_,, =
Hi ., + Li:?'HHt_rt. Substituting this equation into E [eth_lHtT_l + Ht_lHtT_letT] gives us:
E|eHi1H |+ H1H e | =E[e(Hy—p, + L7 Hyy ) (Hy—y, + LI~ 0T H ) T
+E[(Hir, + L0 Hy ) (Hy—y, + L0 Hy ) T/
=E[eH,— H | +E|eH—r H, (Li=7) 7]
+E|eLl,-7 ' Hy,H ] +E 6L, H o HL
+E[Hyr HD e | +E [Hir B (L) ]

+E -y Hyo H ¢/ | + E[LZ0 T Hy . HY

t—re

(Li=7)7]
(L= )T/ ]

We focus first on bounding the terms of this expansion containing Li:?“. We analyze the term
EeLy_( Hyp H,,].
I [ee L =5 Hymp HD ] < E [llee| L 25 N Homr, 5, ]
S Bet4rtgt6t]E [HHI?—HHtT—m ||]
< Be, 41 GiBE [Tr(Hy o, Hy 1, )]
< Be, 4rGiByd||E [Hy—p, Hy ] ||
All other terms containing Li:’f“ can be bounded in the same way. Combining these terms, we
obtain the following bound for the sum of all these terms:

|E [e¢Hy—1H,_y + Hi—1H_ €] | || < Be,AGdr By (4 4 8Gyr48)
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= 16-Bst gthtBt =+ 32dBet gfrtﬂf
< 8dBe, Gt + 16 B, G d Pyt
= SdBEtgtBt(QTt —|— 1)

The last inequality holds because of the step size condition. It remains to bound the terms
& I:EthfrtHT ] and £ [Ht,TtHT 62—] .

t—rs t—rs
By assumption, we know ||E [e¢|F;_,] || < A¢B;r¢ and therefore:

IE [ecHy o H ] | < B [IE [e0]Fsr) Hyr H, ]
< E[|E et Foer,] I Heer, H, . |l]
< ArBE (| Hir HL, ]
< A BE [Tr(Ht—nH:—m)]
<d- A 3E [|He—r H, ]
<d- At fiOr—r,
<d-AgriBibi1

Combining the last bounds we get that whenever ¢t > t(:
|E [ecHi1 Hy + Hir H 1€ || < (8dBe,GeBe(2r: + 1) + dArifBy) 61 (41)
Also, whenever t < tj, we have that,
|E [e¢Hy—1 H,_y + Hi—1H, €] ] || < 2dBc, 01 (42)
Combining the bound of equation 41 with equations 36, 38, and 42 yields for ¢ > ¢,

|E [HeH ||| < 01 ||(I+ BB~ AT + BB~ A) || + 04—1 87 (8dBe,Ge (214 + 1) + dAery)
+ ot—lﬂtdeg
< Op_1 (14 2BM1 + B7 (A1 + dB?) + 7 (8dBe,Gi(2r¢ + 1) 4 dAery))

where A; = A\2. This gives us a recursion of the form:
00 = Opr (12800 + B2dri(A; + B, G)C) 43)

where C(V) is the smallest constant depending on A; such that:
dri(A¢ + Be, Gy + B2)CY) > Ay + dB? + 8dB,,G:(2r; + 1) + d Ay (44)
Similarly, whenever ¢ < tj, we have that

|E [H:H]] || < 0i1||(I+ BB AT + BB PA)T|| + 0,18 * 2d B,
+0,187dB?
<01 (1+ 28\ + BE(A1 +dB?2) + By x 2dB.,)
<01 (1 +2BA1 + Bidri(A; + Be,Gi + Bi)c(l) + Bt * 2dBet)

Using the inequality (1 + ) < exp(xz) for z > 0, and noting that 6§y = 1 we obtain the desired result:

t to
0, < exp(Y_ 2B\ + Bdri(A;i + B, Gi + B2)CW + 3 3;2dB.)
i=1 j=1

E.2 Orthogonal Subspace: Upper Bound on Expectation of T]r(VlT H:H V)

In this section, we provide a bound on E [Tr(V | H H,' V1 )].
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Lemma E.2. Forallt > 0 and B; is such that B;Gyry < i (which can be obtained by appropriately
controlling the constant (3 in the step size).,

E [Te(V, H,H V)]

t t
<exp [ Y280+ B33 (Tr(vg/j) +AVLV ) (mﬂfsic@) +1(i < tg)B; * 2dBe,,) :

j=1 i=1

min(i,tg)

exp | Y 2B;(\ = Ag) + B3(S;dr,CY = N3)+ > B2xdB,
j=1

j=1
where the V| matrix contains in its columns s, . . . , g, where each i1 = Bu; is the unnormalized
left eigenvector of the matrix B~" A and S; = (A; + B, G; + BZ) for all i.
Proof. Lety, = E [Tr(V, H.H,' V. )]. By definition:
ve = Tr(E [HH | V. V)]")
=Tr(E [H—1H | I+ BB A)TV.V (I+ 5B *A))
DS
+ Tr(BE [eeHy—1 H,' | + Hi—1H (e | VIV, + BFE [eHi—1 H, 1] )] VL V)")
O

We focus on term é:
(I+ BB PA VIV I +B8B A=V V] +8,(B ATV V] +6,V.V (B 1A)
L L3t
+B3(B'A)TV, VI BTA

Analysis of #1: We begin by noting that the columns of V| contain the vectors @; which are the
unnormalized left eigenvectors of B —1 A and therefore,

VI(BTrA) =V A,

where A is a diagonal matrix with A; ; = \;11 Vi = 2...d. Noting that V, V' A < MV, V[T, we
obtain,

& =<V V(14 28)). (45)
Following a similar argument, we obtain that,
(B'A)TV V! BtA< 3V, V] (46)

Combining Eqs (45) and (46), we obtain,
& <Tr (E[Htlezzl]VJ_VI(l + 280 + ﬁf)\g))

The terms corresponding to [J can also be bounded by bonding the operator norms of its two
constituent expectations. In the same way as in Lemma E.1, let H; = (I + L:" """ )H, . . Note
that V. V" < [|[V..V " |21 and we bound the normalized term 5/|| v, v ||..

Te(E [e,H;—1H,"y + H_1H ¢/ | VLV])
||VLVI||2
= Tr(E [Hy—r H, (& + ¢ )]) + Tr(E [H—p, H,.

t—re

S TI‘(E [Gth,1H£1 + HtletTflej])

((Liz ™) el +ealizi ™))
Ty s
+ Te(E [Hep H_,, (L)) e+ 6/ L))
I's
(L) el T+ (L) e LZ )]

Ty

+ Tr(E [Hy—r Hy

t—re
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Recall that | L7 < 47,G, ;. As a consequence:

(LY el + e LIZ vt < 2B, % 4r,Gy B I = 8B, 1 Gi B ]
(Li:q#l)TGt + EILi:?-H = 2B, * 411G 1] = 8B, 1G]
(Lt Tttt (Lot Te T L2t < 9(40,Gy 8y)2 Be, I < 8B, 1G5 1

The second inequality in the last line follows from the step size condition. Therefore:
Ty + T3+ Ty < 32B,,7,.Ge3 Te(E [Hy—r, H, . ])
< 32B¢,1¢Gfyd||E [Hy—r H[,, ] ||
< 32B¢,1tGt fd0; .,
S 3235trtgtﬂtd9t_1
We proceed to bound I';. We know that ||E [e;|F;—,] || = Ay 8, and therefore E [e, + €/ | F—r, | =<
2«4t[3t7"t1
Iy =Tr(E [He—v H, (e +¢)]) =E [Tr(Hi—p, H . E[e; + €] | Foer,])]
< 24:BimE [Hi—p H ]
< ZAtBtTthE [Ht—T’th—rt] ||
<2A:Br¢dby—,
< 2A;BiredB; 1

The last inequalities follow from the same argument as in equation 41, where 6;_; is the upper bound
obtained in the previous lemma for ||E [H;—1 H, ] |.

As a consequence, whenever ¢ > tg the first term in B/||v, v|» can be bounded by:
Tr(E [e;Hy—1H,"y + H_1H/ ¢/ | VLV])
HVLVI”z
For the case when ¢t < t,:
Tr (E [e,H;—1H, "y + H1H 1/ |V.V])  E[Tr((Hi—1HL)(ViV ] e+ ¢ ViV]))]
ViV [l VLV [l
< 2B., Tv(E [H,—1 H, 4])
<2dB.,||E [H,1H/ ] |
S 2d-Befgtfl

< 32B,,1:G Bedbi—1 + 2.A: By dby 1

where the first inequality follows because ||V, Ve, + ¢/ V.V || < 2B, [|[VLV ] ||2.
And the second term in U/||v, v || can be bounded for all ¢:
Tr(E [e,Hi—1 H, ¢/ | VLV
VLV l2

< Tr(E [eHi—1 H, 1€ ])

=Tr(E [Ht_lHtT_letTet])
< B? Tr(E [H;1H,_,])
< dBftHE [He1H, ]|
< dBf,ﬂt—l
Let C® be a constant such that dri(A; + Be, Gt + B?t)C(z) > 32dB.,r:Gs + 2d Ay + dB2.

The last inequalities follow from the same argument as in equation 38. We conclude that whenever
t > to:

O=8Te(E [eHi—1H  + Hi_1H, ¢/ | VIV + B Te(E [eHy—1 H, 1€/ | VIV])
< dryB7(As + Be,Ge + BL)CP 0,1 |VLV] |12
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Combining & with [, whenever ¢ > ¢:
ve = d+0< 31 (142800 + Bidd) + dri2(Ar + Be,Gr + B2)CP0, 1 |[VLV] |2
On the other hand, for ¢ < ¢,:
0= 8 Te(E [eHi—1 H  + Hi_1H, 1€/ | VLV]) + B2 Tx(E [eHy—1 H, 1€/ | VLV])
< (thﬁtQ(-At + B, G + Bi)C(Q) + B * qu) i1 [|VLV] |2

And consequently:

v = &+0< fyt_1(1+26t)\2+6t2)\§)+(drtﬁf(At + B.,Gi + B2)C? + B2 dBEt> O ||VLV ] |2

Using the bound for #;_; in Lemma E.| and the inequality 1 4+ x < e”:
Ve < exp(2B A2 + BEAZ)ve-1+
IVLVI la (droB2 (A + Be G+ B2)C® 4+ 1(t < t0)8, + 2dB., ) -

t—1 min(t,to)
exp | Y28\ +driff(Ai + B, Gi + BZ)CW + Y p;2xdB,
i=1 j=1

After doing recursion we obtain the upper bound,

t
90 < Y [IVAVTlla (B2 (A + BeGi+ B2)O® +1( < t0)B,24B., ) exp | Y 28,00 + 823

i=1 j=i+1
7 min(,to)

exp | 328\ +dr;B3(A; + B, G+ B2)CY + Y B2xdB,, }
j=1 j=1

t

+exp(d 28,00 + B3 A5)0

=1

Where 7o = Tr(V V). Let S; = (A; + B.,G; + B2)

t t
v < exp() 287 + BIN3) (Tr(VLVj) +aVLV] 2 (mﬂfsic@) +1(i < to)f; 2dBEi) :

j=1 i=1
i min(%,t0)
exp ZQ’Bj()\l - )\2) + BJQ»(deTjC(l) - )\g) + Z Bj2 * dBEj
j=1 Jj=1

O

E.3 Lower Bound on Expectation of @] H,H," i,

Lemma E.3. Forallt > 0 and 3; > 0 we have,

t t
Eli) H H, ii1] > ||y |3 exp (Z 2B A1 — 4/33A%> —dl|a 3 ((ﬁ?n(At + B, G + B2)Cc®?

i=1 1=1
i1 min(t—1,tp)
+BiI(t < to)(Be,))exp [ D28\ + B3drj(A; + Be,G; + BL)CW + >~ g2dB., | |,
j=1 j=1
47)

where w1 is the unnormalized left eigenvector corresponding to the maximum eigenvalue \1 of

(B-14)").
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Proof. Let v = E[vT H,H, v] where v = /|, be the normalized left eigenvector and ¥ =
B~'A. Since H; = (I + 3;G}), we can obtain a bound on ~; as,

v =Ep (I + B:G)Hi—1H, (I + B,Gy) 0]
=R (I +B:X)H,_1H' (I+5,2) 0]+ BE[w (eH,_1H, | +H,_1H ] 0]
+ BPE[v (e; + ©)Hy 1 H, ((¢; + ) Tv] — BB SH,_1H, ;X 0]
%E[UTHt,lﬂj_lv] + BEw"SH,_ H v+ BE[v H, 1 H %]
+ BE[v" (eHy 1 H,_y + Hy 1 H,_ €] )]
£ (1420801 + BBl (e Hy—1 H | + Hy_ H e o), (48)
(1)

where (; follows since (e; + ) H;_1 H, | (e; + %) T is a positive semi-definite matrix and (s follows
since v is the top left eigenvector of 2. Now, in order to bound term (I), we note that

Elo" (eHy 1 H,, + Hy 1 H e )] > —|Ble,Hy 1 H' | + Hi 1 H e]]]|2.
Using the bound obtained in (4 1), we get that for t > ¢,
Ev" (e,Hy—1H 1 + Hi_1H,"1e] )v] > —B:(8dB,, G (2r; + 1) + dA;r¢)0;—1,
and for ¢t < ¢y, we have from equation (42)
Elv' (e,H,_1H, |+ H,_1H, ] )v] > —2dB,0,_1,
Where 0;_1 is defined as in E.1. We next use the bound from lemma E.1 to lower bound -0;_1,

Elv' (e;Hi1H, | + Hi_1H, ¢/ )v] > —B:(8dB., G (2rs + 1) + dA;ry + 1(t < t9)(2dB,,))-

-1 min(t—1,t0)
exp | Y28\ + Bldri(Ai + B.,Gi + BZ)CW + Y~ B;2dB,
i=1 j=1

Recall that in Lemma E.2 we defined C'® as a constant such that: dri(As + B, Gt + Bft )C @ >
32dB.,m:Gs + 2d Ayry + dB2, therefore:

E[UT(eth—lHtT—l + Ht—lHtT—ﬁtT)v] > - (ﬁtd""t(-At + Be, Gt + th)c(2) +I(t < to)(QdBGt)> ’

t—1 min(t—1,t0)
i=1 j=1

Substituting the above in equation (48), we obtain the following recursion,

Y= (142208071 — (Budri(Ar + B, Go + B2)C? +1(t < t0)(2dB,) ) -

t—1 min(t—1,t0)
exp | Y28\ + Bldri(Ai + B, Gi + BZ)CW + Y B;2dB,,
i=1 j=1

Using the inequality 1 + = > exp (z — 22) for all = > 0, along with o = 1, we obtain,

t t
Ve > exp (Z 2BiM — 4@-2)\%) —dy ((53Tt(v4t + Be,Gi + BZ)C®) + Bill(t < to)(Be,)) -

i=1 i=1
i—1 min(t—1,t9)
exp [ Y28\ + pldrj(A; + B.,G; + B2)CW + > p;2dB,,
j=1 j=1
(49)
which concludes the proof of the lemma. O

30



E.4 Upper Bound on Variance of 4] H;H, i,

In this section, we provide an upper bound on E [(’UTH H, 0)2} which will be later used in order to
lower bound the requisite term using the Chebychev Inequality. We first prove an upper bound on
E [Tr(H «H, H.H," )] and use this in the next lemma to obtain the requisite bounds.

Lemma E.4. Forallt > 0:

min(t,to)

E [Tr(H,H, H,H,")] < dexp Z4A1@+dn(,4,+32 +B,,G)C® 24 Z 532* 100 °B.;)

=1

_1AH < }8%, Bt’l“tgt < Z’ and BtrtBet < Z

Proof. We start by substituting the identity: H; = (I + 8;G¢)Hy—1 = (I + BB~ YA + Brer) Hy—1.
Substituting this decomposition intro the trace we want to bound we obtain:

E [Tr(HH, HH, )] = TvE [(I + B;Ge)He—1 H,_ (I + B:Gy) " (I + BiGy) Hy—1 H, 1 (I + BGy) |

=TrE Ht_lHtT_l (I+6th)T(I+ﬁth)Ht—lHt—r_1 (I+ﬂth)T(I+5th)
—— ——

L Fl F2 F1 1—‘2

<STE |HH  Hi 1 H | (T4 B:G) (I + BiGe)(I + B:Ge) T (I + BiGy)
L )
where last inequality follows from the trace inequality: Tr (I'; oI’y I's) < Tr (T'313).

Expanding & yields:
&= (I+BB A (I+8B AT+ BB AT (I+ 5B 1A)
LY
+ B (e I+ BB YA I + BB A I+ 8B A) + (I + BB 'A) e(I+ 5B A) (I + 5B *A))
(1)
+B: (I + BB PA) (I + BB 'A)e/ I+ BB A) + (I + BB 'A) (I + BB 'A)I + BB A) &)

(2)
2

+‘3a

where #3 contains all terms with at least two ¢;. Additionally, #3 is a symmetric matrix with norm
satisfying:

1 4
Jall 2 52 (Pl + 5814 59 (3 el -+ Bl + () el

72 101 101
£ g+ 632<100> +5§*4*BS(1OO>+@
73 101

< SBEBZ

where the inequality ; follows from triangle, and ~s, 3 from the step size condition. Recall that:

TE [Hy B oy HL 6] = TE [Ho o L He 10 (0 (05 + 68+ ag)]

Since, as shown in equation Equation 37 we have that (I + 3;B~1A)(I + 3;B~1A)T < (1 +
BiA1)?I. then, #; =< (1 + B¢A1)*] (this is because (I + B rA)(I + ;B~1A)T and (I +
BiB~YA)T(I + BB~ A) have the same eigenvalues. And therefore #; =< (1 + B;A\)* =<
(1+48:M1 + 1157 max (A1, 1))I and #s < 837 B2 I, thus implying:

TrE [Hy 1 H,_ (Hi 1 H | (81 + #3)] < (1+48M+1187 (AN V) +887 B2 ) TYE [Hy 1 H,_  H, 1 H|_ ]
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It only remains to bound the term Tr E Ht,lHtTlet,lHtT,l(Qél) + ‘éz)) . Notice that le) +

r
4.52) is a symmetric matrix. Therefore,whenever ¢ < #y:

- 101
1057 + A5 < 28, B, 1T+ 5B AP < 264({55)°Be,

And also whenever t < tg :
TvE | Hy B Hy o HE (057 + 85)| < 28,Bc, |1+ B~ A
< 2(1.01)°B TrE [H;—1 H, H,— 1 H, ]

We will use similar arguments to what we used in previous sections to bound these types of terms for
the case when t > tq:

Let H1 = (I + Li:’i‘“)Ht_n as in Lemma E. 1, therefore:

TrE [Ht_lHtT_lHt_lHtT_l( {1 +¢§2))} — TvE[(I + LIy Y H,, H]

t—ry

(I+ LT

(I+ L Y H L (T + LT (Y + a5))]

We can now expand the right hand side of the last equation into different types of terms. We

start by bounding the term that does not contain any L.~7**! nor (L{=7*"")T. It is easy to see

that ||E {le) + Qg2)|.7-'t,m} | < BEAire * (155)% + 4. This follows because ||E [e;|F;—,] || <

A.pBsre, and an operator bound on each of the remaining 3 terms in each of the four factors by

|1+ B,B~'A| < 13%L. With these observations and using the fact that Qél) + Qg) is a symmetric

matrix, we can bound the following term:
1 2
Hyr H,, (48 + &) |7,

=Tr (Ht—’l‘th—l;Tth_TthTf’r‘tE |:‘gl) + ‘52)|‘Ft_rt:|)

E [Tr (HH,HT

t—ry

3
101
< BtQAtrt * (100) * 4Tr(Ht*7‘thT*7”th7”H;”)
S 5152At7’t * 5Tr(Ht_TthT_rth—Tth—T't)

For the terms of I' containing L!”7**" components we use a simple bound. Notice that HQS) +

‘52) || < B:(32)3 % 4 % B.,. And recall just as in Equation 40, || L;_1*™"|| < 4r,G;3; and therefore

[(LE5 T LI+ | < 16r2G282. We look at the term containing four copies of L7t terms:
Let O = Tr (L{Zp " Hor, HL, (EL 0 ) TLZE Hey BT (LT T (S + 657)).

101 .. .
0, < Bt(ﬁ)s x4 % B, Tr (L7 Hy_p H,

t—ry (Li:?—i_l)TLi:?—HHt—ﬂHt
101

L (LT

= Bi(gq)" 4% Bed T ((Hemr ML, (L7 LT Hy g HI (LT LT
< B (Gg) 4B, # 16r3G2 Tr (Hyy HL, (L) TLp B, B )

= B 4B < 161767 T (o, H Ho H (Lp ) LT

< 55(18(1) )® % 4B, x 16*r{G} Tr (H,— H,_, Hy— H, )

< BB, * G Tr (Hy—p, H,, H, o H,_, )

where the last inequality follows from the step size conditions. We now look at the following term in
T that has three L7 terms:

Oy = Tr(H;_,, H,"

t—Tf,

(L) T e B (LT T (G + 457))+

32



(L ,,

L (LT LT BT () + a57))

Since [|(LIZ7 )T (57 + A8)) + (W + &)V LIZF | < B2(158)3 B, 14 Gy Using a similar
series of inequalities as in the case above we obtain a bound:

Oy = Tr (Hy—p, H,'

t—re

(LY L (D) T () + a8+

Ly Hey B (L7 LT e H (05 + 457))
= Tr (e B (L0 L He B LT T () + 057) + (W57 + 49770
< B2 %32 (30 B G T (Hy o B, (L3 ) T Ly H )
= B 32 (05 B Gor, T (Hor B Hor H (L) L)
< BH16 % 82105 B Gr? T (Hyp HL, i HL,)
22« 32500 B Ger T (Hop L Hy oy HL,)
< 32 % 33B.,Gyr T (Hy—r H,, Hy— HL))

The last inequality ~; follows from the step size conditions.
0/2 = Tl“(Lii?JrlHt—rthT_l,«t

(Lt =

t—rg

—Tt —7¢ 1 2
(LY TH HE L (L) T (MY + a5))+
LI H H L (L2 T (48 + a8)))

s —Tt 1 2 —Tt .
Since [[(LZ1 ) T (WS + A LT < B3(1001)3 w4 % B, 176G}

Of = Tv (L{Zy Hyop B, (L3 T Hye HL (L0 )T (457 + 457)+
LTy Hyn HE LT He HE L (L0 T (45 + 487))

= Tr(Hpr, B (L5 4 (L) ) Heer B (2T (57 + 69 LEZ )

ST (Hy o L (L5 4 (L) ) He g B (L) T (45 + a8 L)+
Tr(Hye B, LT3 4 (L) DI Her B L) T () + 859) LT )+
Te(Her L 20+ D DI L )T (47 + 45712

2aG

o) 4 BordGE Te(Homr ML (ILEH 4+ (L) T+ Lt

o 101
(L§—1t+1)T)Ht*Tth—[n) + ﬁ?(m)g * 4 % BEtr?th * 2 % 4rtgt6t ’I‘I‘(Ht*Tth—[mHt*TthTfrt)
3,101 4 22 3,101 4 252
< (B; (ﬁ) k4% Be,r;i G x4 % 4r,Gy By + B} (1—00) x4 % Be,miGi * 2% 4riGy By )
* Tr(Ht*?”t H}Im Ht*Tt Ht—[n)
101
= 6;1 * T2 % (m)3T?Q?BEt T‘r(Ht*TtH;Tth*’f‘tlet)
< B7 %5B¢,Gyry Tr(Hy—y H,_, Hy—y, H, )

where the inequality ~; follows because the sum of the two added terms is nonnega-
tive. The inequality v, follows by combining the first two terms in the previous expres-
sion and noting that Hy_,, H, , Hy . H,", |Li=7 T + (L2 T + Heep HL, (L0 +

t—ry t—rt
(Li:;tH)T)Ht,TtH . > 0. The last inequality follows from the step size conditions. This

t—re
finalizes the analysis for the components in I" having three Lij‘“ terms.

We now look at the components of T' with two L!”7**" terms. Their sum equals:

Tr (((LTE:TJFIHt—TthT—m + Ht—TtHT

t—ry

L=y 2+ (L2 Hey

t—?"f,

(Li:?ﬂ)T + Ht—Tt,HtT—rt)2
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—H,_, H'

t—re

H, . H

t—re

t—ri+1 T
-L, """ H,_ . H

t—ry

t—ri+I\T pt—re+1 T
(Lt—lt )Lt—lt Hy . H,

terms: Let

We look at a generic term of I" having exactly two Li:?“

O3 = Tr(H,_,, H,

t—ry

—r —r 1 2
(Li—% +I)TL:E—l +1Ht—mHt—m( g = Qé )))
Then, we have that,

t—1 1 2
O3 < d|LIZy 2| Hemr HE 12| 457 + &8
101

< B} A% rf x G x (155)" * 4 Be | (Hir HL )|
< dB?17G,B., Tr(H;_, H, , Hy_,, H/ )

The last inequality follows from a the step size conditions plus the fact that trace is larger than
operator norm for a PSD matrix.

We now look at a generic term in I" with one L::;“H term: Let

Oy =Tr(H,_, H'

t—ry

—r 1 2
(L T He B, (M) + &5)).
Then, we have that,

—r 1 2
Oy < d|ILLZy | Hemr HE |2 4057 + 48

t—re
101
< d47“tgt5t(m

< 17dBrG B, Tr(H;_,, H,"

t—ry

)2 % AB., | (Ho—r H, )|

Ht—m HtT—r,,)

Since there is a single term of type O1, four of type Os, six of type O3 and four of type O,4, we obtain
the bound whenever t > tg:

TE [ Ho By He B (5 + 88)] < 57 oAy + 5B, Gor + 236, B, 1)
E [Te(Hy—r, H,, Hior H,L,,)]

t—re
Therefore we obtain the following recursion:
Tv(E [HH, HH, ) < TvE [H,—1H,_ H, 1 H," | &)
< (1+4B:M + 1187 max(\f, 1) + 867 B2 ) TvE [H, 1 H," H,_1H," || +

101
)BBQ)'

B (5r¢Ap + 55Bc,Gyre + 23dGy Be,ry + 1(t < t0)26+(155

E [TI‘(Ht_”Ht Ht—rthT—r,,)]

-7

Let C®) be a constant such that:
d’l"t(At + B€2t + Betgt)c(3) Z (57}./415 + 55B€tgt7“t + 23thB€tTt) + 11 max()\‘f, 1) + 8B€2t

Let {n;} be a sequence of increasing upper bounds for E [Tr(H;H;" H; H;")]. In other words,
E [Tr(H;H' H;H;")] < n; Vi

Andny <mp <mg < ---, where 9 = d. Let Ct(?’) =FE. + Dt(?’) + 11 max(\}, 1). We can obtain a
recursion of the form:

101
ne < (L4481 + Bidry(As + Bi + Betgt)c(g) +1(t < t0)2/8t(ﬁ)336t)77t71

We conclude by applying the inequality 1 4+ = < exp(z) for 2 > 0 and the initial condition ny = d:

min(t,to)

t
e < dexp(z AN B; + dri(A; + B2 + B..G)C® B2 + Z B2 % (
j=1

i=1

101

3
B,
100) P
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Lemma E.5. Fort > 0, we have that
E (4] H H, i;)°]

t

< ||u1||2 exp Z4)\1ﬁz + 11/\ /Bt) + ||U1||2 Z ( ([‘312d7’1(./41 + Bi + Beigi)UQ =+ 1(2 < tO)Bi4B€i) .

=1 =1

i mm t to
exp (24/\16j +dr;(A; + B?J. +G;B. C(B)/Bz Z B2 ( 100 6j)>

j=1

where @i is the unnormalized left eigenvector corresponding to the maximum eigenvalue i of B~ A.

As long as By follows that || + B, B~1A|| < 138, 8B, < 1

Proof. Asin the previous lemma, we let v = @1/||a, ||» denote the normalized left principal eigenvector.
Let Hy = (I + 3;G¢)Hy_1 = (I + BB~ YA + Bier) Hy_1. The desired expectation can be written
as:

E [(UTHthTU)2] =E [’UT(I‘Fﬁth)Htlet—il(I+6th)T’U’UT(I—‘rﬁth)Ht,lHt—[l(I“rﬂth)T’U]

=E |v (I +8B*AH,_H' I+ 5B A) v (I+ BB *A)H, 1H, (I +BB'A) v

To

+E[; + T2+ s + Ty

where T'; is the collection of terms in the expansion of E [(v" H,H, v)?] that have exactly i terms of
the form ¢;.

Since v is a left eigenvector of B~1A, the term 'y can be written as follows:
E[To) = (1 +B:M)'E [v Hyo H, jov" Hy_1H, 1]
< exp(4X1f; + 11)2 Bt )JE [ THt_lHtT_lvaHt_lHtT_lv]
Now we bound the terms I'; with ¢ > 2. Each of these terms is formed of component terms with at

least two €, each. Let’s look at a generic term like this one and bound it, for example one that has
two terms of the form ¢;:

2
_ _ 101
' BreeHy—1H, 1 Brerov’ (I+ BB A)H,_1H," (I + BB~ A) v| < p}||H,—1 H,_,||*B? (100)

< 2B? B2 Tx(H,— H \Hy_H[ ;)

By a similar argument, and using the step size conditions 5.8., < 1, we can bound each of the terms
in 'y, '3 and T4 and obtain (using the fact that 5; < 1):

Ty +T3+Ty < BEB2U Tr(Hy—1H,  H, 1 H| ) (50)

101

For some universal constant ¢/ depending on {55

I'4. Therefore,
E [+ s+ Ty < B7BZUE [Tr(H, 1 H H, 1 H, )]

and the number of component terms in I'y, I's, and

t—1
< B7B2_Urdexp <Z AN B; + dri(A; + B2 + B.,G;)C® B}
i=1
min(t,to)

+ Z 2% 35 ( 100) :

Bounding expectation of I';: We start by bounding the expectation of I'y whenever ¢ < ¢,. Let’s
look at a generic term from I';:

Z:=v'(I+BB A)H,_1H ' freqvv’ (I + B *AH,_1H,” (I+ 5B 1A)"v
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We bound this term naively:

121l < Bl + BB~ AlP|| He— H,L, ||* Be,

101\*
< B (100) Tr(HtletTletlet—il)BEt

There are exactly 4 terms of type Z. Now we proceed to bound the expectation of I'y whenever
t > to: Let’s look at a generic term from I';:

v (I4+ BB YAH,_H Bievv" I+ BB *A)H,_\H ' ((I+8B A v (51

In the same way as in previous lemmas, in order to obtain a bound for this term, we write H;_1 =
(I + L= H,_,, and substitute this equality in Equation 51. Recall that || LI~ || < 47,.G, ;.
In this expansion, we bound all terms that have at least one Li:g‘“ using a simple bound. Let’s look

at a generic such term and bound it:

=W (I+BB AL Hy_ H, Bresov (14 BB A)H,_, H,, (I+5BA) 0|
(52)

101
) <47“tgt5t (1()0) N He—r Hy m” B.

101

— H, , H'
100 t— t t— Tt)

Tt

3
S 2rtgtﬁt2Bet ( ) T‘I‘(Ht rth

And therefore:

101\° pa
E[#] < 2r,G:3? B, (180) dexp (Z AN B; + dri(A; + B2 + Bﬂg,»)c@ﬁf)
i=1

t—1

101\° f
i=1

Using the step size condition, 3;G;r; < 4, all of the remaining terms with at least one Lt ”‘H
can be upper bounded by a expression of order O(87r,G, B, Tr(H;—, H," , Hy—r, H," . )). ThlS

procedure will handle the terms in T'; that after the subsitution H;_; = (I + Li~ ”H)Ht,” have at
least one Lt

The only terms remaining to bound are those coming from I'y, such that after substituting H;_; =

(I+ L~ ”H)Ht +, do not involve any L/~ T’H . Let’s look at a generic such term and bound its
expectat1on

O:=F (v (I+BB*A)H, . H

t—ry

Brervv (I + BB~ A)H,_, H . (I + BB A)Tv
&1

Recall that ||E[es|Fi—r,]|| < A¢Ber:. We bound < by first bounding the norm of the conditional
expectation of {:

) 101\° )
[E [C1]Fer ] || < B7O(rt) IHy v H,
100
) 101\° T
< Bi Agry 100 Tr(Hy—r H,_ v Hemr Hy )
And therefore:
¢ =E[O1] S E[E[O1|Fe—r, ] ]
1 t—ry min(t—r¢,to)
< B A (100) dexp | Y AMBi +dri(A; + B2 + B Gi)CWB + > Bi2x (i
i=1 j=1
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t—1 min(t,to)

101 10
2 2 (3) 2 3
_ﬂtAtrt(wO) dexp | Y AMB; + dri(Ai + BZ + B.,G)C 87 + Z B;2 % (155)" Bes

=1

The last inequality follows from the results of E.4. Combining all these bounds yields for all ¢ we
have:

100
t—1 mln(t to)

101
E [Fl —+ FQ + F3 —|— F4] S <ﬁt2d7’t(./4f + 32 + Betgt)UQ + 1(t < to)ﬁtll * Bet( )3>

101
100°

Combining all these terms we get a recursion of the form:

where U5 is an absolute constant depending on and the number of terms in I'y, 'y, - -+ | T'y.

E [(v" HH v)*] <exp(4hf; + TINBY)E [(v| Her H10)*] + (5§drt(,4t + B + B, G )Ua+
t—1

1(t < to) BB, (18(1)) )exp (24)\161 + dri(A; +32 + B, 92)0(3)62
i=1

in(t,t
g 100 Be;
After applying recursion on this equation we obtain:

E [(vT HyH/ v)?] < exp Zulﬂz + 11A357)

=1

t
101
2 2 .
+ ;:1: (ﬂi dri(A; + B2 + Be,G)Ua + 1(i < t0) BAB, (155) ) exp (§ :4A15J

min(t,to)

101
d7’j (A] + ng + gj 3)ﬂ2 Z B] 100 )

As desired. O

F Convergence Analysis and Main Result

We reproduce the bounds that we will be requiring in this section from the previous ones. We begin
by reporducing the lower bound of Lemma 5.3.

Ela] H,H u
%21] > exp <Z 2B: A1 — 4@%) —

BB 2

dZC1< Bire + Bil(t < to)) exp <2251)\1+C25 d7“1+0325z >>7

= i=1 i=1

(€]
(53)
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where we have merged previous explicit constants into ¢y, co and c3, which throughout the course of
this section might assume different values. Restating the bound from Lemma 5.4, we have,

~T T~ 1\2
E [(ul I_{an ul) ] < exp (Z 4>\15t + 11X 5t>

[RE 2

ClZ( Ay +1(t < to)Bt) eXP(Z‘lMﬁz-ﬁ-Czdﬂﬁ +C3Z@)>~

t=1 =1 i=1

(I1)
(54)

Note that as mentioned before in Section B, the term 7, = O(log®(3;!)) and to = O(log®(d?B)).
In the following, we substitute the step size 8; = dQBL_H, where b, 8 are constants, implying that
re = O(log® (d?B + t)).

Bounds on partial sums of series: We begin by obtaining bounds on partial sums of some series
which will be useful in our analysis. We first prove the following upper bound:

t t d®B+t 9
1 1 g+t
48; A1 = 4bA ———— = 4bA — < 4b\ ] . 55
OLETETND SFts ik T DU SR C ol REED
=1 =1 1:d2ﬁ+1
We next have the following lower bound:
t t d®p+t 9
1 1 d°f+t+1

E 45; A1 = 4bA E —— = 4b)\ g — > 4b)\ 1 — . 56
2 Bid 1i:1d2ﬁ+z 1iid25+127 1og< d2ﬁ+1 ) (56)

We can obtain the following bound on the squared terms:
t t 372 ;
. log®(d*p + 1)
27 312 _
c;:l B log®(d°B +1i) = c;ﬂ @Rt

d2 B+t

log® (1) > log® () log®(dp)
=c Z 2 SC/(FB 2 dr <c 25

i=d2B+1

where c is a constant which changes with inequality. Next, we proceed by bounding the excess terms
in the exponent corresponding to the summation over the ¢, terms.

to 2 3
1
c§ @.Scblog(dﬁm><do<80g(dﬁ)< (57)
i=1

c
28 ) &8~ &8 —d
where the last inequality follows since loféa% < 2.

Bounds on E[v" H,, H,| v] and E[(v H,, H,] v)?]: We first proceed by providing upper bounds on
Term () in (53) and Term (I7) in (54).

n t to n
dY o ((ﬁfrt + Bl(t < to)) exp (Z 28i\1 + cafBidr; + c3 Zﬁ,d) ) <cd) ((@% + Bt < to))
t=1

t=1 i=1 i=1

Similarly term (II) by:

Z( (dBFre +1(t < to)Bs eXP(Z‘l)\lBrFCthﬂ +CJZ@)>

i=1 i=1

) b
ScZ(dﬁfrt-i-ﬁtH(tStO)) (ddﬁz;t> :
t=1
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Lemma F.1. Forany 61 € (0, 1) and n satisfying,

1/2b);

2 e
fﬁ+n > max exp(H) (@26 + 1),
log ™n0-2550) (d2 3 4 n) 01
26\ 2 2bM\, cB2d3 exp | St
cdf exp A ( 1+ L + d26) —( - )
01 d? d?p g1

Ela{ H, H, 1] -
W > (1=dy)exp | Y28 —4B87AT |

t=1

we have that

where c depends polynomially on b, B, \1.

Proof. We consider the term E[ii] H,, H, ;] from Equation (53),

Ela] H, H i " " 428+ 2"
W > exp(D_ 28h — 4BPA]) —cd Y (BFre + Bt < to)) ( d’éﬁ )
2

t=1 t=1
n n d2ﬂ+t 2b\
= (1—01)exp (Z 2B: A1 — 45%) —cd Y (B7re + Bil(t < to)) ( )
t=1 t=1

423
+ &1 exp <Z 28\ — 4@%\%)

t=1

)2b)\1

(1 — (51 exp (Z Qﬂt>\1 — 45t )\2 d4b)‘1 1 Z Bt re + ﬂt (t < to)) (dzﬁ +t

t=1
2bA1

2 2
+§1exp<c>\1) <dﬂ+ ntl

d? d?s+1
)Qb)\l

> (1-6y)exp (Z 280 — 48703

t=1

d4b>\1 1 Z Bt'rt d2ﬂ+t

2bX
2bX1—1

/)\2 d2 +n+1
+61exp<—c 1)( oin d4b)\1 12 (d*B+1)

d? d2B +1

)2b)\1

(1 — 61) exp (Z 26\ — 48202 dml - Z Bire) (d*B +t

t=1

£ (1= 6))exp (Z 2B\ — 4B2\2 )2

t=1

d4b>\1 I Z (Bre) (d*B +1

2bA1 52b)\1d4b/\1

d2 d4b)\1 1

12 2
+§1exp<—c>\1) <dﬁ+ ntl

d’f+1
2bA\1—2

> (1 —6;)exp (Z 2B\ — 43273

t=1

d4bA ZIOg (d*B+1) (d°B +1)

2bA1
cﬂZb)\l d

/2 2
1
+§1exp<—6)\1) <d5+"+

a2 2B+ 1

d4b/\1 1

)-
)
)-
)
)-
PPN St R —
)
)
)-
)
)-

> (1—6;)exp (Z 26\ — 48202

clog®(d?B +n) zn: 2 2b,\1—2
d ,3—|—t
t=1 t=1
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dN? 2B +n+1\*"M
+ 61 exp ( d21) <C€26H) 7 Cﬂ2b)\1d,

where ¢; from using Y 7 < nY*t1/y + 1 for v > —1 and (, follows from the fact that

log® () < cx. We now consider the following three cases:

Case 1: 2b)\ < 1
Eli) H, H, ii1]

In this case we can lower bound the term A as,
2
Ela; H, H, 1] ) clog®(d?B + n)
W >(1- 51) exp tz; 28¢A1 — 4@& Al T gabai—1 d2ﬂ)(1 2bA1)
N2 B+n+1 202
+&@®(—d§)( B ind ) ey
2bA1 1 d2
(1 o 51 exp (Z 2ﬂt)\l 46t A2> CB Og ( ﬂ + n)
t=1
AN\ (2B 4+n+ 1\
+ 01 exp ( d21) ( 2E 11 ) — Mg
> (1—6;)exp (Z 26\, — 43 )\2> — cdB? log® (d?B + n)
t=1
N2\ (2B 4+n+ 1\
5 o 1
+ 1eXp< dz)( d2/8+1 )
C n
> (1 - 4;)exp (Z 2B, A1 — 437 )\2>
t=1

where (; follows by using that

ehtn (“) v (2B +1)
log®/ " (d28 +n) ~ \ 01

Case 2: 2b)\; > 1
E[a; H, H, @]

In this case, we can lower bound the term —EaE s,
2
E[a] H, H,) 1] n . clog3(d26+n) (d28 + n)?a—1
— 0= =>(1-90 280 — 4B2NT | —
a2 0o (20 - asN | - T
O (EBAn A1\,
”1@“’(‘ d)<dﬁ+1) s

B +n\ " oy oo, (P81
> _ _ 1
_<d2ﬁ+1> (5lexp< d2> cf d(d%—i—n)

1\ 2N 1003 (g2 -
~ edg? (1 L d%’) W) + (1= 61) exp (; 280 — 46%)

G n
> (1 —6;)exp (Z 2B:\1 — 45§A§> :

t=1

where (; follows by using that

d’B +n cd®h (&%) ( 1 )2“1 .
> — 1+ —= +d
o (@3 +n) = o P\ a 25 B
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Case 3: 2b\; =1
E[a; H, H, @]

In this case, we can lower bound the term TAE as,
2
Ela] H,H, clo d2 +n
W (1 —d1)exp <Z 28\ — 4B7A% clog (&5 +n)
L2 =1

/)\2 d2
+ 01 exp <Cd21) < 52;_?1 1)

(1 — 61) exp (Z 26\ — 48202

t=1

where (; follows from using

2B +n N cB2d3 exp (C;‘—;)
log*(d2B +n) — 51 '

Lemma F.2. Forany §, € (0, 1) and n satisfying,
d*B+n c(d?B+1) ctvh
Amin(1,1/4bXy) = max >
logmin(L1/403) (g2 4 ) (55 log®(dp)) ™ 02

we have that,

(d®B+ n)) 7

E (4] HyH,) @1)?]

1112

t=1

< (14 62)exp (Z 4\ B + 11A Bt) )
where ¢ depends polynomially on b, 3, A1, A .

Proof. We consider the term E [(@{ H, H,] @1)?] from Equation (54),

- . 4bA
E [(a, f‘{an iiy)?] < exp <Z AN By 4 110 5t> + CZ (dB2r; + BI(t < to)) (d2ﬁ + t>

4 2
[ 3 — a2

n 428+t 4b\q
:CZ(d53Tt+5tﬂ(t<to))< 73 ) — Gy exp <Z4)‘1Bt+11)\ @)
t=1 t=1

+ (14 83) exp (Z AN By + m%ﬁ?)

t=1

n 2 4bX,
= CZ(dﬂtzn) (ddﬁz;t> — g exp (Z 4X1 8 + 11X ﬂt>
=1

2 4bAq
JerZdQBl—i—t <ddﬂ2;t) + (14 d2) exp <Z4)\15t+11)\ Bt>

t=1

n 2 4bX\q
=cY (dBir) (dd’égt> — 6y exp (Z AN By + 11X 5t>

t=1

¢
cb 0

+W2(d25+t>4b/\1 1 (1+62 exp <Z4)\15t+11)\ Bt)

t=1 t=1
4b)\1

n dQB—f—t 4bX\y
<chﬂtt ( 73 ) —(5gexp<z4)\1ﬁt+11/\ ﬁt> ™

t=1

+ (14 d2) exp <Z4)\1/8t + 11X ﬁt>

t=1
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cdb?
< O Zlog (d?B +t)(d*B + 1)1 72 — Gy exp <Z4>\15t+11)\ Bt>
t=1
cAbM .
+ 5 + (1 4 d2) exp Z4>\16t+11)\15t
t=1

cdb? log®(d?B + n)

2 oAb
< (@25)10% Z(d25 + t)4bA1 2 _ 5 exp (Z 4X\1 6, + 11X 615)

A
=1 t—1 1

+ (1 + 65) exp <Z4)\16t + 11\ ﬁt>

t=1

cdb? log® (d2B + n) & - 2B +n+1\"M
< % (4bf ) Z(d26+t)4bkl 2 § 62
(d?p)3o2 d?g+1 A1

+ (1+d2)exp <Z4)\1,8t + 11\ ﬂt> )

t=1

where (; follows by using the fact that ;- i¥ < n7*!/y + 1 for v > —1. We consider now the
following three cases as before:

Case 1: 4b)\; < 1

In this case, we can upper bound the term

t=1

E[(iiy HnH, i1)?]
lla:l3

E [(a] HoHy @)*] _ cb®log™(d*B+n) o (d*B+n+1 A by
[cAE dp U @2p+1 A

+ (1 + 82) exp (Z AN B + 11A§3§>

as,

t=1

t=1

(1 + d2) exp <Z AN B + 11X Bt> ,
where (; follows from using that
d*B+n N c(d?B +1)
log ™1 (A28 +n) (8 log*(dB)) ™

Case 2: 4b\; > 1

. H,H,L
In this case, we can upper bound the term Ef@r @)’]

as
[EEE ’

E [(a] H H @)2]  cdb?log®(d28 + n) <& B BB +n+ 1\ n
[ 1 — 1> ] S % (4bf ) Z(d26+t)4bA1 2 _52 52
(o3alE: (d?B)4bMm e} d?B8+1 A1

+ (1 + 6) exp <Z4)\1Bt + 11X @)

t=1

¢ edb? log? (d28 + B
G (dgﬁ()%i n) (2B +n)M 1 _ 5, (

+ (14 8) exp (Z A\ B+ 11 5:&)

d?B+n+1 A oM
d’g+1 > A1

t=1

C2 i
< (L+02)exp (Z 4B + 11)353) ;
t=1

where (5 follows by using that

2 4bX
;l S+n > M
log®(d?8 + n) 2

(*B+1).
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Case 3: 4b\; =1
E[(a; HnH,) i1)?]

In this case, we can upper bound the term Tl as,
2
E NTH HTN 2 2 3772 n 9
[(a] 1 H, )] _ cdb?log 2(d B+n) S50 -, <d52+n+1> B
@115 (d?B) py d?p+1 A1

(1 + (52 exp <Z4)\1ﬁt + 11X ﬂt>

t=1

cdb? log® (d?B + n) d?B+n ?B+n+1 ¢
<o (St )~ (Car)

+ (14 82) exp <Z4)\1ﬂt + 11X @)

t=1

(1 +52 exp <Z4)\15t + 11X 6,5) ,

t=1

where (7 holds due to
d’B+n - cd
log*(d2B +n) ~ 02’
O

Convergence Theorem: We begin by restating the bound obtained on E [Tr(V' H H,' V)] in
Lemma E.2,

om0 Vo] <o (S 03

t=1

n t to
<Tr(VLVj) +ed|[VLV 2 Y (reB7 +1(t < to)Bed) exp (2 > Bi(A = Xo) + cdBiri + cZﬁid»

t=1 i=1 i=1
¢ "
< exp (Z 28: Ao + Bf)é) (Tr(VLVf) (58)
t=1
n t
+ed| ViV (12 Y (re7 +I(t < to)Bed) exp (2 D Bilh = A) + cdﬁfri> ) (59)
t=1 =1

where (; follows from using Equation (57).

Theorem F.3 (Convergence Theorem). Let § > 0 and the step sizes ; = ﬁ. The output vy, of

Algorithm | for n satisfying the assumption in Lemma F.1 and F.2 is an e-approximation to uy with
probability atleast 1 — § where,

d|vov’ . =
sin® (u1,vy,) < AVLV, |l2 exp | 52 Z B? (exp —2A, Z Bt
_— Q t=1 t=1

€

+CZ B2+ 1(t < to)Bed exp< 24, Z @) )

t=1 i=t+1
where Ay = \1 — Ao and

20° || |13 1

9= (2 + €1)clog(1/9) 1_% (14 €1)exp <1926t2)‘%> 1,

t=1

The constant c occuring in the equations, as before depends polynomially on problem dependent

[ €
paramters b, \1, Ay and the parameters - = 03 = 57—
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Proof. First, using the Chebychev’s inequality, we have:

P ||a] HoH,) iy — B[] HyH, ]| > Var[ﬂlTHnHJﬂl]} <4

qu—*

With probability greater than 1 — §, we have,

iy HyH @y > E [a] H,H) ] - i\/Var [a] H, H i)

TH HTﬁ )2]
_E i HoH ] [1— = U ntn T 60
[ul n ( \/ HnH;lrﬁl]z ( )

Now, using Lemma F.2, we have that,

E [(a] HoHy@1)%] _

12

< (1+83)exp <Z AN By + 11N @) 61)

t=1
and using Lemma F.1, we have,

E[a] H, H, @ "
[U1~—QU1] > (1 - 51) exp <Z 261 M1 — 4ﬂt2)‘%) s

112 =

squaring the above, we obtain,
E ~THnHT ~ 12 n
W > (1-8)exp (Z 160 — 8ﬂEA%> , ©
L2 t=1

where §] = 207. Setting 8] = 63 =

5 +6 and substituting bounds (61) and (62) in (60), we obtain,

n

. o 2flwll 1 =
ulTHnHJmZT;eXp > 280 — 4870 1—% (1+e)exp (19> B2AF) —1

t=1 t=1
Further, using the Equation (58) along with Markov’s inequality, we have with probability atleast
1-96

1 n
Te(V, H,H, V.) < 5P (Z 2B: Ao + 53A§> (Tr(VLVf)

n t
+ Cd”VLVIHz Z (Ttﬁf + ]I(t < to)ﬁtd) exp <22ﬂ1(>\1 — /\2) + Cdﬁ?ﬂ) )

t=1 i=1

Combining the above with Lemma 6.2, we have that the output v, of Algorithm | is an e-
approximation to u, with probability atleast 1 — 4,

clog(1/6)(2 + €1) exp (Z? 128\ +4ﬁ,52)\2) Tr(VTH H,V,)
- 2wl (1= LV +e)exp (19T, 573 — 1)

< d”‘/lQm exp <5)\§ Z 63) (exp <2A>\ Z 515)
t=1 =
Z (re87 +1(t < t9)Bed) exp ( 24, Z 51) >7

1=t+1

where Ay = A1 — A\g and

0- 262 ||a1 |3 1_i (1+ 1) exp 19271:52)‘2 -1
(2 +e1)clog(1/9) Vo =
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Main Result: Next, we state our main theorem and instantiate the parameters of our algorithm.

Theorem F.4 (Main Result). Fix any § > 0 and ¢; > 0. Suppose that the step sizes are set to
op = 710g(d§ﬁ+t) and By = 7Ak(dzﬁ+t) fory > 1/2and

R |, R® RS R2 R*
- 207222 2“@:17+Fﬁ%“+7+P9
o 1+6/100 A2

Suppose that the number of samples n satisfy the assumptions of Lemma F.1 and F.2. Then, the output
vy, of Algorithm | satisfies,

(2+61)cd||zf_1aiaj|210g(}5)( E3+1 \T e logd(dB + n)
52| a2 2B +n+1 AZ(2B+n+1)

Lo fﬁ+b§@%)2»

Ay d?B+n+1 ’

with probability at least 1 — § with ¢ depending polynomially on parameters of the problem
A1, KB, R, u. The parameters 01, 0 are set as 61 = and 6o =

siHQB(ul, vp) <

€1
2(2+e 2461

Proof. With the step size 5; = we set the parameter b = AIZ 5, and thus we get B =

_b
2B+’

S,
NG Now, we have that

iﬁfs T
2= N dp

1 1+ 135 biai
og The, , We obtain,

and using the assumption that A2 d2 5 <

c6?||a |13

@+enlog(ijs) @

((1+61)exp<192ﬁ?A¥>—1)Zﬁ) =~ Q>

t=1
Using previous bounds on sums of partial harmonic sums, we have that,
d*B+n+1 d?B+n+1
> 2= 1 S N d ; - T ).
Zﬁt ( 26+ 1 an Z;lﬁ *A d*B+t+1

Using these bounds, we obtain,

" 2e+1 \
exp | —2A, 6) < (> . (64)
( t:Zl K 28 +n+1

In order to bound the remaining terms from Theorem F.3, we note that,

CE:(QBE+—Mt§t@ﬁﬂDemo(—QAA 2:,&>

t=1 i=t+41

n 2
ch(rtﬂ3+H(t§to>6td) (d25+t+1> '

d?B+n+1
2B+t+1\" i 2B+t+1\"
<3 i (S S e (e
(AN (2B +t)2 \d?B+n+1 — AN(d@B+1t) \d®B+n+1
cy?log’ (d*B + n) cd 2B +log®(428)\ (65)
SN2y 1) (PB+n+1) A d*B+n+1 ’

where the last bounds holds for any v > 1/2. Substituting bounds (63),(64) and (65) in the result of

Theorem F.3, we obtain that the output v,, of Algorithm | satisfies,

(2+ ex)ed|| Soi, @it [l2log (3) ( 8+1 " cy2log’(d?B +n)
62|12 2B +n+1 A3(d2B+n+1)

sinQB(ul, vp) <
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cd (d2B +1log®(d2B)\ "
+A,\< 2p+n+1 > )

G Auxiliary Properties

G.1 Useful Trace Inequalities

In this section we enumerate some useful inequalities.
Lemma G.1. 1. (A, B) < (A, C) for PSD matrices A, B, C with B < C.

2. Tr(ATB) < $ Te(AT A+ B B) for all matrices A, B € R™*™.

As a consequence:
Corollary G.1.1. (A, B) < (A, C) for a PSD matrix A and B < C, with B and C' symmetric.

Proof. 1f B is PSD, the result follows immediately from the previous lemma. Otherwise let A,,,;,, be
the smallest eigenvalue of B. Let B’ = B + |A\pin|f and C' = C' + |Apin|I. The matrices B’ and
C' are PSD and satisfy B’ < C”. The result follows by applying the lemma above and rearranging
the terms. [

G.2 Useful spectral norm Inequalities

In this section we enumerate some useful inequalities.
Lemma G.2. If0 =< B = C and symmetric then 0 < ABAT < ACAT.

As a consequence:
Corollary G.2.1. If0 < B < C and symmetric then || ABAT|| < ||[ACAT]|.

G.3 Properties concerning Eigenvectors of B~ A

In this subsection, we highlight some important properties concerning the left and right eigenvectors
of the matrix under consideration B~1 A.

As before, we let uq, . . ., ug denote the left eigenvetors and uq, . . ., uq denote the right eigenvectors
of BT A.

Lemma G.3. The right eigenvectors of the matrix B~ A satisfy the following:

u] Buj =0 ifi# j.

Proof. Consider the symmetric matrix C = B~Y/2AB~Y/2 Letu{, ..., u§ be the eigenvectors of
C. Notice that if u is an eigenvector of C' with eigenvalue );, then

B~ Y2(B7Y2AB~ Y% = \;\B7Y?uC,

implying that B~/ 2u¢ is a right eigenvector of B~! A, u;. Therefore the eigenvector of C are

related to the righteigenvectors of B~ A as BY/?u; = u$. Further, since the matrix C is symmetric,
its eigencvectors can be taken to form an orthogonal basis, and hence,

(uic)TuJC =u; Bu; =0 ifi#j.
Lemma G.4. Let u, denote the top right eigenvector of B~ A. Then,
ﬂ;rul =0 forallt > 2,

where 1i; represent the left eigenvectors of the matrix B~ A.
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Proof. We begin by noting that the left and right eigenvectors of the matrix B~! A are related as
u; = Bu;, which follows from,

(B~'A)B™'4; = B"Y(AB™Ya; = \;B™ 4,

As a consequence B~11i; is a right eigenvector of B~! A and the lemma now follows from using
Lemma G.3.

O
As a consequence of Lemma G.4, we have the following corollary relating the orthogonal subspace
of u; to the left eigenvectors s, . . . , tgq.

Corollary G.4.1. If A\ has multiplicity 1, the space orthogonal to u, is spanned by the vectors
{az, ... da}.
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